## Issue Addressed
fixes lints from the last rust release
## Proposed Changes
Fix the lints, most of the lints by `clippy::question-mark` are false positives in the form of https://github.com/rust-lang/rust-clippy/issues/9518 so it's allowed for now
## Additional Info
## Issue Addressed
https://github.com/ethereum/beacon-APIs/pull/222
## Proposed Changes
Update Lighthouse's randao verification API to match the `beacon-APIs` spec. We implemented the API before spec stabilisation, and it changed slightly in the course of review.
Rather than a flag `verify_randao` taking a boolean value, the new API uses a `skip_randao_verification` flag which takes no argument. The new spec also requires the randao reveal to be present and equal to the point-at-infinity when `skip_randao_verification` is set.
I've also updated the `POST /lighthouse/analysis/block_rewards` API to take blinded blocks as input, as the execution payload is irrelevant and we may want to assess blocks produced by builders.
## Additional Info
This is technically a breaking change, but seeing as I suspect I'm the only one using these parameters/APIs, I think we're OK to include this in a patch release.
## Issue Addressed
Fixes a potential regression in memory fragmentation identified by @paulhauner here: https://github.com/sigp/lighthouse/pull/3371#discussion_r931770045.
## Proposed Changes
Immediately allocate a vector with sufficient size to hold all decoded elements in SSZ decoding. The `size_hint` is derived from the range iterator here:
2983235650/consensus/ssz/src/decode/impls.rs (L489)
## Additional Info
I'd like to test this out on some infra for a substantial duration to see if it affects total fragmentation.
## Issue Addressed
NA
## Proposed Changes
I've noticed that our block hashing times increase significantly after the merge. I did some flamegraph-ing and noticed that we're allocating a `Vec` for each byte of each execution payload transaction. This seems like unnecessary work and a bit of a fragmentation risk.
This PR switches to `SmallVec<[u8; 32]>` for the packed encoding of `TreeHash`. I believe this is a nice simple optimisation with no downside.
### Benchmarking
These numbers were computed using #3580 on my desktop (i7 hex-core). You can see a bit of noise in the numbers, that's probably just my computer doing other things. Generally I found this change takes the time from 10-11ms to 8-9ms. I can also see all the allocations disappear from flamegraph.
This is the block being benchmarked: https://beaconcha.in/slot/4704236
#### Before
```
[2022-09-15T21:44:19Z INFO lcli::block_root] Run 980: 10.553003ms
[2022-09-15T21:44:19Z INFO lcli::block_root] Run 981: 10.563737ms
[2022-09-15T21:44:19Z INFO lcli::block_root] Run 982: 10.646352ms
[2022-09-15T21:44:19Z INFO lcli::block_root] Run 983: 10.628532ms
[2022-09-15T21:44:19Z INFO lcli::block_root] Run 984: 10.552112ms
[2022-09-15T21:44:19Z INFO lcli::block_root] Run 985: 10.587778ms
[2022-09-15T21:44:19Z INFO lcli::block_root] Run 986: 10.640526ms
[2022-09-15T21:44:19Z INFO lcli::block_root] Run 987: 10.587243ms
[2022-09-15T21:44:19Z INFO lcli::block_root] Run 988: 10.554748ms
[2022-09-15T21:44:19Z INFO lcli::block_root] Run 989: 10.551111ms
[2022-09-15T21:44:19Z INFO lcli::block_root] Run 990: 11.559031ms
[2022-09-15T21:44:19Z INFO lcli::block_root] Run 991: 11.944827ms
[2022-09-15T21:44:19Z INFO lcli::block_root] Run 992: 10.554308ms
[2022-09-15T21:44:19Z INFO lcli::block_root] Run 993: 11.043397ms
[2022-09-15T21:44:19Z INFO lcli::block_root] Run 994: 11.043315ms
[2022-09-15T21:44:19Z INFO lcli::block_root] Run 995: 11.207711ms
[2022-09-15T21:44:19Z INFO lcli::block_root] Run 996: 11.056246ms
[2022-09-15T21:44:19Z INFO lcli::block_root] Run 997: 11.049706ms
[2022-09-15T21:44:19Z INFO lcli::block_root] Run 998: 11.432449ms
[2022-09-15T21:44:19Z INFO lcli::block_root] Run 999: 11.149617ms
```
#### After
```
[2022-09-15T21:41:49Z INFO lcli::block_root] Run 980: 14.011653ms
