## Issue Addressed
#4582
## Proposed Changes
Add a new v3 block fetching flow that can decide to return a Full OR Blinded payload
## Additional Info
Co-authored-by: Michael Sproul <micsproul@gmail.com>
## Issue Addressed
Fix an issue observed by `@zlan` on Discord where Lighthouse would sometimes return this error when looking up states via the API:
> {"code":500,"message":"UNHANDLED_ERROR: ForkChoiceError(MissingProtoArrayBlock(0xc9cf1495421b6ef3215d82253b388d77321176a1dcef0db0e71a0cd0ffc8cdb7))","stacktraces":[]}
## Proposed Changes
The error stems from a faulty assumption in the HTTP API logic: that any state in the hot database must have its block in fork choice. This isn't true because the state's hot database may update much less frequently than the fork choice store, e.g. if reconstructing states (where freezer migration pauses), or if the freezer migration runs slowly. There could also be a race between loading the hot state and checking fork choice, e.g. even if the finalization migration of DB+fork choice were atomic, the update could happen between the 1st and 2nd calls.
To address this I've changed the HTTP API logic to use the finalized block's execution status as a fallback where it is safe to do so. In the case where a block is non-canonical and prior to finalization (permanently orphaned) we default `execution_optimistic` to `true`.
## Additional Info
I've also added a new CLI flag to reduce the frequency of the finalization migration as this is useful for several purposes:
- Spacing out database writes (less frequent, larger batches)
- Keeping a limited chain history with high availability, e.g. the last month in the hot database.
This new flag made it _substantially_ easier to test this change. It was extracted from `tree-states` (where it's called `--db-migration-period`), which is why this PR also carries the `tree-states` label.
* Update Engine API to Latest
* Get Mock EE Working
* Fix Mock EE
* Update Engine API Again
* Rip out get_blobs_bundle Stuff
* Fix Test Harness
* Fix Clippy Complaints
* Fix Beacon Chain Tests
## Proposed Changes
This change attempts to prevent failed re-orgs by:
1. Lowering the re-org cutoff from 2s to 1s. This is informed by a failed re-org attempted by @yorickdowne's node. The failed block was requested in the 1.5-2s window due to a Vouch failure, and failed to propagate to the majority of the network before the attestation deadline at 4s.
2. Allow users to adjust their re-org cutoff depending on observed network conditions and their risk profile. The static 2 second cutoff was too rigid.
3. Add a `--proposer-reorg-disallowed-offsets` flag which can be used to prohibit reorgs at certain slots. This is intended to help workaround an issue whereby reorging blocks at slot 1 are currently taking ~1.6s to propagate on gossip rather than ~500ms. This is suspected to be due to a cache miss in current versions of Prysm, which should be fixed in their next release.
## Additional Info
I'm of two minds about removing the `shuffling_stable` check which checks for blocks at slot 0 in the epoch. If we removed it users would be able to configure Lighthouse to try reorging at slot 0, which likely wouldn't work very well due to interactions with the proposer index cache. I think we could leave it for now and revisit it later.
> This is currently a WIP and all features are subject to alteration or removal at any time.
## Overview
The successor to #2873.
Contains the backbone of `beacon.watch` including syncing code, the initial API, and several core database tables.
See `watch/README.md` for more information, requirements and usage.
## Issue Addressed
Closes#3896Closes#3998Closes#3700
## Proposed Changes
- Optimise the calculation of withdrawals for payload attributes by avoiding state clones, avoiding unnecessary state advances and reading from the snapshot cache if possible.
- Use the execution layer's payload attributes cache to avoid re-calculating payload attributes. I actually implemented a new LRU cache just for withdrawals but it had the exact same key and most of the same data as the existing payload attributes cache, so I deleted it.
- Add a new SSE event that fires when payloadAttributes are calculated. This is useful for block builders, a la https://github.com/ethereum/beacon-APIs/issues/244.
- Add a new CLI flag `--always-prepare-payload` which forces payload attributes to be sent with every fcU regardless of connected proposers. This is intended for use by builders/relays.
