Merge pull request #360 from sigp/simple-cached-tree-hash

Implement tree hash caching
This commit is contained in:
Age Manning 2019-04-30 10:01:18 +10:00 committed by GitHub
commit f68dff0e52
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
68 changed files with 3078 additions and 1923 deletions

2
.gitignore vendored
View File

@ -4,3 +4,5 @@ Cargo.lock
*.pk
*.sk
*.raw_keypairs
flamegraph.svg
perf.data*

View File

@ -9,6 +9,7 @@ members = [
"eth2/types",
"eth2/utils/bls",
"eth2/utils/boolean-bitfield",
"eth2/utils/cached_tree_hash",
"eth2/utils/hashing",
"eth2/utils/honey-badger-split",
"eth2/utils/merkle_proof",

View File

@ -1,5 +1,5 @@
use crate::*;
use tree_hash::{SignedRoot, TreeHash};
use tree_hash::SignedRoot;
use types::*;
#[derive(Debug, PartialEq)]
@ -24,7 +24,7 @@ pub fn per_slot_processing(state: &mut BeaconState, spec: &ChainSpec) -> Result<
}
fn cache_state(state: &mut BeaconState, spec: &ChainSpec) -> Result<(), Error> {
let previous_slot_state_root = Hash256::from_slice(&state.tree_hash_root()[..]);
let previous_slot_state_root = state.update_tree_hash_cache()?;
// Note: increment the state slot here to allow use of our `state_root` and `block_root`
// getter/setter functions.

View File

@ -7,6 +7,7 @@ edition = "2018"
[dependencies]
bls = { path = "../utils/bls" }
boolean-bitfield = { path = "../utils/boolean-bitfield" }
cached_tree_hash = { path = "../utils/cached_tree_hash" }
dirs = "1.0"
derivative = "1.0"
ethereum-types = "0.5"

View File

@ -5,7 +5,7 @@ use serde_derive::{Deserialize, Serialize};
use ssz_derive::{Decode, Encode};
use test_random_derive::TestRandom;
use tree_hash::TreeHash;
use tree_hash_derive::{SignedRoot, TreeHash};
use tree_hash_derive::{CachedTreeHash, SignedRoot, TreeHash};
/// Details an attestation that can be slashable.
///
@ -19,6 +19,7 @@ use tree_hash_derive::{SignedRoot, TreeHash};
Encode,
Decode,
TreeHash,
CachedTreeHash,
TestRandom,
SignedRoot,
)]
@ -58,4 +59,5 @@ mod tests {
use super::*;
ssz_tests!(Attestation);
cached_tree_hash_tests!(Attestation);
}

View File

@ -5,7 +5,7 @@ use serde_derive::{Deserialize, Serialize};
use ssz_derive::{Decode, Encode};
use test_random_derive::TestRandom;
use tree_hash::TreeHash;
use tree_hash_derive::{SignedRoot, TreeHash};
use tree_hash_derive::{CachedTreeHash, SignedRoot, TreeHash};
/// The data upon which an attestation is based.
///
@ -21,6 +21,7 @@ use tree_hash_derive::{SignedRoot, TreeHash};
Encode,
Decode,
TreeHash,
CachedTreeHash,
TestRandom,
SignedRoot,
)]
@ -47,4 +48,5 @@ mod tests {
use super::*;
ssz_tests!(AttestationData);
cached_tree_hash_tests!(AttestationData);
}

View File

@ -3,12 +3,12 @@ use crate::test_utils::TestRandom;
use rand::RngCore;
use serde_derive::Serialize;
use ssz_derive::{Decode, Encode};
use tree_hash_derive::TreeHash;
use tree_hash_derive::{CachedTreeHash, TreeHash};
/// Used for pairing an attestation with a proof-of-custody.
///
/// Spec v0.5.1
#[derive(Debug, Clone, PartialEq, Default, Serialize, Encode, Decode, TreeHash)]
#[derive(Debug, Clone, PartialEq, Default, Serialize, Encode, Decode, TreeHash, CachedTreeHash)]
pub struct AttestationDataAndCustodyBit {
pub data: AttestationData,
pub custody_bit: bool,
@ -28,4 +28,5 @@ mod test {
use super::*;
ssz_tests!(AttestationDataAndCustodyBit);
cached_tree_hash_tests!(AttestationDataAndCustodyBit);
}

View File

@ -3,12 +3,23 @@ use rand::RngCore;
use serde_derive::{Deserialize, Serialize};
use ssz_derive::{Decode, Encode};
use test_random_derive::TestRandom;
use tree_hash_derive::TreeHash;
use tree_hash_derive::{CachedTreeHash, TreeHash};
/// Two conflicting attestations.
///
/// Spec v0.5.1
#[derive(Debug, PartialEq, Clone, Serialize, Deserialize, Encode, Decode, TreeHash, TestRandom)]
#[derive(
Debug,
PartialEq,
Clone,
Serialize,
Deserialize,
Encode,
Decode,
TreeHash,
CachedTreeHash,
TestRandom,
)]
pub struct AttesterSlashing {
pub slashable_attestation_1: SlashableAttestation,
pub slashable_attestation_2: SlashableAttestation,
@ -19,4 +30,5 @@ mod tests {
use super::*;
ssz_tests!(AttesterSlashing);
cached_tree_hash_tests!(AttesterSlashing);
}

View File

@ -6,7 +6,7 @@ use serde_derive::{Deserialize, Serialize};
use ssz_derive::{Decode, Encode};
use test_random_derive::TestRandom;
use tree_hash::TreeHash;
use tree_hash_derive::{SignedRoot, TreeHash};
use tree_hash_derive::{CachedTreeHash, SignedRoot, TreeHash};
/// A block of the `BeaconChain`.
///
@ -20,6 +20,7 @@ use tree_hash_derive::{SignedRoot, TreeHash};
Encode,
Decode,
TreeHash,
CachedTreeHash,
TestRandom,
SignedRoot,
)]
@ -100,4 +101,5 @@ mod tests {
use super::*;
ssz_tests!(BeaconBlock);
cached_tree_hash_tests!(BeaconBlock);
}

View File

@ -4,12 +4,23 @@ use rand::RngCore;
use serde_derive::{Deserialize, Serialize};
use ssz_derive::{Decode, Encode};
use test_random_derive::TestRandom;
use tree_hash_derive::TreeHash;
use tree_hash_derive::{CachedTreeHash, TreeHash};
/// The body of a `BeaconChain` block, containing operations.
///
/// Spec v0.5.1
#[derive(Debug, PartialEq, Clone, Serialize, Deserialize, Encode, Decode, TreeHash, TestRandom)]
#[derive(
Debug,
PartialEq,
Clone,
Serialize,
Deserialize,
Encode,
Decode,
TreeHash,
CachedTreeHash,
TestRandom,
)]
pub struct BeaconBlockBody {
pub randao_reveal: Signature,
pub eth1_data: Eth1Data,
@ -26,4 +37,5 @@ mod tests {
use super::*;
ssz_tests!(BeaconBlockBody);
cached_tree_hash_tests!(BeaconBlockBody);
}

View File

@ -6,7 +6,7 @@ use serde_derive::{Deserialize, Serialize};
use ssz_derive::{Decode, Encode};
use test_random_derive::TestRandom;
use tree_hash::{SignedRoot, TreeHash};
use tree_hash_derive::{SignedRoot, TreeHash};
use tree_hash_derive::{CachedTreeHash, SignedRoot, TreeHash};
/// A header of a `BeaconBlock`.
///
@ -20,6 +20,7 @@ use tree_hash_derive::{SignedRoot, TreeHash};
Encode,
Decode,
TreeHash,
CachedTreeHash,
TestRandom,
SignedRoot,
)]
@ -59,4 +60,5 @@ mod tests {
use super::*;
ssz_tests!(BeaconBlockHeader);
cached_tree_hash_tests!(BeaconBlockHeader);
}