[2022-09-15T21:41:49Z INFO lcli::block_root] Run 981: 8.925314ms
[2022-09-15T21:41:49Z INFO lcli::block_root] Run 982: 8.849563ms
[2022-09-15T21:41:49Z INFO lcli::block_root] Run 983: 8.893689ms
[2022-09-15T21:41:49Z INFO lcli::block_root] Run 984: 8.902964ms
[2022-09-15T21:41:49Z INFO lcli::block_root] Run 985: 8.942067ms
[2022-09-15T21:41:49Z INFO lcli::block_root] Run 986: 8.907088ms
[2022-09-15T21:41:49Z INFO lcli::block_root] Run 987: 9.346101ms
[2022-09-15T21:41:49Z INFO lcli::block_root] Run 988: 8.96142ms
[2022-09-15T21:41:49Z INFO lcli::block_root] Run 989: 9.366437ms
[2022-09-15T21:41:49Z INFO lcli::block_root] Run 990: 9.809334ms
[2022-09-15T21:41:49Z INFO lcli::block_root] Run 991: 9.541561ms
[2022-09-15T21:41:49Z INFO lcli::block_root] Run 992: 11.143518ms
[2022-09-15T21:41:49Z INFO lcli::block_root] Run 993: 10.821181ms
[2022-09-15T21:41:49Z INFO lcli::block_root] Run 994: 9.855973ms
[2022-09-15T21:41:49Z INFO lcli::block_root] Run 995: 10.941006ms
[2022-09-15T21:41:49Z INFO lcli::block_root] Run 996: 9.596155ms
[2022-09-15T21:41:49Z INFO lcli::block_root] Run 997: 9.121739ms
[2022-09-15T21:41:49Z INFO lcli::block_root] Run 998: 9.090019ms
[2022-09-15T21:41:49Z INFO lcli::block_root] Run 999: 9.071885ms
```
## Additional Info
Please provide any additional information. For example, future considerations
or information useful for reviewers.
## Issue Addressed
NA
## Proposed Changes
I have observed scenarios on Goerli where Lighthouse was receiving attestations which reference the same, un-cached shuffling on multiple threads at the same time. Lighthouse was then loading the same state from database and determining the shuffling on multiple threads at the same time. This is unnecessary load on the disk and RAM.
This PR modifies the shuffling cache so that each entry can be either:
- A committee
- A promise for a committee (i.e., a `crossbeam_channel::Receiver`)
Now, in the scenario where we have thread A and thread B simultaneously requesting the same un-cached shuffling, we will have the following:
1. Thread A will take the write-lock on the shuffling cache, find that there's no cached committee and then create a "promise" (a `crossbeam_channel::Sender`) for a committee before dropping the write-lock.
1. Thread B will then be allowed to take the write-lock for the shuffling cache and find the promise created by thread A. It will block the current thread waiting for thread A to fulfill that promise.
1. Thread A will load the state from disk, obtain the shuffling, send it down the channel, insert the entry into the cache and then continue to verify the attestation.
1. Thread B will then receive the shuffling from the receiver, be un-blocked and then continue to verify the attestation.
In the case where thread A fails to generate the shuffling and drops the sender, the next time that specific shuffling is requested we will detect that the channel is disconnected and return a `None` entry for that shuffling. This will cause the shuffling to be re-calculated.
## Additional Info
NA
## Issue Addressed
Add a flag that can increase count unrealized strictness, defaults to false
## Proposed Changes
Please list or describe the changes introduced by this PR.
## Additional Info
Please provide any additional information. For example, future considerations
or information useful for reviewers.
Co-authored-by: realbigsean <seananderson33@gmail.com>
Co-authored-by: sean <seananderson33@gmail.com>
## Issue Addressed
When requesting an index which is not active during `start_epoch`, Lighthouse returns:
```
curl "http://localhost:5052/lighthouse/analysis/attestation_performance/999999999?start_epoch=100000&end_epoch=100000"
```
```json
{
"code": 500,
"message": "INTERNAL_SERVER_ERROR: ParticipationCache(InvalidValidatorIndex(999999999))",
"stacktraces": []
}
```
This error occurs even when the index in question becomes active before `end_epoch` which is undesirable as it can prevent larger queries from completing.
