## Summary
The deposit cache now has the ability to finalize deposits. This will cause it to drop unneeded deposit logs and hashes in the deposit Merkle tree that are no longer required to construct deposit proofs. The cache is finalized whenever the latest finalized checkpoint has a new `Eth1Data` with all deposits imported.
This has three benefits:
1. Improves the speed of constructing Merkle proofs for deposits as we can just replay deposits since the last finalized checkpoint instead of all historical deposits when re-constructing the Merkle tree.
2. Significantly faster weak subjectivity sync as the deposit cache can be transferred to the newly syncing node in compressed form. The Merkle tree that stores `N` finalized deposits requires a maximum of `log2(N)` hashes. The newly syncing node then only needs to download deposits since the last finalized checkpoint to have a full tree.
3. Future proofing in preparation for [EIP-4444](https://eips.ethereum.org/EIPS/eip-4444) as execution nodes will no longer be required to store logs permanently so we won't always have all historical logs available to us.
## More Details
Image to illustrate how the deposit contract merkle tree evolves and finalizes along with the resulting `DepositTreeSnapshot`
![image](https://user-images.githubusercontent.com/37123614/151465302-5fc56284-8a69-4998-b20e-45db3934ac70.png)
## Other Considerations
I've changed the structure of the `SszDepositCache` so once you load & save your database from this version of lighthouse, you will no longer be able to load it from older versions.
Co-authored-by: ethDreamer <37123614+ethDreamer@users.noreply.github.com>
* add capella gossip boiler plate
* get everything compiling
Co-authored-by: realbigsean <sean@sigmaprime.io
Co-authored-by: Mark Mackey <mark@sigmaprime.io>
* small cleanup
* small cleanup
* cargo fix + some test cleanup
* improve block production
* add fixme for potential panic
Co-authored-by: Mark Mackey <mark@sigmaprime.io>
## Issue Addressed
Fix a bug in block production that results in blocks with 0 attestations during the first slot of an epoch.
The bug is marked by debug logs of the form:
> DEBG Discarding attestation because of missing ancestor, block_root: 0x3cc00d9c9e0883b2d0db8606278f2b8423d4902f9a1ee619258b5b60590e64f8, pivot_slot: 4042591
It occurs when trying to look up the shuffling decision root for an attestation from a slot which is prior to fork choice's finalized block. This happens frequently when proposing in the first slot of the epoch where we have:
- `current_epoch == n`
- `attestation.data.target.epoch == n - 1`
- attestation shuffling epoch `== n - 3` (decision block being the last block of `n - 3`)
- `state.finalized_checkpoint.epoch == n - 2` (first block of `n - 2` is finalized)
Hence the shuffling decision slot is out of range of the fork choice backwards iterator _by a single slot_.
Unfortunately this bug was hidden when we weren't pruning fork choice, and then reintroduced in v2.5.1 when we fixed the pruning (https://github.com/sigp/lighthouse/releases/tag/v2.5.1). There's no way to turn that off or disable the filtering in our current release, so we need a new release to fix this issue.
Fortunately, it also does not occur on every epoch boundary because of the gradual pruning of fork choice every 256 blocks (~8 epochs):
01e84b71f5/consensus/proto_array/src/proto_array_fork_choice.rs (L16)01e84b71f5/consensus/proto_array/src/proto_array.rs (L713-L716)
So the probability of proposing a 0-attestation block given a proposal assignment is approximately `1/32 * 1/8 = 0.39%`.
## Proposed Changes
- Load the block's shuffling ID from fork choice and verify it against the expected shuffling ID of the head state. This code was initially written before we had settled on a representation of shuffling IDs, so I think it's a nice simplification to make use of them here rather than more ad-hoc logic that fundamentally does the same thing.
## Additional Info
Thanks to @moshe-blox for noticing this issue and bringing it to our attention.
## Issue Addressed
Closes https://github.com/sigp/lighthouse/issues/2371
## Proposed Changes
Backport some changes from `tree-states` that remove duplicated calculations of the `proposer_index`.
