## Summary
The deposit cache now has the ability to finalize deposits. This will cause it to drop unneeded deposit logs and hashes in the deposit Merkle tree that are no longer required to construct deposit proofs. The cache is finalized whenever the latest finalized checkpoint has a new `Eth1Data` with all deposits imported.
This has three benefits:
1. Improves the speed of constructing Merkle proofs for deposits as we can just replay deposits since the last finalized checkpoint instead of all historical deposits when re-constructing the Merkle tree.
2. Significantly faster weak subjectivity sync as the deposit cache can be transferred to the newly syncing node in compressed form. The Merkle tree that stores `N` finalized deposits requires a maximum of `log2(N)` hashes. The newly syncing node then only needs to download deposits since the last finalized checkpoint to have a full tree.
3. Future proofing in preparation for [EIP-4444](https://eips.ethereum.org/EIPS/eip-4444) as execution nodes will no longer be required to store logs permanently so we won't always have all historical logs available to us.
## More Details
Image to illustrate how the deposit contract merkle tree evolves and finalizes along with the resulting `DepositTreeSnapshot`
![image](https://user-images.githubusercontent.com/37123614/151465302-5fc56284-8a69-4998-b20e-45db3934ac70.png)
## Other Considerations
I've changed the structure of the `SszDepositCache` so once you load & save your database from this version of lighthouse, you will no longer be able to load it from older versions.
Co-authored-by: ethDreamer <37123614+ethDreamer@users.noreply.github.com>
* add capella gossip boiler plate
* get everything compiling
Co-authored-by: realbigsean <sean@sigmaprime.io
Co-authored-by: Mark Mackey <mark@sigmaprime.io>
* small cleanup
* small cleanup
* cargo fix + some test cleanup
* improve block production
* add fixme for potential panic
Co-authored-by: Mark Mackey <mark@sigmaprime.io>
## Issue Addressed
This reverts commit ca9dc8e094 (PR #3559) with some modifications.
## Proposed Changes
Unfortunately that PR introduced a performance regression in fork choice. The optimisation _intended_ to build the exit and pubkey caches on the head state _only if_ they were not already built. However, due to the head state always being cloned without these caches, we ended up building them every time the head changed, leading to a ~70ms+ penalty on mainnet.
fcfd02aeec/beacon_node/beacon_chain/src/canonical_head.rs (L633-L636)
I believe this is a severe enough regression to justify immediately releasing v3.2.1 with this change.
## Additional Info
I didn't fully revert #3559, because there were some unrelated deletions of dead code in that PR which I figured we may as well keep.
An alternative would be to clone the extra caches, but this likely still imposes some cost, so in the interest of applying a conservative fix quickly, I think reversion is the best approach. The optimisation from #3559 was not even optimising a particularly significant path, it was mostly for VCs running larger numbers of inactive keys. We can re-do it in the `tree-states` world where cache clones are cheap.
## Issue Addressed
Fix a bug in block production that results in blocks with 0 attestations during the first slot of an epoch.
The bug is marked by debug logs of the form:
> DEBG Discarding attestation because of missing ancestor, block_root: 0x3cc00d9c9e0883b2d0db8606278f2b8423d4902f9a1ee619258b5b60590e64f8, pivot_slot: 4042591
It occurs when trying to look up the shuffling decision root for an attestation from a slot which is prior to fork choice's finalized block. This happens frequently when proposing in the first slot of the epoch where we have:
- `current_epoch == n`
- `attestation.data.target.epoch == n - 1`
- attestation shuffling epoch `== n - 3` (decision block being the last block of `n - 3`)
- `state.finalized_checkpoint.epoch == n - 2` (first block of `n - 2` is finalized)
Hence the shuffling decision slot is out of range of the fork choice backwards iterator _by a single slot_.
Unfortunately this bug was hidden when we weren't pruning fork choice, and then reintroduced in v2.5.1 when we fixed the pruning (https://github.com/sigp/lighthouse/releases/tag/v2.5.1). There's no way to turn that off or disable the filtering in our current release, so we need a new release to fix this issue.
