Commit Graph

5 Commits

Author SHA1 Message Date
Paul Hauner
be4e261e74 Use async code when interacting with EL (#3244)
## Overview

This rather extensive PR achieves two primary goals:

1. Uses the finalized/justified checkpoints of fork choice (FC), rather than that of the head state.
2. Refactors fork choice, block production and block processing to `async` functions.

Additionally, it achieves:

- Concurrent forkchoice updates to the EL and cache pruning after a new head is selected.
- Concurrent "block packing" (attestations, etc) and execution payload retrieval during block production.
- Concurrent per-block-processing and execution payload verification during block processing.
- The `Arc`-ification of `SignedBeaconBlock` during block processing (it's never mutated, so why not?):
    - I had to do this to deal with sending blocks into spawned tasks.
    - Previously we were cloning the beacon block at least 2 times during each block processing, these clones are either removed or turned into cheaper `Arc` clones.
    - We were also `Box`-ing and un-`Box`-ing beacon blocks as they moved throughout the networking crate. This is not a big deal, but it's nice to avoid shifting things between the stack and heap.
    - Avoids cloning *all the blocks* in *every chain segment* during sync.
    - It also has the potential to clean up our code where we need to pass an *owned* block around so we can send it back in the case of an error (I didn't do much of this, my PR is already big enough 😅)
- The `BeaconChain::HeadSafetyStatus` struct was removed. It was an old relic from prior merge specs.

For motivation for this change, see https://github.com/sigp/lighthouse/pull/3244#issuecomment-1160963273

## Changes to `canonical_head` and `fork_choice`

Previously, the `BeaconChain` had two separate fields:

```
canonical_head: RwLock<Snapshot>,
fork_choice: RwLock<BeaconForkChoice>
```

Now, we have grouped these values under a single struct:

```
canonical_head: CanonicalHead {
  cached_head: RwLock<Arc<Snapshot>>,
  fork_choice: RwLock<BeaconForkChoice>
} 
```

Apart from ergonomics, the only *actual* change here is wrapping the canonical head snapshot in an `Arc`. This means that we no longer need to hold the `cached_head` (`canonical_head`, in old terms) lock when we want to pull some values from it. This was done to avoid deadlock risks by preventing functions from acquiring (and holding) the `cached_head` and `fork_choice` locks simultaneously.

## Breaking Changes

### The `state` (root) field in the `finalized_checkpoint` SSE event

Consider the scenario where epoch `n` is just finalized, but `start_slot(n)` is skipped. There are two state roots we might in the `finalized_checkpoint` SSE event:

1. The state root of the finalized block, which is `get_block(finalized_checkpoint.root).state_root`.
4. The state root at slot of `start_slot(n)`, which would be the state from (1), but "skipped forward" through any skip slots.

Previously, Lighthouse would choose (2). However, we can see that when [Teku generates that event](de2b2801c8/data/beaconrestapi/src/main/java/tech/pegasys/teku/beaconrestapi/handlers/v1/events/EventSubscriptionManager.java (L171-L182)) it uses [`getStateRootFromBlockRoot`](de2b2801c8/data/provider/src/main/java/tech/pegasys/teku/api/ChainDataProvider.java (L336-L341)) which uses (1).

I have switched Lighthouse from (2) to (1). I think it's a somewhat arbitrary choice between the two, where (1) is easier to compute and is consistent with Teku.

## Notes for Reviewers

I've renamed `BeaconChain::fork_choice` to `BeaconChain::recompute_head`. Doing this helped ensure I broke all previous uses of fork choice and I also find it more descriptive. It describes an action and can't be confused with trying to get a reference to the `ForkChoice` struct.

I've changed the ordering of SSE events when a block is received. It used to be `[block, finalized, head]` and now it's `[block, head, finalized]`. It was easier this way and I don't think we were making any promises about SSE event ordering so it's not "breaking".

I've made it so fork choice will run when it's first constructed. I did this because I wanted to have a cached version of the last call to `get_head`. Ensuring `get_head` has been run *at least once* means that the cached values doesn't need to wrapped in an `Option`. This was fairly simple, it just involved passing a `slot` to the constructor so it knows *when* it's being run. When loading a fork choice from the store and a slot clock isn't handy I've just used the `slot` that was saved in the `fork_choice_store`. That seems like it would be a faithful representation of the slot when we saved it.

I added the `genesis_time: u64` to the `BeaconChain`. It's small, constant and nice to have around.

Since we're using FC for the fin/just checkpoints, we no longer get the `0x00..00` roots at genesis. You can see I had to remove a work-around in `ef-tests` here: b56be3bc2. I can't find any reason why this would be an issue, if anything I think it'll be better since the genesis-alias has caught us out a few times (0x00..00 isn't actually a real root). Edit: I did find a case where the `network` expected the 0x00..00 alias and patched it here: 3f26ac3e2.

You'll notice a lot of changes in tests. Generally, tests should be functionally equivalent. Here are the things creating the most diff-noise in tests:
- Changing tests to be `tokio::async` tests.
- Adding `.await` to fork choice, block processing and block production functions.
- Refactor of the `canonical_head` "API" provided by the `BeaconChain`. E.g., `chain.canonical_head.cached_head()` instead of `chain.canonical_head.read()`.
- Wrapping `SignedBeaconBlock` in an `Arc`.
- In the `beacon_chain/tests/block_verification`, we can't use the `lazy_static` `CHAIN_SEGMENT` variable anymore since it's generated with an async function. We just generate it in each test, not so efficient but hopefully insignificant.

I had to disable `rayon` concurrent tests in the `fork_choice` tests. This is because the use of `rayon` and `block_on` was causing a panic.