With this change the proposer index should be calculated only once for each block, and then plumbed through to every place it is required.
## Additional Info
In future I hope to add more data to the consensus context that is cached on a per-epoch basis, like the effective balances of validators and the base rewards.
There are some other changes to remove indexing in tests that were also useful for `tree-states` (the `tree-states` types don't implement `Index`).
## Issue Addressed
fixes lints from the last rust release
## Proposed Changes
Fix the lints, most of the lints by `clippy::question-mark` are false positives in the form of https://github.com/rust-lang/rust-clippy/issues/9518 so it's allowed for now
## Additional Info
## Issue Addressed
NA
## Proposed Changes
This PR removes duplicated block root computation.
Computing the `SignedBeaconBlock::canonical_root` has become more expensive since the merge as we need to compute the merke root of each transaction inside an `ExecutionPayload`.
Computing the root for [a mainnet block](https://beaconcha.in/slot/4704236) is taking ~10ms on my i7-8700K CPU @ 3.70GHz (no sha extensions). Given that our median seen-to-imported time for blocks is presently 300-400ms, removing a few duplicated block roots (~30ms) could represent an easy 10% improvement. When we consider that the seen-to-imported times include operations *after* the block has been placed in the early attester cache, we could expect the 30ms to be more significant WRT our seen-to-attestable times.
## Additional Info
NA
## Issue Addressed
NA
## Proposed Changes
Fixes an issue introduced in #3574 where I erroneously assumed that a `crossbeam_channel` multiple receiver queue was a *broadcast* queue. This is incorrect, each message will be received by *only one* receiver. The effect of this mistake is these logs:
```
Sep 20 06:56:17.001 INFO Synced slot: 4736079, block: 0xaa8a…180d, epoch: 148002, finalized_epoch: 148000, finalized_root: 0x2775…47f2, exec_hash: 0x2ca5…ffde (verified), peers: 6, service: slot_notifier
Sep 20 06:56:23.237 ERRO Unable to validate attestation error: CommitteeCacheWait(RecvError), peer_id: 16Uiu2HAm2Jnnj8868tb7hCta1rmkXUf5YjqUH1YPj35DCwNyeEzs, type: "aggregated", slot: Slot(4736047), beacon_block_root: 0x88d318534b1010e0ebd79aed60b6b6da1d70357d72b271c01adf55c2b46206c1
```
## Additional Info
NA
## Issue Addressed
NA
## Proposed Changes
I have observed scenarios on Goerli where Lighthouse was receiving attestations which reference the same, un-cached shuffling on multiple threads at the same time. Lighthouse was then loading the same state from database and determining the shuffling on multiple threads at the same time. This is unnecessary load on the disk and RAM.
This PR modifies the shuffling cache so that each entry can be either:
- A committee
- A promise for a committee (i.e., a `crossbeam_channel::Receiver`)
Now, in the scenario where we have thread A and thread B simultaneously requesting the same un-cached shuffling, we will have the following:
1. Thread A will take the write-lock on the shuffling cache, find that there's no cached committee and then create a "promise" (a `crossbeam_channel::Sender`) for a committee before dropping the write-lock.
1. Thread B will then be allowed to take the write-lock for the shuffling cache and find the promise created by thread A. It will block the current thread waiting for thread A to fulfill that promise.
1. Thread A will load the state from disk, obtain the shuffling, send it down the channel, insert the entry into the cache and then continue to verify the attestation.
1. Thread B will then receive the shuffling from the receiver, be un-blocked and then continue to verify the attestation.
In the case where thread A fails to generate the shuffling and drops the sender, the next time that specific shuffling is requested we will detect that the channel is disconnected and return a `None` entry for that shuffling. This will cause the shuffling to be re-calculated.
## Additional Info
NA
## Issue Addressed
Add a flag that can increase count unrealized strictness, defaults to false
## Proposed Changes
Please list or describe the changes introduced by this PR.
## Additional Info
Please provide any additional information. For example, future considerations
or information useful for reviewers.