For maximum effect, the flags I've been using to run Lighthouse in "payload builder mode" are:
```
--always-prepare-payload \
--prepare-payload-lookahead 12000 \
--suggested-fee-recipient 0x0000000000000000000000000000000000000000
```
The fee recipient is required so Lighthouse has something to pack in the payload attributes (it can be ignored by the builder). The lookahead causes fcU to be sent at the start of every slot rather than at 8s. As usual, fcU will also be sent after each change of head block. I think this combination is sufficient for builders to build on all viable heads. Often there will be two fcU (and two payload attributes) sent for the same slot: one sent at the start of the slot with the head from `n - 1` as the parent, and one sent after the block arrives with `n` as the parent.
Example usage of the new event stream:
```bash
curl -N "http://localhost:5052/eth/v1/events?topics=payload_attributes"
```
## Additional Info
- [x] Tests added by updating the proposer re-org tests. This has the benefit of testing the proposer re-org code paths with withdrawals too, confirming that the new changes don't interact poorly.
- [ ] Benchmarking with `blockdreamer` on devnet-7 showed promising results but I'm yet to do a comparison to `unstable`.
Co-authored-by: Michael Sproul <micsproul@gmail.com>
## Proposed Changes
With proposer boosting implemented (#2822) we have an opportunity to re-org out late blocks.
This PR adds three flags to the BN to control this behaviour:
* `--disable-proposer-reorgs`: turn aggressive re-orging off (it's on by default).
* `--proposer-reorg-threshold N`: attempt to orphan blocks with less than N% of the committee vote. If this parameter isn't set then N defaults to 20% when the feature is enabled.
* `--proposer-reorg-epochs-since-finalization N`: only attempt to re-org late blocks when the number of epochs since finalization is less than or equal to N. The default is 2 epochs, meaning re-orgs will only be attempted when the chain is finalizing optimally.
For safety Lighthouse will only attempt a re-org under very specific conditions:
1. The block being proposed is 1 slot after the canonical head, and the canonical head is 1 slot after its parent. i.e. at slot `n + 1` rather than building on the block from slot `n` we build on the block from slot `n - 1`.
2. The current canonical head received less than N% of the committee vote. N should be set depending on the proposer boost fraction itself, the fraction of the network that is believed to be applying it, and the size of the largest entity that could be hoarding votes.
3. The current canonical head arrived after the attestation deadline from our perspective. This condition was only added to support suppression of forkchoiceUpdated messages, but makes intuitive sense.
4. The block is being proposed in the first 2 seconds of the slot. This gives it time to propagate and receive the proposer boost.
## Additional Info
For the initial idea and background, see: https://github.com/ethereum/consensus-specs/pull/2353#issuecomment-950238004
There is also a specification for this feature here: https://github.com/ethereum/consensus-specs/pull/3034
Co-authored-by: Michael Sproul <micsproul@gmail.com>
Co-authored-by: pawan <pawandhananjay@gmail.com>
## Issue Addressed
NA
## Proposed Changes
This PR removes duplicated block root computation.
Computing the `SignedBeaconBlock::canonical_root` has become more expensive since the merge as we need to compute the merke root of each transaction inside an `ExecutionPayload`.
Computing the root for [a mainnet block](https://beaconcha.in/slot/4704236) is taking ~10ms on my i7-8700K CPU @ 3.70GHz (no sha extensions). Given that our median seen-to-imported time for blocks is presently 300-400ms, removing a few duplicated block roots (~30ms) could represent an easy 10% improvement. When we consider that the seen-to-imported times include operations *after* the block has been placed in the early attester cache, we could expect the 30ms to be more significant WRT our seen-to-attestable times.
## Additional Info
NA
## Overview
This rather extensive PR achieves two primary goals:
1. Uses the finalized/justified checkpoints of fork choice (FC), rather than that of the head state.
2. Refactors fork choice, block production and block processing to `async` functions.
Additionally, it achieves:
- Concurrent forkchoice updates to the EL and cache pruning after a new head is selected.
- Concurrent "block packing" (attestations, etc) and execution payload retrieval during block production.
- Concurrent per-block-processing and execution payload verification during block processing.
- The `Arc`-ification of `SignedBeaconBlock` during block processing (it's never mutated, so why not?):
- I had to do this to deal with sending blocks into spawned tasks.