Co-authored-by: Mac L <mjladson@pm.me>
2022-07-03 05:36:50 +00:00
Michael Sproul
bcdd960ab1 Separate execution payloads in the DB (#3157)
## Proposed Changes

Reduce post-merge disk usage by not storing finalized execution payloads in Lighthouse's database.

⚠️ **This is achieved in a backwards-incompatible way for networks that have already merged** ⚠️. Kiln users and shadow fork enjoyers will be unable to downgrade after running the code from this PR. The upgrade migration may take several minutes to run, and can't be aborted after it begins.

The main changes are:

- New column in the database called `ExecPayload`, keyed by beacon block root.
- The `BeaconBlock` column now stores blinded blocks only.
- Lots of places that previously used full blocks now use blinded blocks, e.g. analytics APIs, block replay in the DB, etc.
- On finalization:
    - `prune_abanonded_forks` deletes non-canonical payloads whilst deleting non-canonical blocks.
    - `migrate_db` deletes finalized canonical payloads whilst deleting finalized states.
- Conversions between blinded and full blocks are implemented in a compositional way, duplicating some work from Sean's PR #3134.
- The execution layer has a new `get_payload_by_block_hash` method that reconstructs a payload using the EE's `eth_getBlockByHash` call.
   - I've tested manually that it works on Kiln, using Geth and Nethermind.
   - This isn't necessarily the most efficient method, and new engine APIs are being discussed to improve this: https://github.com/ethereum/execution-apis/pull/146.
   - We're depending on the `ethers` master branch, due to lots of recent changes. We're also using a workaround for https://github.com/gakonst/ethers-rs/issues/1134.
- Payload reconstruction is used in the HTTP API via `BeaconChain::get_block`, which is now `async`. Due to the `async` fn, the `blocking_json` wrapper has been removed.
- Payload reconstruction is used in network RPC to serve blocks-by-{root,range} responses. Here the `async` adjustment is messier, although I think I've managed to come up with a reasonable compromise: the handlers take the `SendOnDrop` by value so that they can drop it on _task completion_ (after the `fn` returns). Still, this is introducing disk reads onto core executor threads, which may have a negative performance impact (thoughts appreciated).

## Additional Info

- [x] For performance it would be great to remove the cloning of full blocks when converting them to blinded blocks to write to disk. I'm going to experiment with a `put_block` API that takes the block by value, breaks it into a blinded block and a payload, stores the blinded block, and then re-assembles the full block for the caller.
- [x] We should measure the latency of blocks-by-root and blocks-by-range responses.
- [x] We should add integration tests that stress the payload reconstruction (basic tests done, issue for more extensive tests: https://github.com/sigp/lighthouse/issues/3159)
- [x] We should (manually) test the schema v9 migration from several prior versions, particularly as blocks have changed on disk and some migrations rely on being able to load blocks.

Co-authored-by: Paul Hauner <paul@paulhauner.com>
2022-05-12 00:42:17 +00:00
Michael Sproul
5cde3fc4da Reduce lock contention in backfill sync (#2716)
## Proposed Changes

Clone the proposer pubkeys during backfill signature verification to reduce the time that the pubkey cache lock is held for. Cloning such a small number of pubkeys has negligible impact on the total running time, but greatly reduces lock contention.

On a Ryzen 5950X, the setup step seems to take around 180us regardless of whether the key is cloned or not, while the verification takes 7ms. When Lighthouse is limited to 10% of one core using `sudo cpulimit --pid <pid> --limit 10` the total time jumps up to 800ms, but the setup step remains only 250us. This means that under heavy load this PR could cut the time the lock is held for from 800ms to 250us, which is a huge saving of 99.97%!
2021-10-15 03:28:03 +00:00
Michael Sproul
ed1fc7cca6 Fix I/O atomicity issues with checkpoint sync (#2671)
## Issue Addressed

This PR addresses an issue found by @YorickDowne during testing of v2.0.0-rc.0.

Due to a lack of atomic database writes on checkpoint sync start-up, it was possible for the database to get into an inconsistent state from which it couldn't recover without `--purge-db`. The core of the issue was that the store's anchor info was being stored _before_ the `PersistedBeaconChain`. If a crash occured so that anchor info was stored but _not_ the `PersistedBeaconChain`, then on restart Lighthouse would think the database was unitialized and attempt to compare-and-swap a `None` value, but would actually find the stale info from the previous run.

## Proposed Changes

The issue is fixed by writing the anchor info, the split point, and the `PersistedBeaconChain` atomically on start-up. Some type-hinting ugliness was required, which could possibly be cleaned up in future refactors.
2021-10-05 03:53:17 +00:00
Michael Sproul
9667dc2f03 Implement checkpoint sync (#2244)
## Issue Addressed

Closes #1891
Closes #1784

## Proposed Changes

Implement checkpoint sync for Lighthouse, enabling it to start from a weak subjectivity checkpoint.

## Additional Info

- [x] Return unavailable status for out-of-range blocks requested by peers (#2561)
- [x] Implement sync daemon for fetching historical blocks (#2561)
- [x] Verify chain hashes (either in `historical_blocks.rs` or the calling module)
- [x] Consistency check for initial block + state
- [x] Fetch the initial state and block from a beacon node HTTP endpoint
- [x] Don't crash fetching beacon states by slot from the API
- [x] Background service for state reconstruction, triggered by CLI flag or API call.

Considered out of scope for this PR:

- Drop the requirement to provide the `--checkpoint-block` (this would require some pretty heavy refactoring of block verification)


Co-authored-by: Diva M <divma@protonmail.com>
2021-09-22 00:37:28 +00:00