## Proposed Changes
Update all dependencies to new semver-compatible releases with `cargo update`. Importantly this patches a Tokio vuln: https://rustsec.org/advisories/RUSTSEC-2023-0001. I don't think we were affected by the vuln because it only applies to named pipes on Windows, but it's still good hygiene to patch.
## Issue Addressed
Recent discussions with other client devs about optimistic sync have revealed a conceptual issue with the optimisation implemented in #3738. In designing that feature I failed to consider that the execution node checks the `blockHash` of the execution payload before responding with `SYNCING`, and that omitting this check entirely results in a degradation of the full node's validation. A node omitting the `blockHash` checks could be tricked by a supermajority of validators into following an invalid chain, something which is ordinarily impossible.
## Proposed Changes
I've added verification of the `payload.block_hash` in Lighthouse. In case of failure we log a warning and fall back to verifying the payload with the execution client.
I've used our existing dependency on `ethers_core` for RLP support, and a new dependency on Parity's `triehash` crate for the Merkle patricia trie. Although the `triehash` crate is currently unmaintained it seems like our best option at the moment (it is also used by Reth, and requires vastly less boilerplate than Parity's generic `trie-root` library).
Block hash verification is pretty quick, about 500us per block on my machine (mainnet).
The optimistic finalized sync feature can be disabled using `--disable-optimistic-finalized-sync` which forces full verification with the EL.
## Additional Info
This PR also introduces a new dependency on our [`metastruct`](https://github.com/sigp/metastruct) library, which was perfectly suited to the RLP serialization method. There will likely be changes as `metastruct` grows, but I think this is a good way to start dogfooding it.
I took inspiration from some Parity and Reth code while writing this, and have preserved the relevant license headers on the files containing code that was copied and modified.
I've needed to do this work in order to do some episub testing.
This version of libp2p has not yet been released, so this is left as a draft for when we wish to update.
Co-authored-by: Diva M <divma@protonmail.com>
## Proposed Changes
With proposer boosting implemented (#2822) we have an opportunity to re-org out late blocks.
This PR adds three flags to the BN to control this behaviour:
* `--disable-proposer-reorgs`: turn aggressive re-orging off (it's on by default).
* `--proposer-reorg-threshold N`: attempt to orphan blocks with less than N% of the committee vote. If this parameter isn't set then N defaults to 20% when the feature is enabled.
* `--proposer-reorg-epochs-since-finalization N`: only attempt to re-org late blocks when the number of epochs since finalization is less than or equal to N. The default is 2 epochs, meaning re-orgs will only be attempted when the chain is finalizing optimally.
For safety Lighthouse will only attempt a re-org under very specific conditions:
1. The block being proposed is 1 slot after the canonical head, and the canonical head is 1 slot after its parent. i.e. at slot `n + 1` rather than building on the block from slot `n` we build on the block from slot `n - 1`.
2. The current canonical head received less than N% of the committee vote. N should be set depending on the proposer boost fraction itself, the fraction of the network that is believed to be applying it, and the size of the largest entity that could be hoarding votes.
3. The current canonical head arrived after the attestation deadline from our perspective. This condition was only added to support suppression of forkchoiceUpdated messages, but makes intuitive sense.
4. The block is being proposed in the first 2 seconds of the slot. This gives it time to propagate and receive the proposer boost.
## Additional Info
For the initial idea and background, see: https://github.com/ethereum/consensus-specs/pull/2353#issuecomment-950238004
There is also a specification for this feature here: https://github.com/ethereum/consensus-specs/pull/3034
Co-authored-by: Michael Sproul <micsproul@gmail.com>
Co-authored-by: pawan <pawandhananjay@gmail.com>
## Issue Addressed
NA
## Proposed Changes
- Bump versions
- Pin the `nethermind` version since our method of getting the latest tags on `master` is giving us an old version (`1.14.1`).
- Increase timeout for execution engine startup.
## Additional Info
- [x] ~Awaiting further testing~
This PR adds some health endpoints for the beacon node and the validator client.
Specifically it adds the endpoint:
`/lighthouse/ui/health`
These are not entirely stable yet. But provide a base for modification for our UI.
These also may have issues with various platforms and may need modification.
## Issue Addressed
This PR addresses partially #3651
## Proposed Changes
This PR adds the following methods:
* a new method to trait `TreeHash`, `hash_tree_leaves` which returns all the Merkle leaves of the ssz object.