View File

@ -1,6 +1,7 @@
use self::epoch_cache::{get_active_validator_indices, EpochCache, Error as EpochCacheError};
use crate::test_utils::TestRandom;
use crate::*;
use cached_tree_hash::{Error as TreeHashCacheError, TreeHashCache};
use int_to_bytes::int_to_bytes32;
use pubkey_cache::PubkeyCache;
use rand::RngCore;
@ -9,7 +10,7 @@ use ssz::{hash, ssz_encode};
use ssz_derive::{Decode, Encode};
use test_random_derive::TestRandom;
use tree_hash::TreeHash;
use tree_hash_derive::TreeHash;
use tree_hash_derive::{CachedTreeHash, TreeHash};
mod epoch_cache;
mod pubkey_cache;
@ -42,12 +43,24 @@ pub enum Error {
EpochCacheUninitialized(RelativeEpoch),
RelativeEpochError(RelativeEpochError),
EpochCacheError(EpochCacheError),
TreeHashCacheError(TreeHashCacheError),
}
/// The state of the `BeaconChain` at some slot.
///
/// Spec v0.5.1
#[derive(Debug, PartialEq, Clone, Serialize, Deserialize, TestRandom, Encode, Decode, TreeHash)]
#[derive(
Debug,
PartialEq,
Clone,
Serialize,
Deserialize,
TestRandom,
Encode,
Decode,
TreeHash,
CachedTreeHash,
)]
pub struct BeaconState {
// Misc
pub slot: Slot,
@ -112,6 +125,12 @@ pub struct BeaconState {
#[tree_hash(skip_hashing)]
#[test_random(default)]
pub pubkey_cache: PubkeyCache,
#[serde(skip_serializing, skip_deserializing)]
#[ssz(skip_serializing)]
#[ssz(skip_deserializing)]
#[tree_hash(skip_hashing)]
#[test_random(default)]
pub tree_hash_cache: TreeHashCache,
}
impl BeaconState {
@ -187,6 +206,7 @@ impl BeaconState {
EpochCache::default(),
],
pubkey_cache: PubkeyCache::default(),
tree_hash_cache: TreeHashCache::default(),
}
}
@ -672,6 +692,7 @@ impl BeaconState {
self.build_epoch_cache(RelativeEpoch::NextWithoutRegistryChange, spec)?;
self.build_epoch_cache(RelativeEpoch::NextWithRegistryChange, spec)?;
self.update_pubkey_cache()?;
self.update_tree_hash_cache()?;
Ok(())
}
@ -778,6 +799,39 @@ impl BeaconState {
pub fn drop_pubkey_cache(&mut self) {
self.pubkey_cache = PubkeyCache::default()
}
/// Update the tree hash cache, building it for the first time if it is empty.
///
/// Returns the `tree_hash_root` resulting from the update. This root can be considered the
/// canonical root of `self`.
pub fn update_tree_hash_cache(&mut self) -> Result<Hash256, Error> {
if self.tree_hash_cache.is_empty() {
self.tree_hash_cache = TreeHashCache::new(self)?;
} else {
// Move the cache outside of `self` to satisfy the borrow checker.
let mut cache = std::mem::replace(&mut self.tree_hash_cache, TreeHashCache::default());
cache.update(self)?;
// Move the updated cache back into `self`.
self.tree_hash_cache = cache
}
self.cached_tree_hash_root()
}
/// Returns the tree hash root determined by the last execution of `self.update_tree_hash_cache(..)`.
///
/// Note: does _not_ update the cache and may return an outdated root.
///
/// Returns an error if the cache is not initialized or if an error is encountered during the
/// cache update.
pub fn cached_tree_hash_root(&self) -> Result<Hash256, Error> {
self.tree_hash_cache
.tree_hash_root()
.and_then(|b| Ok(Hash256::from_slice(b)))
.map_err(|e| e.into())
}
}
impl From<RelativeEpochError> for Error {
@ -791,3 +845,9 @@ impl From<EpochCacheError> for Error {
Error::EpochCacheError(e)
}
}
impl From<TreeHashCacheError> for Error {
fn from(e: TreeHashCacheError) -> Error {
Error::TreeHashCacheError(e)
}
}

View File

@ -3,6 +3,7 @@ use super::*;
use crate::test_utils::*;
ssz_tests!(BeaconState);
cached_tree_hash_tests!(BeaconState);
/// Test that
///
@ -55,3 +56,22 @@ fn cache_initialization() {
test_cache_initialization(&mut state, RelativeEpoch::NextWithRegistryChange, &spec);
test_cache_initialization(&mut state, RelativeEpoch::NextWithoutRegistryChange, &spec);
}
#[test]
fn tree_hash_cache() {
use crate::test_utils::{SeedableRng, TestRandom, XorShiftRng};
use tree_hash::TreeHash;
let mut rng = XorShiftRng::from_seed([42; 16]);
let mut state = BeaconState::random_for_test(&mut rng);
let root = state.update_tree_hash_cache().unwrap();
assert_eq!(root.as_bytes(), &state.tree_hash_root()[..]);
state.slot = state.slot + 1;
let root = state.update_tree_hash_cache().unwrap();
assert_eq!(root.as_bytes(), &state.tree_hash_root()[..]);
}

View File

@ -4,7 +4,7 @@ use rand::RngCore;
use serde_derive::{Deserialize, Serialize};
use ssz_derive::{Decode, Encode};
use test_random_derive::TestRandom;
use tree_hash_derive::TreeHash;
use tree_hash_derive::{CachedTreeHash, TreeHash};
/// Specifies the block hash for a shard at an epoch.
///
@ -20,6 +20,7 @@ use tree_hash_derive::TreeHash;
Encode,
Decode,
TreeHash,
CachedTreeHash,
TestRandom,
)]
pub struct Crosslink {
@ -32,4 +33,5 @@ mod tests {
use super::*;
ssz_tests!(Crosslink);
cached_tree_hash_tests!(Crosslink);
}

View File

@ -1,9 +1,20 @@
use crate::*;
use serde_derive::{Deserialize, Serialize};
use ssz_derive::{Decode, Encode};
use tree_hash_derive::TreeHash;
use tree_hash_derive::{CachedTreeHash, TreeHash};
#[derive(Default, Clone, Debug, PartialEq, Serialize, Deserialize, Decode, Encode, TreeHash)]
#[derive(
Default,
Clone,
Debug,
PartialEq,
Serialize,
Deserialize,
Decode,
Encode,
TreeHash,
CachedTreeHash,
)]
pub struct CrosslinkCommittee {
pub slot: Slot,
pub shard: Shard,

View File

@ -4,12 +4,23 @@ use rand::RngCore;
use serde_derive::{Deserialize, Serialize};
use ssz_derive::{Decode, Encode};
use test_random_derive::TestRandom;
use tree_hash_derive::TreeHash;
use tree_hash_derive::{CachedTreeHash, TreeHash};
/// A deposit to potentially become a beacon chain validator.
///
/// Spec v0.5.1
#[derive(Debug, PartialEq, Clone, Serialize, Deserialize, Encode, Decode, TreeHash, TestRandom)]
#[derive(
Debug,
PartialEq,
Clone,
Serialize,
Deserialize,
Encode,
Decode,
TreeHash,
CachedTreeHash,
TestRandom,
)]
pub struct Deposit {
pub proof: TreeHashVector<Hash256>,
pub index: u64,
@ -21,4 +32,5 @@ mod tests {
use super::*;
ssz_tests!(Deposit);
cached_tree_hash_tests!(Deposit);
}

View File

@ -4,12 +4,23 @@ use rand::RngCore;
use serde_derive::{Deserialize, Serialize};
use ssz_derive::{Decode, Encode};
use test_random_derive::TestRandom;
use tree_hash_derive::TreeHash;
use tree_hash_derive::{CachedTreeHash, TreeHash};
/// Data generated by the deposit contract.
///
/// Spec v0.5.1
#[derive(Debug, PartialEq, Clone, Serialize, Deserialize, Encode, Decode, TreeHash, TestRandom)]
#[derive(
Debug,
PartialEq,
Clone,
Serialize,
Deserialize,
Encode,
Decode,
TreeHash,
CachedTreeHash,
TestRandom,
)]
pub struct DepositData {
pub amount: u64,
pub timestamp: u64,
@ -21,4 +32,5 @@ mod tests {
use super::*;
ssz_tests!(DepositData);
cached_tree_hash_tests!(DepositData);
}