- Previously we were cloning the beacon block at least 2 times during each block processing, these clones are either removed or turned into cheaper `Arc` clones.
- We were also `Box`-ing and un-`Box`-ing beacon blocks as they moved throughout the networking crate. This is not a big deal, but it's nice to avoid shifting things between the stack and heap.
- Avoids cloning *all the blocks* in *every chain segment* during sync.
- It also has the potential to clean up our code where we need to pass an *owned* block around so we can send it back in the case of an error (I didn't do much of this, my PR is already big enough 😅)
- The `BeaconChain::HeadSafetyStatus` struct was removed. It was an old relic from prior merge specs.
For motivation for this change, see https://github.com/sigp/lighthouse/pull/3244#issuecomment-1160963273
## Changes to `canonical_head` and `fork_choice`
Previously, the `BeaconChain` had two separate fields:
```
canonical_head: RwLock<Snapshot>,
fork_choice: RwLock<BeaconForkChoice>
```
Now, we have grouped these values under a single struct:
```
canonical_head: CanonicalHead {
cached_head: RwLock<Arc<Snapshot>>,
fork_choice: RwLock<BeaconForkChoice>
}
```
Apart from ergonomics, the only *actual* change here is wrapping the canonical head snapshot in an `Arc`. This means that we no longer need to hold the `cached_head` (`canonical_head`, in old terms) lock when we want to pull some values from it. This was done to avoid deadlock risks by preventing functions from acquiring (and holding) the `cached_head` and `fork_choice` locks simultaneously.
## Breaking Changes
### The `state` (root) field in the `finalized_checkpoint` SSE event
Consider the scenario where epoch `n` is just finalized, but `start_slot(n)` is skipped. There are two state roots we might in the `finalized_checkpoint` SSE event:
1. The state root of the finalized block, which is `get_block(finalized_checkpoint.root).state_root`.
4. The state root at slot of `start_slot(n)`, which would be the state from (1), but "skipped forward" through any skip slots.
Previously, Lighthouse would choose (2). However, we can see that when [Teku generates that event](de2b2801c8/data/beaconrestapi/src/main/java/tech/pegasys/teku/beaconrestapi/handlers/v1/events/EventSubscriptionManager.java (L171-L182)) it uses [`getStateRootFromBlockRoot`](de2b2801c8/data/provider/src/main/java/tech/pegasys/teku/api/ChainDataProvider.java (L336-L341)) which uses (1).
I have switched Lighthouse from (2) to (1). I think it's a somewhat arbitrary choice between the two, where (1) is easier to compute and is consistent with Teku.
## Notes for Reviewers
I've renamed `BeaconChain::fork_choice` to `BeaconChain::recompute_head`. Doing this helped ensure I broke all previous uses of fork choice and I also find it more descriptive. It describes an action and can't be confused with trying to get a reference to the `ForkChoice` struct.
I've changed the ordering of SSE events when a block is received. It used to be `[block, finalized, head]` and now it's `[block, head, finalized]`. It was easier this way and I don't think we were making any promises about SSE event ordering so it's not "breaking".
I've made it so fork choice will run when it's first constructed. I did this because I wanted to have a cached version of the last call to `get_head`. Ensuring `get_head` has been run *at least once* means that the cached values doesn't need to wrapped in an `Option`. This was fairly simple, it just involved passing a `slot` to the constructor so it knows *when* it's being run. When loading a fork choice from the store and a slot clock isn't handy I've just used the `slot` that was saved in the `fork_choice_store`. That seems like it would be a faithful representation of the slot when we saved it.
I added the `genesis_time: u64` to the `BeaconChain`. It's small, constant and nice to have around.
Since we're using FC for the fin/just checkpoints, we no longer get the `0x00..00` roots at genesis. You can see I had to remove a work-around in `ef-tests` here: b56be3bc2. I can't find any reason why this would be an issue, if anything I think it'll be better since the genesis-alias has caught us out a few times (0x00..00 isn't actually a real root). Edit: I did find a case where the `network` expected the 0x00..00 alias and patched it here: 3f26ac3e2.