* a new method to `BeaconState`: `compute_merkle_proof` which generates a specific merkle proof for given depth and index by using the `hash_tree_leaves` as leaves function.
## Additional Info
Now here is some rationale on why I decided to go down this route: adding a new function to commonly used trait is a pain but was necessary to make sure we have all merkle leaves for every object, that is why I just added `hash_tree_leaves` in the trait and not `compute_merkle_proof` as well. although it would make sense it gives us code duplication/harder review time and we just need it from one specific object in one specific usecase so not worth the effort YET. In my humble opinion.
Co-authored-by: Michael Sproul <micsproul@gmail.com>
## Summary
The deposit cache now has the ability to finalize deposits. This will cause it to drop unneeded deposit logs and hashes in the deposit Merkle tree that are no longer required to construct deposit proofs. The cache is finalized whenever the latest finalized checkpoint has a new `Eth1Data` with all deposits imported.
This has three benefits:
1. Improves the speed of constructing Merkle proofs for deposits as we can just replay deposits since the last finalized checkpoint instead of all historical deposits when re-constructing the Merkle tree.
2. Significantly faster weak subjectivity sync as the deposit cache can be transferred to the newly syncing node in compressed form. The Merkle tree that stores `N` finalized deposits requires a maximum of `log2(N)` hashes. The newly syncing node then only needs to download deposits since the last finalized checkpoint to have a full tree.
3. Future proofing in preparation for [EIP-4444](https://eips.ethereum.org/EIPS/eip-4444) as execution nodes will no longer be required to store logs permanently so we won't always have all historical logs available to us.
## More Details
Image to illustrate how the deposit contract merkle tree evolves and finalizes along with the resulting `DepositTreeSnapshot`
![image](https://user-images.githubusercontent.com/37123614/151465302-5fc56284-8a69-4998-b20e-45db3934ac70.png)
## Other Considerations
I've changed the structure of the `SszDepositCache` so once you load & save your database from this version of lighthouse, you will no longer be able to load it from older versions.
Co-authored-by: ethDreamer <37123614+ethDreamer@users.noreply.github.com>
## Issue Addressed
Updates discv5
Pending on
- [x] #3547
- [x] Alex upgrades his deps
## Proposed Changes
updates discv5 and the enr crate. The only relevant change would be some clear indications of ipv4 usage in lighthouse
## Additional Info
Functionally, this should be equivalent to the prev version.
As draft pending a discv5 release
* add capella gossip boiler plate
* get everything compiling
Co-authored-by: realbigsean <sean@sigmaprime.io
Co-authored-by: Mark Mackey <mark@sigmaprime.io>
* small cleanup
* small cleanup
* cargo fix + some test cleanup
* improve block production
* add fixme for potential panic
Co-authored-by: Mark Mackey <mark@sigmaprime.io>
## Issue Addressed
NA
## Proposed Changes
Bump version to `v3.2.0`
## Additional Info
- ~~Blocked on #3597~~
- ~~Blocked on #3645~~
- ~~Blocked on #3653~~
- ~~Requires additional testing~~
## Issue Addressed
Implements new optimistic sync test format from https://github.com/ethereum/consensus-specs/pull/2982.
## Proposed Changes
- Add parsing and runner support for the new test format.
- Extend the mock EL with a set of canned responses keyed by block hash. Although this doubles up on some of the existing functionality I think it's really nice to use compared to the `preloaded_responses` or static responses. I think we could write novel new opt sync tests using these primtives much more easily than the previous ones. Forks are natively supported, and different responses to `forkchoiceUpdated` and `newPayload` are also straight-forward.
## Additional Info
Blocked on merge of the spec PR and release of new test vectors.
## Issue Addressed
#2847
## Proposed Changes
Add under a feature flag the required changes to subscribe to long lived subnets in a deterministic way
## Additional Info
There is an additional required change that is actually searching for peers using the prefix, but I find that it's best to make this change in the future
## Issue Addressed
Adding CLI tests for logging flags: log-color and disable-log-timestamp
Which issue # does this PR address?
#3588
## Proposed Changes
Add CLI tests for logging flags as described in #3588
Please list or describe the changes introduced by this PR.