View File

@ -6,7 +6,7 @@ use serde_derive::{Deserialize, Serialize};
use ssz_derive::{Decode, Encode};
use test_random_derive::TestRandom;
use tree_hash::{SignedRoot, TreeHash};
use tree_hash_derive::{SignedRoot, TreeHash};
use tree_hash_derive::{CachedTreeHash, SignedRoot, TreeHash};
/// The data supplied by the user to the deposit contract.
///
@ -21,6 +21,7 @@ use tree_hash_derive::{SignedRoot, TreeHash};
Decode,
SignedRoot,
TreeHash,
CachedTreeHash,
TestRandom,
)]
pub struct DepositInput {
@ -68,6 +69,7 @@ mod tests {
use super::*;
ssz_tests!(DepositInput);
cached_tree_hash_tests!(DepositInput);
#[test]
fn can_create_and_validate() {

View File

@ -4,13 +4,23 @@ use rand::RngCore;
use serde_derive::{Deserialize, Serialize};
use ssz_derive::{Decode, Encode};
use test_random_derive::TestRandom;
use tree_hash_derive::TreeHash;
use tree_hash_derive::{CachedTreeHash, TreeHash};
/// Contains data obtained from the Eth1 chain.
///
/// Spec v0.5.1
#[derive(
Debug, PartialEq, Clone, Default, Serialize, Deserialize, Encode, Decode, TreeHash, TestRandom,
Debug,
PartialEq,
Clone,
Default,
Serialize,
Deserialize,
Encode,
Decode,
TreeHash,
CachedTreeHash,
TestRandom,
)]
pub struct Eth1Data {
pub deposit_root: Hash256,
@ -22,4 +32,5 @@ mod tests {
use super::*;
ssz_tests!(Eth1Data);
cached_tree_hash_tests!(Eth1Data);
}

View File

@ -4,13 +4,23 @@ use rand::RngCore;
use serde_derive::{Deserialize, Serialize};
use ssz_derive::{Decode, Encode};
use test_random_derive::TestRandom;
use tree_hash_derive::TreeHash;
use tree_hash_derive::{CachedTreeHash, TreeHash};
/// A summation of votes for some `Eth1Data`.
///
/// Spec v0.5.1
#[derive(
Debug, PartialEq, Clone, Default, Serialize, Deserialize, Encode, Decode, TreeHash, TestRandom,
Debug,
PartialEq,
Clone,
Default,
Serialize,
Deserialize,
Encode,
Decode,
TreeHash,
CachedTreeHash,
TestRandom,
)]
pub struct Eth1DataVote {
pub eth1_data: Eth1Data,
@ -22,4 +32,5 @@ mod tests {
use super::*;
ssz_tests!(Eth1DataVote);
cached_tree_hash_tests!(Eth1DataVote);
}

View File

@ -7,13 +7,23 @@ use rand::RngCore;
use serde_derive::{Deserialize, Serialize};
use ssz_derive::{Decode, Encode};
use test_random_derive::TestRandom;
use tree_hash_derive::TreeHash;
use tree_hash_derive::{CachedTreeHash, TreeHash};
/// Specifies a fork of the `BeaconChain`, to prevent replay attacks.
///
/// Spec v0.5.1
#[derive(
Debug, Clone, PartialEq, Default, Serialize, Deserialize, Encode, Decode, TreeHash, TestRandom,
Debug,
Clone,
PartialEq,
Default,
Serialize,
Deserialize,
Encode,
Decode,
TreeHash,
CachedTreeHash,
TestRandom,
)]
pub struct Fork {
#[serde(deserialize_with = "fork_from_hex_str")]
@ -54,6 +64,7 @@ mod tests {
use super::*;
ssz_tests!(Fork);
cached_tree_hash_tests!(Fork);
fn test_genesis(version: u32, epoch: Epoch) {
let mut spec = ChainSpec::foundation();

View File

@ -4,12 +4,23 @@ use rand::RngCore;
use serde_derive::{Deserialize, Serialize};
use ssz_derive::{Decode, Encode};
use test_random_derive::TestRandom;
use tree_hash_derive::TreeHash;
use tree_hash_derive::{CachedTreeHash, TreeHash};
/// Historical block and state roots.
///
/// Spec v0.5.1
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize, Encode, Decode, TreeHash, TestRandom)]
#[derive(
Debug,
Clone,
PartialEq,
Serialize,
Deserialize,
Encode,
Decode,
TreeHash,
CachedTreeHash,
TestRandom,
)]
pub struct HistoricalBatch {
pub block_roots: TreeHashVector<Hash256>,
pub state_roots: TreeHashVector<Hash256>,
@ -20,4 +31,5 @@ mod tests {
use super::*;
ssz_tests!(HistoricalBatch);
cached_tree_hash_tests!(HistoricalBatch);
}

View File

@ -4,12 +4,23 @@ use rand::RngCore;
use serde_derive::{Deserialize, Serialize};
use ssz_derive::{Decode, Encode};
use test_random_derive::TestRandom;
use tree_hash_derive::TreeHash;
use tree_hash_derive::{CachedTreeHash, TreeHash};
/// An attestation that has been included in the state but not yet fully processed.
///
/// Spec v0.5.1
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize, Encode, Decode, TreeHash, TestRandom)]
#[derive(
Debug,
Clone,
PartialEq,
Serialize,
Deserialize,
Encode,
Decode,
TreeHash,
CachedTreeHash,
TestRandom,
)]
pub struct PendingAttestation {
pub aggregation_bitfield: Bitfield,
pub data: AttestationData,
@ -34,4 +45,5 @@ mod tests {
use super::*;
ssz_tests!(PendingAttestation);
cached_tree_hash_tests!(PendingAttestation);
}

View File

@ -4,12 +4,23 @@ use rand::RngCore;
use serde_derive::{Deserialize, Serialize};
use ssz_derive::{Decode, Encode};
use test_random_derive::TestRandom;
use tree_hash_derive::TreeHash;
use tree_hash_derive::{CachedTreeHash, TreeHash};
/// Two conflicting proposals from the same proposer (validator).
///
/// Spec v0.5.1
#[derive(Debug, PartialEq, Clone, Serialize, Deserialize, Encode, Decode, TreeHash, TestRandom)]
#[derive(
Debug,
PartialEq,
Clone,
Serialize,
Deserialize,
Encode,
Decode,
TreeHash,
CachedTreeHash,
TestRandom,
)]
pub struct ProposerSlashing {
pub proposer_index: u64,
pub header_1: BeaconBlockHeader,
@ -21,4 +32,5 @@ mod tests {
use super::*;
ssz_tests!(ProposerSlashing);
cached_tree_hash_tests!(ProposerSlashing);
}

View File

@ -4,7 +4,7 @@ use serde_derive::{Deserialize, Serialize};
use ssz_derive::{Decode, Encode};
use test_random_derive::TestRandom;
use tree_hash::TreeHash;
use tree_hash_derive::{SignedRoot, TreeHash};
use tree_hash_derive::{CachedTreeHash, SignedRoot, TreeHash};
/// Details an attestation that can be slashable.
///
@ -20,6 +20,7 @@ use tree_hash_derive::{SignedRoot, TreeHash};
Encode,
Decode,
TreeHash,
CachedTreeHash,
TestRandom,
SignedRoot,
)]
@ -133,6 +134,7 @@ mod tests {
}
ssz_tests!(SlashableAttestation);
cached_tree_hash_tests!(SlashableAttestation);
fn create_slashable_attestation(
slot_factor: u64,