Fortunately, it also does not occur on every epoch boundary because of the gradual pruning of fork choice every 256 blocks (~8 epochs):
01e84b71f5/consensus/proto_array/src/proto_array_fork_choice.rs (L16)01e84b71f5/consensus/proto_array/src/proto_array.rs (L713-L716)
So the probability of proposing a 0-attestation block given a proposal assignment is approximately `1/32 * 1/8 = 0.39%`.
## Proposed Changes
- Load the block's shuffling ID from fork choice and verify it against the expected shuffling ID of the head state. This code was initially written before we had settled on a representation of shuffling IDs, so I think it's a nice simplification to make use of them here rather than more ad-hoc logic that fundamentally does the same thing.
## Additional Info
Thanks to @moshe-blox for noticing this issue and bringing it to our attention.
## Issue Addressed
Closes https://github.com/sigp/lighthouse/issues/2371
## Proposed Changes
Backport some changes from `tree-states` that remove duplicated calculations of the `proposer_index`.
With this change the proposer index should be calculated only once for each block, and then plumbed through to every place it is required.
## Additional Info
In future I hope to add more data to the consensus context that is cached on a per-epoch basis, like the effective balances of validators and the base rewards.
There are some other changes to remove indexing in tests that were also useful for `tree-states` (the `tree-states` types don't implement `Index`).
## Issue Addressed
While digging around in some logs I noticed that queries for validators by pubkey were taking 10ms+, which seemed too long. This was due to a loop through the entire validator registry for each lookup.
## Proposed Changes
Rather than using a loop through the register, this PR utilises the pubkey cache which is usually initialised at the head*. In case the cache isn't built, we fall back to the previous loop logic. In the vast majority of cases I expect the cache will be built, as the validator client queries at the `head` where all caches should be built.
## Additional Info
*I had to modify the cache build that runs after fork choice to build the pubkey cache. I think it had been optimised out, perhaps accidentally. I think it's preferable to have the exit cache and the pubkey cache built on the head state, as they are required for verifying deposits and exits respectively, and we may as well build them off the hot path of block processing. Previously they'd get built the first time a deposit or exit needed to be verified.
I've deleted the unused `map_state` function which was obsoleted by `map_state_and_execution_optimistic`.
## Issue Addressed
N/A
## Proposed Changes
With https://github.com/sigp/lighthouse/pull/3214 we made it such that you can either have 1 auth endpoint or multiple non auth endpoints. Now that we are post merge on all networks (testnets and mainnet), we cannot progress a chain without a dedicated auth execution layer connection so there is no point in having a non-auth eth1-endpoint for syncing deposit cache.
This code removes all fallback related code in the eth1 service. We still keep the single non-auth endpoint since it's useful for testing.
## Additional Info
This removes all eth1 fallback related metrics that were relevant for the monitoring service, so we might need to change the api upstream.
## Issue Addressed
fixes lints from the last rust release
## Proposed Changes
Fix the lints, most of the lints by `clippy::question-mark` are false positives in the form of https://github.com/rust-lang/rust-clippy/issues/9518 so it's allowed for now
## Additional Info
## Issue Addressed
NA
## Proposed Changes
This PR attempts to fix the following spurious CI failure:
```
---- store_tests::garbage_collect_temp_states_from_failed_block stdout ----
thread 'store_tests::garbage_collect_temp_states_from_failed_block' panicked at 'disk store should initialize: DBError { message: "Error { message: \"IO error: lock /tmp/.tmp6DcBQ9/cold_db/LOCK: already held by process\" }" }', beacon_node/beacon_chain/tests/store_tests.rs:59:10
```
I believe that some async task is taking a clone of the store and holding it in some other thread for a short time. This creates a race-condition when we try to open a new instance of the store.
## Additional Info
NA
## Issue Addressed
NA
## Proposed Changes
This PR removes duplicated block root computation.
Computing the `SignedBeaconBlock::canonical_root` has become more expensive since the merge as we need to compute the merke root of each transaction inside an `ExecutionPayload`.