Added logger_config to client::Config as suggested. Implemented Default for LoggerConfig based on what was being done elsewhere in the repo. Created 2 tests for each flag addressed.
## Additional Info
Please provide any additional information. For example, future considerations
or information useful for reviewers.
## Issue Addressed
N/A
## Proposed Changes
With https://github.com/sigp/lighthouse/pull/3214 we made it such that you can either have 1 auth endpoint or multiple non auth endpoints. Now that we are post merge on all networks (testnets and mainnet), we cannot progress a chain without a dedicated auth execution layer connection so there is no point in having a non-auth eth1-endpoint for syncing deposit cache.
This code removes all fallback related code in the eth1 service. We still keep the single non-auth endpoint since it's useful for testing.
## Additional Info
This removes all eth1 fallback related metrics that were relevant for the monitoring service, so we might need to change the api upstream.
## Issue Addressed
NA
## Proposed Changes
Fixes an issue introduced in #3574 where I erroneously assumed that a `crossbeam_channel` multiple receiver queue was a *broadcast* queue. This is incorrect, each message will be received by *only one* receiver. The effect of this mistake is these logs:
```
Sep 20 06:56:17.001 INFO Synced slot: 4736079, block: 0xaa8a…180d, epoch: 148002, finalized_epoch: 148000, finalized_root: 0x2775…47f2, exec_hash: 0x2ca5…ffde (verified), peers: 6, service: slot_notifier
Sep 20 06:56:23.237 ERRO Unable to validate attestation error: CommitteeCacheWait(RecvError), peer_id: 16Uiu2HAm2Jnnj8868tb7hCta1rmkXUf5YjqUH1YPj35DCwNyeEzs, type: "aggregated", slot: Slot(4736047), beacon_block_root: 0x88d318534b1010e0ebd79aed60b6b6da1d70357d72b271c01adf55c2b46206c1
```
## Additional Info
NA
## Issue Addressed
NA
## Proposed Changes
I have observed scenarios on Goerli where Lighthouse was receiving attestations which reference the same, un-cached shuffling on multiple threads at the same time. Lighthouse was then loading the same state from database and determining the shuffling on multiple threads at the same time. This is unnecessary load on the disk and RAM.
This PR modifies the shuffling cache so that each entry can be either:
- A committee
- A promise for a committee (i.e., a `crossbeam_channel::Receiver`)
Now, in the scenario where we have thread A and thread B simultaneously requesting the same un-cached shuffling, we will have the following:
1. Thread A will take the write-lock on the shuffling cache, find that there's no cached committee and then create a "promise" (a `crossbeam_channel::Sender`) for a committee before dropping the write-lock.
1. Thread B will then be allowed to take the write-lock for the shuffling cache and find the promise created by thread A. It will block the current thread waiting for thread A to fulfill that promise.
1. Thread A will load the state from disk, obtain the shuffling, send it down the channel, insert the entry into the cache and then continue to verify the attestation.
1. Thread B will then receive the shuffling from the receiver, be un-blocked and then continue to verify the attestation.
In the case where thread A fails to generate the shuffling and drops the sender, the next time that specific shuffling is requested we will detect that the channel is disconnected and return a `None` entry for that shuffling. This will cause the shuffling to be re-calculated.
## Additional Info
NA
## Issue Addressed
Fix a `cargo-audit` failure. We don't use `axum` for anything besides tests, but `cargo-audit` is failing due to this vulnerability in `axum-core`: https://rustsec.org/advisories/RUSTSEC-2022-0055
## Issue Addressed
We were unable to update lighthouse by running `cargo update` because some of the `mev-build-rs` deps weren't pinned. But `mev-build-rs` is now pinned here and includes it's own pinned commits for `ssz-rs` and `etheruem-consensus`
Co-authored-by: realbigsean <sean@sigmaprime.io>
## Issue Addressed
We currently subscribe to attestation subnets as soon as the subscription arrives (one epoch in advance), this makes it so that subscriptions for future slots are scheduled instead of done immediately.
## Proposed Changes
- Schedule subscriptions to subnets for future slots.
- Finish removing hashmap_delay, in favor of [delay_map](https://github.com/AgeManning/delay_map). This was the only remaining service to do this.
- Subscriptions for past slots are rejected, before we would subscribe for one slot.
- Add a new test for subscriptions that are not consecutive.
## Additional Info
This is also an effort in making the code easier to understand