View File

@ -224,6 +224,26 @@ macro_rules! impl_ssz {
}
}
impl cached_tree_hash::CachedTreeHash for $type {
fn new_tree_hash_cache(
&self,
depth: usize,
) -> Result<cached_tree_hash::TreeHashCache, cached_tree_hash::Error> {
self.0.new_tree_hash_cache(depth)
}
fn tree_hash_cache_schema(&self, depth: usize) -> cached_tree_hash::BTreeSchema {
self.0.tree_hash_cache_schema(depth)
}
fn update_tree_hash_cache(
&self,
cache: &mut cached_tree_hash::TreeHashCache,
) -> Result<(), cached_tree_hash::Error> {
self.0.update_tree_hash_cache(cache)
}
}
impl<T: RngCore> TestRandom<T> for $type {
fn random_for_test(rng: &mut T) -> Self {
$type::from(u64::random_for_test(rng))
@ -545,6 +565,7 @@ macro_rules! all_tests {
math_between_tests!($type, $type);
math_tests!($type);
ssz_tests!($type);
cached_tree_hash_tests!($type);
mod u64_tests {
use super::*;

View File

@ -32,3 +32,51 @@ macro_rules! ssz_tests {
}
};
}
#[cfg(test)]
#[macro_export]
macro_rules! cached_tree_hash_tests {
($type: ident) => {
#[test]
pub fn test_cached_tree_hash() {
use crate::test_utils::{SeedableRng, TestRandom, XorShiftRng};
use tree_hash::TreeHash;
let mut rng = XorShiftRng::from_seed([42; 16]);
// Test the original hash
let original = $type::random_for_test(&mut rng);
let mut cache = cached_tree_hash::TreeHashCache::new(&original).unwrap();
assert_eq!(
cache.tree_hash_root().unwrap().to_vec(),
original.tree_hash_root(),
"Original hash failed."
);
// Test the updated hash
let modified = $type::random_for_test(&mut rng);
cache.update(&modified).unwrap();
assert_eq!(
cache.tree_hash_root().unwrap().to_vec(),
modified.tree_hash_root(),
"Modification hash failed"
);
// Produce a new cache for the modified object and compare it to the updated cache.
let mut modified_cache = cached_tree_hash::TreeHashCache::new(&modified).unwrap();
// Reset the caches.
cache.reset_modifications();
modified_cache.reset_modifications();
// Ensure the modified cache is the same as a newly created cache. This is a sanity
// check to make sure there are no artifacts of the original cache remaining after an
// update.
assert_eq!(
modified_cache, cache,
"The modified cache does not match a new cache."
)
}
};
}

View File

@ -44,11 +44,13 @@ where
U: TestRandom<T>,
{
fn random_for_test(rng: &mut T) -> Self {
vec![
<U>::random_for_test(rng),
<U>::random_for_test(rng),
<U>::random_for_test(rng),
]
let mut output = vec![];
for _ in 0..(usize::random_for_test(rng) % 4) {
output.push(<U>::random_for_test(rng));
}
output
}
}

View File

@ -7,7 +7,7 @@ use serde_derive::{Deserialize, Serialize};
use ssz_derive::{Decode, Encode};
use test_random_derive::TestRandom;
use tree_hash::TreeHash;
use tree_hash_derive::{SignedRoot, TreeHash};
use tree_hash_derive::{CachedTreeHash, SignedRoot, TreeHash};
/// The data submitted to the deposit contract.
///
@ -20,6 +20,7 @@ use tree_hash_derive::{SignedRoot, TreeHash};
Encode,
Decode,
TreeHash,
CachedTreeHash,
TestRandom,
SignedRoot,
Derivative,
@ -42,4 +43,5 @@ mod tests {
use super::*;
ssz_tests!(Transfer);
cached_tree_hash_tests!(Transfer);
}

View File

@ -1,4 +1,5 @@
use crate::test_utils::{RngCore, TestRandom};
use cached_tree_hash::CachedTreeHash;
use serde_derive::{Deserialize, Serialize};
use ssz::{Decodable, DecodeError, Encodable, SszStream};
use std::ops::{Deref, DerefMut};
@ -50,7 +51,34 @@ where
}
fn tree_hash_root(&self) -> Vec<u8> {
tree_hash::standard_tree_hash::vec_tree_hash_root(self)
tree_hash::impls::vec_tree_hash_root(self)
}
}
impl<T> CachedTreeHash for TreeHashVector<T>
where
T: CachedTreeHash + TreeHash,
{
fn new_tree_hash_cache(
&self,
depth: usize,
) -> Result<cached_tree_hash::TreeHashCache, cached_tree_hash::Error> {
let (cache, _overlay) = cached_tree_hash::vec::new_tree_hash_cache(self, depth)?;
Ok(cache)
}
fn tree_hash_cache_schema(&self, depth: usize) -> cached_tree_hash::BTreeSchema {
cached_tree_hash::vec::produce_schema(self, depth)
}
fn update_tree_hash_cache(
&self,
cache: &mut cached_tree_hash::TreeHashCache,
) -> Result<(), cached_tree_hash::Error> {
cached_tree_hash::vec::update_tree_hash_cache(self, cache)?;
Ok(())
}
}
@ -77,6 +105,38 @@ where
U: TestRandom<T>,
{
fn random_for_test(rng: &mut T) -> Self {
Vec::random_for_test(rng).into()
TreeHashVector::from(vec![
U::random_for_test(rng),
U::random_for_test(rng),
U::random_for_test(rng),
])
}
}
#[cfg(test)]
mod test {
use super::*;
use tree_hash::TreeHash;
#[test]
pub fn test_cached_tree_hash() {
let original = TreeHashVector::from(vec![1_u64, 2, 3, 4]);
let mut cache = cached_tree_hash::TreeHashCache::new(&original).unwrap();
assert_eq!(
cache.tree_hash_root().unwrap().to_vec(),
original.tree_hash_root()
);
let modified = TreeHashVector::from(vec![1_u64, 1, 1, 1]);
cache.update(&modified).unwrap();
assert_eq!(
cache.tree_hash_root().unwrap().to_vec(),
modified.tree_hash_root()
);
}
}

View File

@ -3,12 +3,23 @@ use rand::RngCore;
use serde_derive::{Deserialize, Serialize};
use ssz_derive::{Decode, Encode};
use test_random_derive::TestRandom;
use tree_hash_derive::TreeHash;
use tree_hash_derive::{CachedTreeHash, TreeHash};
/// Information about a `BeaconChain` validator.
///
/// Spec v0.5.1
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize, Encode, Decode, TestRandom, TreeHash)]
#[derive(
Debug,
Clone,
PartialEq,
Serialize,
Deserialize,
Encode,
Decode,
TestRandom,
TreeHash,
CachedTreeHash,
)]
pub struct Validator {
pub pubkey: PublicKey,
pub withdrawal_credentials: Hash256,
@ -111,4 +122,5 @@ mod tests {
}
ssz_tests!(Validator);
cached_tree_hash_tests!(Validator);
}

View File

@ -5,7 +5,7 @@ use serde_derive::{Deserialize, Serialize};
use ssz_derive::{Decode, Encode};
use test_random_derive::TestRandom;
use tree_hash::TreeHash;
use tree_hash_derive::{SignedRoot, TreeHash};
use tree_hash_derive::{CachedTreeHash, SignedRoot, TreeHash};
/// An exit voluntarily submitted a validator who wishes to withdraw.
///
@ -19,6 +19,7 @@ use tree_hash_derive::{SignedRoot, TreeHash};
Encode,
Decode,
TreeHash,
CachedTreeHash,
TestRandom,
SignedRoot,
)]
@ -34,4 +35,5 @@ mod tests {
use super::*;
ssz_tests!(VoluntaryExit);
cached_tree_hash_tests!(VoluntaryExit);
}

View File

@ -6,6 +6,7 @@ edition = "2018"
[dependencies]
bls-aggregates = { git = "https://github.com/sigp/signature-schemes", tag = "0.6.1" }
cached_tree_hash = { path = "../cached_tree_hash" }
hashing = { path = "../hashing" }
hex = "0.3"
serde = "1.0"