You'll notice a lot of changes in tests. Generally, tests should be functionally equivalent. Here are the things creating the most diff-noise in tests:
- Changing tests to be `tokio::async` tests.
- Adding `.await` to fork choice, block processing and block production functions.
- Refactor of the `canonical_head` "API" provided by the `BeaconChain`. E.g., `chain.canonical_head.cached_head()` instead of `chain.canonical_head.read()`.
- Wrapping `SignedBeaconBlock` in an `Arc`.
- In the `beacon_chain/tests/block_verification`, we can't use the `lazy_static` `CHAIN_SEGMENT` variable anymore since it's generated with an async function. We just generate it in each test, not so efficient but hopefully insignificant.
I had to disable `rayon` concurrent tests in the `fork_choice` tests. This is because the use of `rayon` and `block_on` was causing a panic.
Co-authored-by: Mac L <mjladson@pm.me>
## Issue Addressed
Upcoming spec change https://github.com/ethereum/consensus-specs/pull/2878
## Proposed Changes
1. Run fork choice at the start of every slot, and wait for this run to complete before proposing a block.
2. As an optimisation, also run fork choice 3/4 of the way through the slot (at 9s), _dequeueing attestations for the next slot_.
3. Remove the fork choice run from the state advance timer that occurred before advancing the state.
## Additional Info
### Block Proposal Accuracy
This change makes us more likely to propose on top of the correct head in the presence of re-orgs with proposer boost in play. The main scenario that this change is designed to address is described in the linked spec issue.
### Attestation Accuracy
This change _also_ makes us more likely to attest to the correct head. Currently in the case of a skipped slot at `slot` we only run fork choice 9s into `slot - 1`. This means the attestations from `slot - 1` aren't taken into consideration, and any boost applied to the block from `slot - 1` is not removed (it should be). In the language of the linked spec issue, this means we are liable to attest to C, even when the majority voting weight has already caused a re-org to B.
### Why remove the call before the state advance?
If we've run fork choice at the start of the slot then it has already dequeued all the attestations from the previous slot, which are the only ones eligible to influence the head in the current slot. Running fork choice again is unnecessary (unless we run it for the next slot and try to pre-empt a re-org, but I don't currently think this is a great idea).
### Performance
Based on Prater testing this adds about 5-25ms of runtime to block proposal times, which are 500-1000ms on average (and spike to 5s+ sometimes due to state handling issues 😢 ). I believe this is a small enough penalty to enable it by default, with the option to disable it via the new flag `--fork-choice-before-proposal-timeout 0`. Upcoming work on block packing and state representation will also reduce block production times in general, while removing the spikes.
### Implementation
Fork choice gets invoked at the start of the slot via the `per_slot_task` function called from the slot timer. It then uses a condition variable to signal to block production that fork choice has been updated. This is a bit funky, but it seems to work. One downside of the timer-based approach is that it doesn't happen automatically in most of the tests. The test added by this PR has to trigger the run manually.
## Proposed Changes
This is a refactor of the PeerDB and PeerManager. A number of bugs have been surfacing around the connection state of peers and their interaction with the score state.
This refactor tightens the mutability properties of peers such that only specific modules are able to modify the state of peer information preventing inadvertant state changes that can lead to our local peer manager db being out of sync with libp2p.
Further, the logic around connection and scoring was quite convoluted and the distinction between the PeerManager and Peerdb was not well defined. Although these issues are not fully resolved, this PR is step to cleaning up this logic. The peerdb solely manages most mutability operations of peers leaving high-order logic to the peer manager.
A single `update_connection_state()` function has been added to the peer-db making it solely responsible for modifying the peer's connection state. The way the peer's scores can be modified have been reduced to three simple functions (`update_scores()`, `update_gossipsub_scores()` and `report_peer()`). This prevents any add-hoc modifications of scores and only natural processes of score modification is allowed which simplifies the reasoning of score and state changes.
## Issue Addressed
This PR addresses issue #2657
## Proposed Changes
Changes `/eth/v1/config/deposit_contract` endpoint to return the chain ID from the loaded chain spec instead of eth1::DEFAULT_NETWORK_ID which is the Goerli chain ID of 5.
Co-authored-by: Michael Sproul <michael@sigmaprime.io>