Computing the root for [a mainnet block](https://beaconcha.in/slot/4704236) is taking ~10ms on my i7-8700K CPU @ 3.70GHz (no sha extensions). Given that our median seen-to-imported time for blocks is presently 300-400ms, removing a few duplicated block roots (~30ms) could represent an easy 10% improvement. When we consider that the seen-to-imported times include operations *after* the block has been placed in the early attester cache, we could expect the 30ms to be more significant WRT our seen-to-attestable times.
## Additional Info
NA
## Issue Addressed
NA
## Proposed Changes
Fixes an issue introduced in #3574 where I erroneously assumed that a `crossbeam_channel` multiple receiver queue was a *broadcast* queue. This is incorrect, each message will be received by *only one* receiver. The effect of this mistake is these logs:
```
Sep 20 06:56:17.001 INFO Synced slot: 4736079, block: 0xaa8a…180d, epoch: 148002, finalized_epoch: 148000, finalized_root: 0x2775…47f2, exec_hash: 0x2ca5…ffde (verified), peers: 6, service: slot_notifier
Sep 20 06:56:23.237 ERRO Unable to validate attestation error: CommitteeCacheWait(RecvError), peer_id: 16Uiu2HAm2Jnnj8868tb7hCta1rmkXUf5YjqUH1YPj35DCwNyeEzs, type: "aggregated", slot: Slot(4736047), beacon_block_root: 0x88d318534b1010e0ebd79aed60b6b6da1d70357d72b271c01adf55c2b46206c1
```
## Additional Info
NA
## Proposed Changes
Improve the payload pruning feature in several ways:
- Payload pruning is now entirely optional. It is enabled by default but can be disabled with `--prune-payloads false`. The previous `--prune-payloads-on-startup` flag from #3565 is removed.
- Initial payload pruning on startup now runs in a background thread. This thread will always load the split state, which is a small fraction of its total work (up to ~300ms) and then backtrack from that state. This pruning process ran in 2m5s on one Prater node with good I/O and 16m on a node with slower I/O.
- To work with the optional payload pruning the database function `try_load_full_block` will now attempt to load execution payloads for finalized slots _if_ pruning is currently disabled. This gives users an opt-out for the extensive traffic between the CL and EL for reconstructing payloads.
## Additional Info
If the `prune-payloads` flag is toggled on and off then the on-startup check may not see any payloads to delete and fail to clean them up. In this case the `lighthouse db prune_payloads` command should be used to force a manual sweep of the database.
## Issue Addressed
Closes https://github.com/sigp/lighthouse/issues/3556
## Proposed Changes
Delete finalized execution payloads from the database in two places:
1. When running the finalization migration in `migrate_database`. We delete the finalized payloads between the last split point and the new updated split point. _If_ payloads are already pruned prior to this then this is sufficient to prune _all_ payloads as non-canonical payloads are already deleted by the head pruner, and all canonical payloads prior to the previous split will already have been pruned.
2. To address the fact that users will update to this code _after_ the merge on mainnet (and testnets), we need a one-off scan to delete the finalized payloads from the canonical chain. This is implemented in `try_prune_execution_payloads` which runs on startup and scans the chain back to the Bellatrix fork or the anchor slot (if checkpoint synced after Bellatrix). In the case where payloads are already pruned this check only imposes a single state load for the split state, which shouldn't be _too slow_. Even so, a flag `--prepare-payloads-on-startup=false` is provided to turn this off after it has run the first time, which provides faster start-up times.
There is also a new `lighthouse db prune_payloads` subcommand for users who prefer to run the pruning manually.
## Additional Info
The tests have been updated to not rely on finalized payloads in the database, instead using the `MockExecutionLayer` to reconstruct them. Additionally a check was added to `check_chain_dump` which asserts the non-existence or existence of payloads on disk depending on their slot.
## Issue Addressed
NA
## Proposed Changes
I have observed scenarios on Goerli where Lighthouse was receiving attestations which reference the same, un-cached shuffling on multiple threads at the same time. Lighthouse was then loading the same state from database and determining the shuffling on multiple threads at the same time. This is unnecessary load on the disk and RAM.