View File

@ -2,6 +2,7 @@ use super::{AggregatePublicKey, Signature, BLS_AGG_SIG_BYTE_SIZE};
use bls_aggregates::{
AggregatePublicKey as RawAggregatePublicKey, AggregateSignature as RawAggregateSignature,
};
use cached_tree_hash::cached_tree_hash_ssz_encoding_as_vector;
use serde::de::{Deserialize, Deserializer};
use serde::ser::{Serialize, Serializer};
use serde_hex::{encode as hex_encode, HexVisitor};
@ -167,6 +168,7 @@ impl<'de> Deserialize<'de> for AggregateSignature {
}
tree_hash_ssz_encoding_as_vector!(AggregateSignature);
cached_tree_hash_ssz_encoding_as_vector!(AggregateSignature, 96);
#[cfg(test)]
mod tests {

View File

@ -1,4 +1,5 @@
use super::{fake_signature::FakeSignature, AggregatePublicKey, BLS_AGG_SIG_BYTE_SIZE};
use cached_tree_hash::cached_tree_hash_ssz_encoding_as_vector;
use serde::de::{Deserialize, Deserializer};
use serde::ser::{Serialize, Serializer};
use serde_hex::{encode as hex_encode, PrefixedHexVisitor};
@ -100,6 +101,7 @@ impl<'de> Deserialize<'de> for FakeAggregateSignature {
}
tree_hash_ssz_encoding_as_vector!(FakeAggregateSignature);
cached_tree_hash_ssz_encoding_as_vector!(FakeAggregateSignature, 96);
#[cfg(test)]
mod tests {

View File

@ -1,4 +1,5 @@
use super::{PublicKey, SecretKey, BLS_SIG_BYTE_SIZE};
use cached_tree_hash::cached_tree_hash_ssz_encoding_as_vector;
use hex::encode as hex_encode;
use serde::de::{Deserialize, Deserializer};
use serde::ser::{Serialize, Serializer};
@ -75,6 +76,7 @@ impl Decodable for FakeSignature {
}
tree_hash_ssz_encoding_as_vector!(FakeSignature);
cached_tree_hash_ssz_encoding_as_vector!(FakeSignature, 96);
impl Serialize for FakeSignature {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>

View File

@ -1,5 +1,6 @@
use super::{SecretKey, BLS_PUBLIC_KEY_BYTE_SIZE};
use bls_aggregates::PublicKey as RawPublicKey;
use cached_tree_hash::cached_tree_hash_ssz_encoding_as_vector;
use serde::de::{Deserialize, Deserializer};
use serde::ser::{Serialize, Serializer};
use serde_hex::{encode as hex_encode, HexVisitor};
@ -106,6 +107,7 @@ impl<'de> Deserialize<'de> for PublicKey {
}
tree_hash_ssz_encoding_as_vector!(PublicKey);
cached_tree_hash_ssz_encoding_as_vector!(PublicKey, 48);
impl PartialEq for PublicKey {
fn eq(&self, other: &PublicKey) -> bool {
@ -129,6 +131,7 @@ impl Hash for PublicKey {
mod tests {
use super::*;
use ssz::ssz_encode;
use tree_hash::TreeHash;
#[test]
pub fn test_ssz_round_trip() {
@ -140,4 +143,27 @@ mod tests {
assert_eq!(original, decoded);
}
#[test]
pub fn test_cached_tree_hash() {
let sk = SecretKey::random();
let original = PublicKey::from_secret_key(&sk);
let mut cache = cached_tree_hash::TreeHashCache::new(&original).unwrap();
assert_eq!(
cache.tree_hash_root().unwrap().to_vec(),
original.tree_hash_root()
);
let sk = SecretKey::random();
let modified = PublicKey::from_secret_key(&sk);
cache.update(&modified).unwrap();
assert_eq!(
cache.tree_hash_root().unwrap().to_vec(),
modified.tree_hash_root()
);
}
}

View File

@ -1,5 +1,6 @@
use super::{PublicKey, SecretKey, BLS_SIG_BYTE_SIZE};
use bls_aggregates::Signature as RawSignature;
use cached_tree_hash::cached_tree_hash_ssz_encoding_as_vector;
use hex::encode as hex_encode;
use serde::de::{Deserialize, Deserializer};
use serde::ser::{Serialize, Serializer};
@ -116,6 +117,7 @@ impl Decodable for Signature {
}
tree_hash_ssz_encoding_as_vector!(Signature);
cached_tree_hash_ssz_encoding_as_vector!(Signature, 96);
impl Serialize for Signature {
/// Serde serialization is compliant the Ethereum YAML test format.
@ -145,6 +147,7 @@ mod tests {
use super::super::Keypair;
use super::*;
use ssz::ssz_encode;
use tree_hash::TreeHash;
#[test]
pub fn test_ssz_round_trip() {
@ -158,6 +161,28 @@ mod tests {
assert_eq!(original, decoded);
}
#[test]
pub fn test_cached_tree_hash() {
let keypair = Keypair::random();
let original = Signature::new(&[42, 42], 0, &keypair.sk);
let mut cache = cached_tree_hash::TreeHashCache::new(&original).unwrap();
assert_eq!(
cache.tree_hash_root().unwrap().to_vec(),
original.tree_hash_root()
);
let modified = Signature::new(&[99, 99], 0, &keypair.sk);
cache.update(&modified).unwrap();
assert_eq!(
cache.tree_hash_root().unwrap().to_vec(),
modified.tree_hash_root()
);
}
#[test]
pub fn test_empty_signature() {
let sig = Signature::empty_signature();

View File

@ -5,6 +5,7 @@ authors = ["Paul Hauner <paul@paulhauner.com>"]
edition = "2018"
[dependencies]
cached_tree_hash = { path = "../cached_tree_hash" }
serde_hex = { path = "../serde_hex" }
ssz = { path = "../ssz" }
bit-vec = "0.5.0"

View File

@ -3,6 +3,7 @@ extern crate ssz;
use bit_reverse::LookupReverse;
use bit_vec::BitVec;
use cached_tree_hash::cached_tree_hash_bytes_as_list;
use serde::de::{Deserialize, Deserializer};
use serde::ser::{Serialize, Serializer};
use serde_hex::{encode, PrefixedHexVisitor};
@ -270,11 +271,35 @@ impl tree_hash::TreeHash for BooleanBitfield {
}
}
cached_tree_hash_bytes_as_list!(BooleanBitfield);
#[cfg(test)]
mod tests {
use super::*;
use serde_yaml;
use ssz::{decode, ssz_encode, SszStream};
use tree_hash::TreeHash;
#[test]
pub fn test_cached_tree_hash() {
let original = BooleanBitfield::from_bytes(&vec![18; 12][..]);
let mut cache = cached_tree_hash::TreeHashCache::new(&original).unwrap();
assert_eq!(
cache.tree_hash_root().unwrap().to_vec(),
original.tree_hash_root()
);
let modified = BooleanBitfield::from_bytes(&vec![2; 1][..]);
cache.update(&modified).unwrap();
assert_eq!(
cache.tree_hash_root().unwrap().to_vec(),
modified.tree_hash_root()
);
}
#[test]
fn test_new_bitfield() {

View File

@ -0,0 +1,19 @@
[package]
name = "cached_tree_hash"
version = "0.1.0"
authors = ["Paul Hauner <paul@paulhauner.com>"]
edition = "2018"
[[bench]]
name = "benches"
harness = false
[dev-dependencies]
criterion = "0.2"
tree_hash_derive = { path = "../tree_hash_derive" }
[dependencies]
tree_hash = { path = "../tree_hash" }
ethereum-types = "0.5"
hashing = { path = "../hashing" }
int_to_bytes = { path = "../int_to_bytes" }