## Proposed Changes
In the event the index is out-of-bounds (has not yet been activated), simply return all fields as `false`:
```
-> curl "http://localhost:5052/lighthouse/analysis/attestation_performance/999999999?start_epoch=100000&end_epoch=100000"
```
```json
[
{
"index": 999999999,
"epochs": {
"100000": {
"active": false,
"head": false,
"target": false,
"source": false
}
}
}
]
```
By doing this, we cover the case where a validator becomes active sometime between `start_epoch` and `end_epoch`.
## Additional Info
Note that this error only occurs for epochs after the Altair hard fork.
## Issue Addressed
NA
## Proposed Changes
Adds more `debug` logging to help troubleshoot invalid execution payload blocks. I was doing some of this recently and found it to be challenging.
With this PR we should be able to grep `Invalid execution payload` and get one-liners that will show the block, slot and details about the proposer.
I also changed the log in `process_invalid_execution_payload` since it was a little misleading; the `block_root` wasn't necessary the block which had an invalid payload.
## Additional Info
NA
## Issue Addressed
NA
## Proposed Changes
This PR is motivated by a recent consensus failure in Geth where it returned `INVALID` for an `VALID` block. Without this PR, the only way to recover is by re-syncing Lighthouse. Whilst ELs "shouldn't have consensus failures", in reality it's something that we can expect from time to time due to the complex nature of Ethereum. Being able to recover easily will help the network recover and EL devs to troubleshoot.
The risk introduced with this PR is that genuinely INVALID payloads get a "second chance" at being imported. I believe the DoS risk here is negligible since LH needs to be restarted in order to re-process the payload. Furthermore, there's no reason to think that a well-performing EL will accept a truly invalid payload the second-time-around.
## Additional Info
This implementation has the following intricacies:
1. Instead of just resetting *invalid* payloads to optimistic, we'll also reset *valid* payloads. This is an artifact of our existing implementation.
1. We will only reset payload statuses when we detect an invalid payload present in `proto_array`
- This helps save us from forgetting that all our blocks are valid in the "best case scenario" where there are no invalid blocks.
1. If we fail to revert the payload statuses we'll log a `CRIT` and just continue with a `proto_array` that *does not* have reverted payload statuses.
- The code to revert statuses needs to deal with balances and proposer-boost, so it's a failure point. This is a defensive measure to avoid introducing new show-stopping bugs to LH.
## Proposed Changes
This PR has two aims: to speed up attestation packing in the op pool, and to fix bugs in the verification of attester slashings, proposer slashings and voluntary exits. The changes are bundled into a single database schema upgrade (v12).
Attestation packing is sped up by removing several inefficiencies:
- No more recalculation of `attesting_indices` during packing.
- No (unnecessary) examination of the `ParticipationFlags`: a bitfield suffices. See `RewardCache`.
- No re-checking of attestation validity during packing: the `AttestationMap` provides attestations which are "correct by construction" (I have checked this using Hydra).
- No SSZ re-serialization for the clunky `AttestationId` type (it can be removed in a future release).
So far the speed-up seems to be roughly 2-10x, from 500ms down to 50-100ms.
Verification of attester slashings, proposer slashings and voluntary exits is fixed by:
- Tracking the `ForkVersion`s that were used to verify each message inside the `SigVerifiedOp`. This allows us to quickly re-verify that they match the head state's opinion of what the `ForkVersion` should be at the epoch(s) relevant to the message.
- Storing the `SigVerifiedOp` on disk rather than the raw operation. This allows us to continue track the fork versions after a reboot.
This is mostly contained in this commit 52bb1840ae5c4356a8fc3a51e5df23ed65ed2c7f.
## Additional Info
The schema upgrade uses the justified state to re-verify attestations and compute `attesting_indices` for them. It will drop any attestations that fail to verify, by the logic that attestations are most valuable in the few slots after they're observed, and are probably stale and useless by the time a node restarts. Exits and proposer slashings and similarly re-verified to obtain `SigVerifiedOp`s.
This PR contains a runtime killswitch `--paranoid-block-proposal` which opts out of all the optimisations in favour of closely verifying every included message. Although I'm quite sure that the optimisations are correct this flag could be useful in the event of an unforeseen emergency.
Finally, you might notice that the `RewardCache` appears quite useless in its current form because it is only updated on the hot-path immediately before proposal. My hope is that in future we can shift calls to `RewardCache::update` into the background, e.g. while performing the state advance. It is also forward-looking to `tree-states` compatibility, where iterating and indexing `state.{previous,current}_epoch_participation` is expensive and needs to be minimised.