This PR modifies the shuffling cache so that each entry can be either:
- A committee
- A promise for a committee (i.e., a `crossbeam_channel::Receiver`)
Now, in the scenario where we have thread A and thread B simultaneously requesting the same un-cached shuffling, we will have the following:
1. Thread A will take the write-lock on the shuffling cache, find that there's no cached committee and then create a "promise" (a `crossbeam_channel::Sender`) for a committee before dropping the write-lock.
1. Thread B will then be allowed to take the write-lock for the shuffling cache and find the promise created by thread A. It will block the current thread waiting for thread A to fulfill that promise.
1. Thread A will load the state from disk, obtain the shuffling, send it down the channel, insert the entry into the cache and then continue to verify the attestation.
1. Thread B will then receive the shuffling from the receiver, be un-blocked and then continue to verify the attestation.
In the case where thread A fails to generate the shuffling and drops the sender, the next time that specific shuffling is requested we will detect that the channel is disconnected and return a `None` entry for that shuffling. This will cause the shuffling to be re-calculated.
## Additional Info
NA
## Issue Addressed
#3285
## Proposed Changes
Adds support for specifying histogram with buckets and adds new metric buckets for metrics mentioned in issue.
## Additional Info
Need some help for the buckets.
Co-authored-by: Michael Sproul <micsproul@gmail.com>
## Issue Addressed
Add a flag that can increase count unrealized strictness, defaults to false
## Proposed Changes
Please list or describe the changes introduced by this PR.
## Additional Info
Please provide any additional information. For example, future considerations
or information useful for reviewers.
Co-authored-by: realbigsean <seananderson33@gmail.com>
Co-authored-by: sean <seananderson33@gmail.com>
## Issue Addressed
NA
## Proposed Changes
Adds more `debug` logging to help troubleshoot invalid execution payload blocks. I was doing some of this recently and found it to be challenging.
With this PR we should be able to grep `Invalid execution payload` and get one-liners that will show the block, slot and details about the proposer.
I also changed the log in `process_invalid_execution_payload` since it was a little misleading; the `block_root` wasn't necessary the block which had an invalid payload.
## Additional Info
NA
## Issue Addressed
NA
## Proposed Changes
This PR is motivated by a recent consensus failure in Geth where it returned `INVALID` for an `VALID` block. Without this PR, the only way to recover is by re-syncing Lighthouse. Whilst ELs "shouldn't have consensus failures", in reality it's something that we can expect from time to time due to the complex nature of Ethereum. Being able to recover easily will help the network recover and EL devs to troubleshoot.
The risk introduced with this PR is that genuinely INVALID payloads get a "second chance" at being imported. I believe the DoS risk here is negligible since LH needs to be restarted in order to re-process the payload. Furthermore, there's no reason to think that a well-performing EL will accept a truly invalid payload the second-time-around.
## Additional Info
This implementation has the following intricacies:
1. Instead of just resetting *invalid* payloads to optimistic, we'll also reset *valid* payloads. This is an artifact of our existing implementation.
1. We will only reset payload statuses when we detect an invalid payload present in `proto_array`
- This helps save us from forgetting that all our blocks are valid in the "best case scenario" where there are no invalid blocks.
1. If we fail to revert the payload statuses we'll log a `CRIT` and just continue with a `proto_array` that *does not* have reverted payload statuses.
- The code to revert statuses needs to deal with balances and proposer-boost, so it's a failure point. This is a defensive measure to avoid introducing new show-stopping bugs to LH.
## Proposed Changes
This PR has two aims: to speed up attestation packing in the op pool, and to fix bugs in the verification of attester slashings, proposer slashings and voluntary exits. The changes are bundled into a single database schema upgrade (v12).
Attestation packing is sped up by removing several inefficiencies:
- No more recalculation of `attesting_indices` during packing.
- No (unnecessary) examination of the `ParticipationFlags`: a bitfield suffices. See `RewardCache`.
- No re-checking of attestation validity during packing: the `AttestationMap` provides attestations which are "correct by construction" (I have checked this using Hydra).