View File

@ -0,0 +1,76 @@
# Tree hashing
Provides both cached and non-cached tree hashing methods.
## Standard Tree Hash
```rust
use tree_hash_derive::TreeHash;
#[derive(TreeHash)]
struct Foo {
a: u64,
b: Vec<u64>,
}
fn main() {
let foo = Foo {
a: 42,
b: vec![1, 2, 3]
};
println!("root: {}", foo.tree_hash_root());
}
```
## Cached Tree Hash
```rust
use tree_hash_derive::{TreeHash, CachedTreeHash};
#[derive(TreeHash, CachedTreeHash)]
struct Foo {
a: u64,
b: Vec<u64>,
}
#[derive(TreeHash, CachedTreeHash)]
struct Bar {
a: Vec<Foo>,
b: u64,
}
fn main() {
let bar = Bar {
a: vec![
Foo {
a: 42,
b: vec![1, 2, 3]
}
],
b: 42
};
let modified_bar = Bar {
a: vec![
Foo {
a: 100,
b: vec![1, 2, 3, 4, 5, 6]
},
Foo {
a: 42,
b: vec![]
}
],
b: 99
};
let mut hasher = CachedTreeHasher::new(&bar).unwrap();
hasher.update(&modified_bar).unwrap();
// Assert that the cached tree hash matches a standard tree hash.
assert_eq!(hasher.tree_hash_root(), modified_bar.tree_hash_root());
}
```

View File

@ -0,0 +1,73 @@
#[macro_use]
extern crate criterion;
use cached_tree_hash::TreeHashCache;
use criterion::black_box;
use criterion::{Benchmark, Criterion};
use ethereum_types::H256 as Hash256;
use hashing::hash;
use tree_hash::TreeHash;
fn criterion_benchmark(c: &mut Criterion) {
let n = 1024;
let source_vec: Vec<Hash256> = (0..n).map(|_| Hash256::random()).collect();
let mut source_modified_vec = source_vec.clone();
source_modified_vec[n - 1] = Hash256::random();
let modified_vec = source_modified_vec.clone();
c.bench(
&format!("vec_of_{}_hashes", n),
Benchmark::new("standard", move |b| {
b.iter_with_setup(
|| modified_vec.clone(),
|modified_vec| black_box(modified_vec.tree_hash_root()),
)
})
.sample_size(100),
);
let modified_vec = source_modified_vec.clone();
c.bench(
&format!("vec_of_{}_hashes", n),
Benchmark::new("build_cache", move |b| {
b.iter_with_setup(
|| modified_vec.clone(),
|vec| black_box(TreeHashCache::new(&vec, 0)),
)
})
.sample_size(100),
);
let vec = source_vec.clone();
let modified_vec = source_modified_vec.clone();
c.bench(
&format!("vec_of_{}_hashes", n),
Benchmark::new("cache_update", move |b| {
b.iter_with_setup(
|| {
let cache = TreeHashCache::new(&vec, 0).unwrap();
(cache, modified_vec.clone())
},
|(mut cache, modified_vec)| black_box(cache.update(&modified_vec)),
)
})
.sample_size(100),
);
c.bench(
&format!("{}_hashes", n),
Benchmark::new("hash_64_bytes", move |b| {
b.iter(|| {
for _ in 0..n {
let _digest = hash(&[42; 64]);
}
})
})
.sample_size(100),
);
}
criterion_group!(benches, criterion_benchmark);
criterion_main!(benches);

View File

@ -0,0 +1,21 @@
use cached_tree_hash::TreeHashCache;
use ethereum_types::H256 as Hash256;
fn run(vec: &Vec<Hash256>, modified_vec: &Vec<Hash256>) {
let mut cache = TreeHashCache::new(vec).unwrap();
cache.update(modified_vec).unwrap();
}
fn main() {
let n = 2048;
let vec: Vec<Hash256> = (0..n).map(|_| Hash256::random()).collect();
let mut modified_vec = vec.clone();
modified_vec[n - 1] = Hash256::random();
for _ in 0..10_000 {
run(&vec, &modified_vec);
}
}

View File

@ -0,0 +1,10 @@
use ethereum_types::H256 as Hash256;
use tree_hash::TreeHash;
fn main() {
let n = 2048;
let vec: Vec<Hash256> = (0..n).map(|_| Hash256::random()).collect();
vec.tree_hash_root();
}