## Issue Addressed
NA
## Proposed Changes
Adds a test that was written whilst doing some testing. This PR does not make changes to production code, it just adds a test for already existing functionality.
## Additional Info
NA
## Issue Addressed
N/A
## Proposed Changes
Fix clippy lints for latest rust version 1.63. I have allowed the [derive_partial_eq_without_eq](https://rust-lang.github.io/rust-clippy/master/index.html#derive_partial_eq_without_eq) lint as satisfying this lint would result in more code that we might not want and I feel it's not required.
Happy to fix this lint across lighthouse if required though.
## Issue Addressed
NA
## Proposed Changes
Removes three types of TODOs:
1. `execution_layer/src/lib.rs`: It was [determined](https://github.com/ethereum/consensus-specs/issues/2636#issuecomment-988688742) that there is no action required here.
2. `beacon_processor/worker/gossip_methods.rs`: Removed TODOs relating to peer scoring that have already been addressed via `epe.penalize_peer()`.
- It seems `cargo fmt` wanted to adjust some things here as well 🤷
3. `proto_array_fork_choice.rs`: it would be nice to remove that useless `bool` for cleanliness, but I don't think it's something we need to do and the TODO just makes things look messier IMO.
## Additional Info
There should be no functional changes to the code in this PR.
There are still some TODOs lingering, those ones require actual changes or more thought.
## Issue Addressed
Resolves#3388Resolves#2638
## Proposed Changes
- Return the `BellatrixPreset` on `/eth/v1/config/spec` by default.
- Allow users to opt out of this by providing `--http-spec-fork=altair` (unless there's a Bellatrix fork epoch set).
- Add the Altair constants from #2638 and make serving the constants non-optional (the `http-disable-legacy-spec` flag is deprecated).
- Modify the VC to only read the `Config` and not to log extra fields. This prevents it from having to muck around parsing the `ConfigAndPreset` fields it doesn't need.
## Additional Info
This change is backwards-compatible for the VC and the BN, but is marked as a breaking change for the removal of `--http-disable-legacy-spec`.
I tried making `Config` a `superstruct` too, but getting the automatic decoding to work was a huge pain and was going to require a lot of hacks, so I gave up in favour of keeping the default-based approach we have now.
## Issue Addressed
NA
## Proposed Changes
Modifies `lcli skip-slots` and `lcli transition-blocks` allow them to source blocks/states from a beaconAPI and also gives them some more features to assist with benchmarking.
## Additional Info
Breaks the current `lcli skip-slots` and `lcli transition-blocks` APIs by changing some flag names. It should be simple enough to figure out the changes via `--help`.
Currently blocked on #3263.
## Issue Addressed
NA
## Proposed Changes
Ensure that we read the current slot from the `fc_store` rather than the slot clock. This is because the `fc_store` will never allow the slot to go backwards, even if the system clock does. The `ProtoArray::find_head` function assumes a non-decreasing slot.
This issue can cause logs like this:
```
ERRO Error whist recomputing head, error: ForkChoiceError(ProtoArrayError("find_head failed: InvalidBestNode(InvalidBestNodeInfo { start_root: 0xb22655aa2ae23075a60bd40797b3ba220db33d6fb86fa7910f0ed48e34bda72f, justified_checkpoint: Checkpoint { epoch: Epoch(111569), root: 0xb22655aa2ae23075a60bd40797b3ba220db33d6fb86fa7910f0ed48e34bda72f }, finalized_checkpoint: Checkpoint { epoch: Epoch(111568), root: 0x6140797e40c587b0d3f159483bbc603accb7b3af69891979d63efac437f9896f }, head_root: 0xb22655aa2ae23075a60bd40797b3ba220db33d6fb86fa7910f0ed48e34bda72f, head_justified_checkpoint: Some(Checkpoint { epoch: Epoch(111568), root: 0x6140797e40c587b0d3f159483bbc603accb7b3af69891979d63efac437f9896f }), head_finalized_checkpoint: Some(Checkpoint { epoch: Epoch(111567), root: 0x59b913d37383a158a9ea5546a572acc79e2cdfbc904c744744789d2c3814c570 }) })")), service: beacon, module: beacon_chain::canonical_head:499
```
We expect nodes to automatically recover from this issue within seconds without any major impact. However, having *any* errors in the path of fork choice is undesirable and should be avoided.
## Additional Info
NA