- No SSZ re-serialization for the clunky `AttestationId` type (it can be removed in a future release).
So far the speed-up seems to be roughly 2-10x, from 500ms down to 50-100ms.
Verification of attester slashings, proposer slashings and voluntary exits is fixed by:
- Tracking the `ForkVersion`s that were used to verify each message inside the `SigVerifiedOp`. This allows us to quickly re-verify that they match the head state's opinion of what the `ForkVersion` should be at the epoch(s) relevant to the message.
- Storing the `SigVerifiedOp` on disk rather than the raw operation. This allows us to continue track the fork versions after a reboot.
This is mostly contained in this commit 52bb1840ae5c4356a8fc3a51e5df23ed65ed2c7f.
## Additional Info
The schema upgrade uses the justified state to re-verify attestations and compute `attesting_indices` for them. It will drop any attestations that fail to verify, by the logic that attestations are most valuable in the few slots after they're observed, and are probably stale and useless by the time a node restarts. Exits and proposer slashings and similarly re-verified to obtain `SigVerifiedOp`s.
This PR contains a runtime killswitch `--paranoid-block-proposal` which opts out of all the optimisations in favour of closely verifying every included message. Although I'm quite sure that the optimisations are correct this flag could be useful in the event of an unforeseen emergency.
Finally, you might notice that the `RewardCache` appears quite useless in its current form because it is only updated on the hot-path immediately before proposal. My hope is that in future we can shift calls to `RewardCache::update` into the background, e.g. while performing the state advance. It is also forward-looking to `tree-states` compatibility, where iterating and indexing `state.{previous,current}_epoch_participation` is expensive and needs to be minimised.
## Issue Addressed
#3032
## Proposed Changes
Pause sync when ee is offline. Changes include three main parts:
- Online/offline notification system
- Pause sync
- Resume sync
#### Online/offline notification system
- The engine state is now guarded behind a new struct `State` that ensures every change is correctly notified. Notifications are only sent if the state changes. The new `State` is behind a `RwLock` (as before) as the synchronization mechanism.
- The actual notification channel is a [tokio::sync::watch](https://docs.rs/tokio/latest/tokio/sync/watch/index.html) which ensures only the last value is in the receiver channel. This way we don't need to worry about message order etc.
- Sync waits for state changes concurrently with normal messages.
#### Pause Sync
Sync has four components, pausing is done differently in each:
- **Block lookups**: Disabled while in this state. We drop current requests and don't search for new blocks. Block lookups are infrequent and I don't think it's worth the extra logic of keeping these and delaying processing. If we later see that this is required, we can add it.
- **Parent lookups**: Disabled while in this state. We drop current requests and don't search for new parents. Parent lookups are even less frequent and I don't think it's worth the extra logic of keeping these and delaying processing. If we later see that this is required, we can add it.
- **Range**: Chains don't send batches for processing to the beacon processor. This is easily done by guarding the channel to the beacon processor and giving it access only if the ee is responsive. I find this the simplest and most powerful approach since we don't need to deal with new sync states and chain segments that are added while the ee is offline will follow the same logic without needing to synchronize a shared state among those. Another advantage of passive pause vs active pause is that we can still keep track of active advertised chain segments so that on resume we don't need to re-evaluate all our peers.
- **Backfill**: Not affected by ee states, we don't pause.
#### Resume Sync
- **Block lookups**: Enabled again.
- **Parent lookups**: Enabled again.
- **Range**: Active resume. Since the only real pause range does is not sending batches for processing, resume makes all chains that are holding read-for-processing batches send them.
- **Backfill**: Not affected by ee states, no need to resume.
## Additional Info
**QUESTION**: Originally I made this to notify and change on synced state, but @pawanjay176 on talks with @paulhauner concluded we only need to check online/offline states. The upcheck function mentions extra checks to have a very up to date sync status to aid the networking stack. However, the only need the networking stack would have is this one. I added a TODO to review if the extra check can be removed
Next gen of #3094
Will work best with #3439
Co-authored-by: Pawan Dhananjay <pawandhananjay@gmail.com>