View File

@ -0,0 +1,340 @@
use super::*;
/// A schema defining a binary tree over a `TreeHashCache`.
///
/// This structure is used for succinct storage, run-time functionality is gained by converting the
/// schema into a `BTreeOverlay`.
#[derive(Debug, PartialEq, Clone)]
pub struct BTreeSchema {
/// The depth of a schema defines how far it is nested within other fixed-length items.
///
/// Each time a new variable-length object is created all items within it are assigned a depth
/// of `depth + 1`.
///
/// When storing the schemas in a list, the depth parameter allows for removing all schemas
/// belonging to a specific variable-length item without removing schemas related to adjacent
/// variable-length items.
pub depth: usize,
lengths: Vec<usize>,
}
impl BTreeSchema {
pub fn from_lengths(depth: usize, lengths: Vec<usize>) -> Self {
Self { depth, lengths }
}
pub fn into_overlay(self, offset: usize) -> BTreeOverlay {
BTreeOverlay::from_schema(self, offset)
}
}
impl Into<BTreeSchema> for BTreeOverlay {
fn into(self) -> BTreeSchema {
BTreeSchema {
depth: self.depth,
lengths: self.lengths,
}
}
}
/// Provides a status for some leaf-node in binary tree.
#[derive(Debug, PartialEq, Clone)]
pub enum LeafNode {
/// The leaf node does not exist in this tree.
DoesNotExist,
/// The leaf node exists in the tree and has a real value within the given `chunk` range.
Exists(Range<usize>),
/// The leaf node exists in the tree only as padding.
Padding,
}
/// Instantiated from a `BTreeSchema`, allows for interpreting some chunks of a `TreeHashCache` as
/// a perfect binary tree.
///
/// The primary purpose of this struct is to map from binary tree "nodes" to `TreeHashCache`
/// "chunks". Each tree has nodes `0..n` where `n` is the number of nodes and `0` is the root node.
/// Each of these nodes is mapped to a chunk, starting from `self.offset` and increasing in steps
/// of `1` for internal nodes and arbitrary steps for leaf-nodes.
#[derive(Debug, PartialEq, Clone)]
pub struct BTreeOverlay {
offset: usize,
/// See `BTreeSchema.depth` for a description.
pub depth: usize,
lengths: Vec<usize>,
}
impl BTreeOverlay {
/// Instantiates a new instance for `item`, where it's first chunk is `inital_offset` and has
/// the specified `depth`.
pub fn new<T>(item: &T, initial_offset: usize, depth: usize) -> Self
where
T: CachedTreeHash,
{
Self::from_schema(item.tree_hash_cache_schema(depth), initial_offset)
}
/// Instantiates a new instance from a schema, where it's first chunk is `offset`.
pub fn from_schema(schema: BTreeSchema, offset: usize) -> Self {
Self {
offset,
depth: schema.depth,
lengths: schema.lengths,
}
}
/// Returns a `LeafNode` for each of the `n` leaves of the tree.
///
/// `LeafNode::DoesNotExist` is returned for each element `i` in `0..n` where `i >=
/// self.num_leaf_nodes()`.
pub fn get_leaf_nodes(&self, n: usize) -> Vec<LeafNode> {
let mut running_offset = self.offset + self.num_internal_nodes();
let mut leaf_nodes: Vec<LeafNode> = self
.lengths
.iter()
.map(|length| {
let range = running_offset..running_offset + length;
running_offset += length;
LeafNode::Exists(range)
})
.collect();
leaf_nodes.resize(self.num_leaf_nodes(), LeafNode::Padding);
leaf_nodes.resize(n, LeafNode::DoesNotExist);
leaf_nodes
}
/// Returns the number of leaf nodes in the tree.
pub fn num_leaf_nodes(&self) -> usize {
self.lengths.len().next_power_of_two()
}
/// Returns the number of leafs in the tree which are padding.
pub fn num_padding_leaves(&self) -> usize {
self.num_leaf_nodes() - self.lengths.len()
}
/// Returns the number of nodes in the tree.
///
/// Note: this is distinct from `num_chunks`, which returns the total number of chunks in
/// this tree.
pub fn num_nodes(&self) -> usize {
2 * self.num_leaf_nodes() - 1
}
/// Returns the number of internal (non-leaf) nodes in the tree.
pub fn num_internal_nodes(&self) -> usize {
self.num_leaf_nodes() - 1
}
/// Returns the chunk of the first node of the tree.
fn first_node(&self) -> usize {
self.offset
}
/// Returns the root chunk of the tree (the zero-th node)
pub fn root(&self) -> usize {
self.first_node()
}
/// Returns the first chunk outside of the boundary of this tree. It is the root node chunk
/// plus the total number of chunks in the tree.
pub fn next_node(&self) -> usize {
self.first_node() + self.num_internal_nodes() + self.num_leaf_nodes() - self.lengths.len()
+ self.lengths.iter().sum::<usize>()
}
/// Returns the height of the tree where a tree with a single node has a height of 1.
pub fn height(&self) -> usize {
self.num_leaf_nodes().trailing_zeros() as usize
}
/// Returns the range of chunks that belong to the internal nodes of the tree.
pub fn internal_chunk_range(&self) -> Range<usize> {
self.offset..self.offset + self.num_internal_nodes()
}
/// Returns all of the chunks that are encompassed by the tree.
pub fn chunk_range(&self) -> Range<usize> {
self.first_node()..self.next_node()
}
/// Returns the number of chunks inside this tree (including subtrees).
///
/// Note: this is distinct from `num_nodes` which returns the number of nodes in the binary
/// tree.
pub fn num_chunks(&self) -> usize {
self.next_node() - self.first_node()
}
/// Returns the first chunk of the first leaf node in the tree.
pub fn first_leaf_node(&self) -> usize {
self.offset + self.num_internal_nodes()
}
/// Returns the chunks for some given parent node.
///
/// Note: it is a parent _node_ not a parent _chunk_.
pub fn child_chunks(&self, parent: usize) -> (usize, usize) {
let children = children(parent);
if children.1 < self.num_internal_nodes() {
(children.0 + self.offset, children.1 + self.offset)
} else {
let chunks = self.n_leaf_node_chunks(children.1);
(chunks[chunks.len() - 2], chunks[chunks.len() - 1])
}
}
/// Returns a vec of (parent_chunk, (left_child_chunk, right_child_chunk)).
pub fn internal_parents_and_children(&self) -> Vec<(usize, (usize, usize))> {
let mut chunks = Vec::with_capacity(self.num_nodes());
chunks.append(&mut self.internal_node_chunks());
chunks.append(&mut self.leaf_node_chunks());
(0..self.num_internal_nodes())
.map(|parent| {
let children = children(parent);
(chunks[parent], (chunks[children.0], chunks[children.1]))
})
.collect()
}
/// Returns a vec of chunk indices for each internal node of the tree.
pub fn internal_node_chunks(&self) -> Vec<usize> {
(self.offset..self.offset + self.num_internal_nodes()).collect()
}
/// Returns a vec of the first chunk for each leaf node of the tree.
pub fn leaf_node_chunks(&self) -> Vec<usize> {
self.n_leaf_node_chunks(self.num_leaf_nodes())
}
/// Returns a vec of the first chunk index for the first `n` leaf nodes of the tree.
fn n_leaf_node_chunks(&self, n: usize) -> Vec<usize> {
let mut chunks = Vec::with_capacity(n);
let mut chunk = self.offset + self.num_internal_nodes();
for i in 0..n {
chunks.push(chunk);
match self.lengths.get(i) {
Some(len) => {
chunk += len;
}
None => chunk += 1,
}
}
chunks
}
}
fn children(parent: usize) -> (usize, usize) {
((2 * parent + 1), (2 * parent + 2))
}
#[cfg(test)]
mod test {
use super::*;
fn get_tree_a(n: usize) -> BTreeOverlay {
BTreeSchema::from_lengths(0, vec![1; n]).into_overlay(0)
}
#[test]
fn leaf_node_chunks() {
let tree = get_tree_a(4);
assert_eq!(tree.leaf_node_chunks(), vec![3, 4, 5, 6])
}
#[test]
fn internal_node_chunks() {
let tree = get_tree_a(4);
assert_eq!(tree.internal_node_chunks(), vec![0, 1, 2])
}
#[test]
fn internal_parents_and_children() {
let tree = get_tree_a(4);
assert_eq!(
tree.internal_parents_and_children(),
vec![(0, (1, 2)), (1, (3, 4)), (2, (5, 6))]
)
}
#[test]
fn chunk_range() {
let tree = get_tree_a(4);
assert_eq!(tree.chunk_range(), 0..7);
let tree = get_tree_a(1);
assert_eq!(tree.chunk_range(), 0..1);
let tree = get_tree_a(2);
assert_eq!(tree.chunk_range(), 0..3);
let tree = BTreeSchema::from_lengths(0, vec![1, 1]).into_overlay(11);
assert_eq!(tree.chunk_range(), 11..14);
let tree = BTreeSchema::from_lengths(0, vec![7, 7, 7]).into_overlay(0);
assert_eq!(tree.chunk_range(), 0..25);
}
#[test]
fn get_leaf_node() {
let tree = get_tree_a(4);
let leaves = tree.get_leaf_nodes(5);
assert_eq!(leaves[0], LeafNode::Exists(3..4));
assert_eq!(leaves[1], LeafNode::Exists(4..5));
assert_eq!(leaves[2], LeafNode::Exists(5..6));
assert_eq!(leaves[3], LeafNode::Exists(6..7));
assert_eq!(leaves[4], LeafNode::DoesNotExist);
let tree = get_tree_a(3);
let leaves = tree.get_leaf_nodes(5);
assert_eq!(leaves[0], LeafNode::Exists(3..4));
assert_eq!(leaves[1], LeafNode::Exists(4..5));
assert_eq!(leaves[2], LeafNode::Exists(5..6));
assert_eq!(leaves[3], LeafNode::Padding);
assert_eq!(leaves[4], LeafNode::DoesNotExist);
let tree = get_tree_a(0);
let leaves = tree.get_leaf_nodes(2);
assert_eq!(leaves[0], LeafNode::Padding);
assert_eq!(leaves[1], LeafNode::DoesNotExist);
let tree = BTreeSchema::from_lengths(0, vec![3]).into_overlay(0);
let leaves = tree.get_leaf_nodes(2);
assert_eq!(leaves[0], LeafNode::Exists(0..3));
assert_eq!(leaves[1], LeafNode::DoesNotExist);
let tree = BTreeSchema::from_lengths(0, vec![3]).into_overlay(10);
let leaves = tree.get_leaf_nodes(2);
assert_eq!(leaves[0], LeafNode::Exists(10..13));
assert_eq!(leaves[1], LeafNode::DoesNotExist);
}
#[test]
fn root_of_one_node() {
let tree = get_tree_a(1);
assert_eq!(tree.root(), 0);
assert_eq!(tree.num_internal_nodes(), 0);
assert_eq!(tree.num_leaf_nodes(), 1);
}
#[test]
fn child_chunks() {
let tree = get_tree_a(4);
assert_eq!(tree.child_chunks(0), (1, 2))
}
}

View File

@ -0,0 +1,19 @@
use tree_hash::TreeHashType;
#[derive(Debug, PartialEq, Clone)]
pub enum Error {
ShouldNotProduceBTreeOverlay,
NoFirstNode,
NoBytesForRoot,
UnableToObtainSlices,
UnableToGrowMerkleTree,
UnableToShrinkMerkleTree,
TreeCannotHaveZeroNodes,
CacheNotInitialized,
ShouldNeverBePacked(TreeHashType),
BytesAreNotEvenChunks(usize),
NoModifiedFieldForChunk(usize),
NoBytesForChunk(usize),
NoSchemaForIndex(usize),
NotLeafNode(usize),
}