Co-authored-by: realbigsean <seananderson33@gmail.com>
Co-authored-by: sean <seananderson33@gmail.com>
## Issue Addressed
NA
## Proposed Changes
Adds more `debug` logging to help troubleshoot invalid execution payload blocks. I was doing some of this recently and found it to be challenging.
With this PR we should be able to grep `Invalid execution payload` and get one-liners that will show the block, slot and details about the proposer.
I also changed the log in `process_invalid_execution_payload` since it was a little misleading; the `block_root` wasn't necessary the block which had an invalid payload.
## Additional Info
NA
## Issue Addressed
NA
## Proposed Changes
This PR is motivated by a recent consensus failure in Geth where it returned `INVALID` for an `VALID` block. Without this PR, the only way to recover is by re-syncing Lighthouse. Whilst ELs "shouldn't have consensus failures", in reality it's something that we can expect from time to time due to the complex nature of Ethereum. Being able to recover easily will help the network recover and EL devs to troubleshoot.
The risk introduced with this PR is that genuinely INVALID payloads get a "second chance" at being imported. I believe the DoS risk here is negligible since LH needs to be restarted in order to re-process the payload. Furthermore, there's no reason to think that a well-performing EL will accept a truly invalid payload the second-time-around.
## Additional Info
This implementation has the following intricacies:
1. Instead of just resetting *invalid* payloads to optimistic, we'll also reset *valid* payloads. This is an artifact of our existing implementation.
1. We will only reset payload statuses when we detect an invalid payload present in `proto_array`
- This helps save us from forgetting that all our blocks are valid in the "best case scenario" where there are no invalid blocks.
1. If we fail to revert the payload statuses we'll log a `CRIT` and just continue with a `proto_array` that *does not* have reverted payload statuses.
- The code to revert statuses needs to deal with balances and proposer-boost, so it's a failure point. This is a defensive measure to avoid introducing new show-stopping bugs to LH.
## Proposed Changes
This PR has two aims: to speed up attestation packing in the op pool, and to fix bugs in the verification of attester slashings, proposer slashings and voluntary exits. The changes are bundled into a single database schema upgrade (v12).
Attestation packing is sped up by removing several inefficiencies:
- No more recalculation of `attesting_indices` during packing.
- No (unnecessary) examination of the `ParticipationFlags`: a bitfield suffices. See `RewardCache`.
- No re-checking of attestation validity during packing: the `AttestationMap` provides attestations which are "correct by construction" (I have checked this using Hydra).
- No SSZ re-serialization for the clunky `AttestationId` type (it can be removed in a future release).
So far the speed-up seems to be roughly 2-10x, from 500ms down to 50-100ms.
Verification of attester slashings, proposer slashings and voluntary exits is fixed by:
- Tracking the `ForkVersion`s that were used to verify each message inside the `SigVerifiedOp`. This allows us to quickly re-verify that they match the head state's opinion of what the `ForkVersion` should be at the epoch(s) relevant to the message.
- Storing the `SigVerifiedOp` on disk rather than the raw operation. This allows us to continue track the fork versions after a reboot.
This is mostly contained in this commit 52bb1840ae5c4356a8fc3a51e5df23ed65ed2c7f.
## Additional Info
The schema upgrade uses the justified state to re-verify attestations and compute `attesting_indices` for them. It will drop any attestations that fail to verify, by the logic that attestations are most valuable in the few slots after they're observed, and are probably stale and useless by the time a node restarts. Exits and proposer slashings and similarly re-verified to obtain `SigVerifiedOp`s.
This PR contains a runtime killswitch `--paranoid-block-proposal` which opts out of all the optimisations in favour of closely verifying every included message. Although I'm quite sure that the optimisations are correct this flag could be useful in the event of an unforeseen emergency.
Finally, you might notice that the `RewardCache` appears quite useless in its current form because it is only updated on the hot-path immediately before proposal. My hope is that in future we can shift calls to `RewardCache::update` into the background, e.g. while performing the state advance. It is also forward-looking to `tree-states` compatibility, where iterating and indexing `state.{previous,current}_epoch_participation` is expensive and needs to be minimised.