View File

@ -0,0 +1,110 @@
use super::*;
use crate::merkleize::merkleize;
use ethereum_types::H256;
pub mod vec;
macro_rules! impl_for_single_leaf_int {
($type: ident) => {
impl CachedTreeHash for $type {
fn new_tree_hash_cache(&self, _depth: usize) -> Result<TreeHashCache, Error> {
Ok(TreeHashCache::from_bytes(
merkleize(self.to_le_bytes().to_vec()),
false,
None,
)?)
}
fn tree_hash_cache_schema(&self, depth: usize) -> BTreeSchema {
BTreeSchema::from_lengths(depth, vec![1])
}
fn update_tree_hash_cache(&self, cache: &mut TreeHashCache) -> Result<(), Error> {
let leaf = merkleize(self.to_le_bytes().to_vec());
cache.maybe_update_chunk(cache.chunk_index, &leaf)?;
cache.chunk_index += 1;
Ok(())
}
}
};
}
impl_for_single_leaf_int!(u8);
impl_for_single_leaf_int!(u16);
impl_for_single_leaf_int!(u32);
impl_for_single_leaf_int!(u64);
impl_for_single_leaf_int!(usize);
impl CachedTreeHash for bool {
fn new_tree_hash_cache(&self, _depth: usize) -> Result<TreeHashCache, Error> {
Ok(TreeHashCache::from_bytes(
merkleize((*self as u8).to_le_bytes().to_vec()),
false,
None,
)?)
}
fn tree_hash_cache_schema(&self, depth: usize) -> BTreeSchema {
BTreeSchema::from_lengths(depth, vec![1])
}
fn update_tree_hash_cache(&self, cache: &mut TreeHashCache) -> Result<(), Error> {
let leaf = merkleize((*self as u8).to_le_bytes().to_vec());
cache.maybe_update_chunk(cache.chunk_index, &leaf)?;
cache.chunk_index += 1;
Ok(())
}
}
impl CachedTreeHash for [u8; 4] {
fn new_tree_hash_cache(&self, _depth: usize) -> Result<TreeHashCache, Error> {
Ok(TreeHashCache::from_bytes(
merkleize(self.to_vec()),
false,
None,
)?)
}
fn tree_hash_cache_schema(&self, depth: usize) -> BTreeSchema {
BTreeSchema::from_lengths(depth, vec![1])
}
fn update_tree_hash_cache(&self, cache: &mut TreeHashCache) -> Result<(), Error> {
let leaf = merkleize(self.to_vec());
cache.maybe_update_chunk(cache.chunk_index, &leaf)?;
cache.chunk_index += 1;
Ok(())
}
}
impl CachedTreeHash for H256 {
fn new_tree_hash_cache(&self, _depth: usize) -> Result<TreeHashCache, Error> {
Ok(TreeHashCache::from_bytes(
self.as_bytes().to_vec(),
false,
None,
)?)
}
fn num_tree_hash_cache_chunks(&self) -> usize {
1
}
fn tree_hash_cache_schema(&self, depth: usize) -> BTreeSchema {
BTreeSchema::from_lengths(depth, vec![1])
}
fn update_tree_hash_cache(&self, cache: &mut TreeHashCache) -> Result<(), Error> {
cache.maybe_update_chunk(cache.chunk_index, self.as_bytes())?;
cache.chunk_index += 1;
Ok(())
}
}

View File

@ -0,0 +1,338 @@
use super::*;
use crate::btree_overlay::LeafNode;
use crate::merkleize::{merkleize, num_sanitized_leaves, sanitise_bytes};
macro_rules! impl_for_list {
($type: ty) => {
impl<T> CachedTreeHash for $type
where
T: CachedTreeHash + TreeHash,
{
fn new_tree_hash_cache(&self, depth: usize) -> Result<TreeHashCache, Error> {
let (mut cache, schema) = new_tree_hash_cache(self, depth)?;
cache.add_length_nodes(schema.into_overlay(0).chunk_range(), self.len())?;
Ok(cache)
}
fn num_tree_hash_cache_chunks(&self) -> usize {
// Add two extra nodes to cater for the node before and after to allow mixing-in length.
BTreeOverlay::new(self, 0, 0).num_chunks() + 2
}
fn tree_hash_cache_schema(&self, depth: usize) -> BTreeSchema {
produce_schema(self, depth)
}
fn update_tree_hash_cache(&self, cache: &mut TreeHashCache) -> Result<(), Error> {
// Skip the length-mixed-in root node.
cache.chunk_index += 1;
// Update the cache, returning the new overlay.
let new_overlay = update_tree_hash_cache(&self, cache)?;
// Mix in length
cache.mix_in_length(new_overlay.chunk_range(), self.len())?;
// Skip an extra node to clear the length node.
cache.chunk_index += 1;
Ok(())
}
}
};
}
impl_for_list!(Vec<T>);
impl_for_list!(&[T]);
/// Build a new tree hash cache for some slice.
///
/// Valid for both variable- and fixed-length slices. Does _not_ mix-in the length of the list,
/// the caller must do this.
pub fn new_tree_hash_cache<T: CachedTreeHash>(
vec: &[T],
depth: usize,
) -> Result<(TreeHashCache, BTreeSchema), Error> {
let schema = vec.tree_hash_cache_schema(depth);
let cache = match T::tree_hash_type() {
TreeHashType::Basic => TreeHashCache::from_bytes(
merkleize(get_packed_leaves(vec)?),
false,
Some(schema.clone()),
),
TreeHashType::Container | TreeHashType::List | TreeHashType::Vector => {
let subtrees = vec
.iter()
.map(|item| TreeHashCache::new_at_depth(item, depth + 1))
.collect::<Result<Vec<TreeHashCache>, _>>()?;
TreeHashCache::from_subtrees(&vec, subtrees, depth)
}
}?;
Ok((cache, schema))
}
/// Produce a schema for some slice.
///
/// Valid for both variable- and fixed-length slices. Does _not_ add the mix-in length nodes, the
/// caller must do this.
pub fn produce_schema<T: CachedTreeHash>(vec: &[T], depth: usize) -> BTreeSchema {
let lengths = match T::tree_hash_type() {
TreeHashType::Basic => {
// Ceil division.
let num_leaves =
(vec.len() + T::tree_hash_packing_factor() - 1) / T::tree_hash_packing_factor();
// Disallow zero-length as an empty list still has one all-padding node.
vec![1; std::cmp::max(1, num_leaves)]
}
TreeHashType::Container | TreeHashType::List | TreeHashType::Vector => {
let mut lengths = vec![];
for item in vec {
lengths.push(item.num_tree_hash_cache_chunks())
}
lengths
}
};
BTreeSchema::from_lengths(depth, lengths)
}
/// Updates the cache for some slice.
///
/// Valid for both variable- and fixed-length slices. Does _not_ cater for the mix-in length nodes,
/// the caller must do this.
#[allow(clippy::range_plus_one)] // Minor readability lint requiring structural changes; not worth it.
pub fn update_tree_hash_cache<T: CachedTreeHash>(
vec: &[T],
cache: &mut TreeHashCache,
) -> Result<BTreeOverlay, Error> {
let old_overlay = cache.get_overlay(cache.schema_index, cache.chunk_index)?;
let new_overlay = BTreeOverlay::new(&vec, cache.chunk_index, old_overlay.depth);
cache.replace_overlay(cache.schema_index, cache.chunk_index, new_overlay.clone())?;
cache.schema_index += 1;
match T::tree_hash_type() {
TreeHashType::Basic => {
let mut buf = vec![0; HASHSIZE];
let item_bytes = HASHSIZE / T::tree_hash_packing_factor();
// If the number of leaf nodes has changed, resize the cache.
if new_overlay.num_leaf_nodes() < old_overlay.num_leaf_nodes() {
let start = new_overlay.next_node();
let end = start + (old_overlay.num_leaf_nodes() - new_overlay.num_leaf_nodes());
cache.splice(start..end, vec![], vec![]);
} else if new_overlay.num_leaf_nodes() > old_overlay.num_leaf_nodes() {
let start = old_overlay.next_node();
let new_nodes = new_overlay.num_leaf_nodes() - old_overlay.num_leaf_nodes();
cache.splice(
start..start,
vec![0; new_nodes * HASHSIZE],
vec![true; new_nodes],
);
}
// Iterate through each of the leaf nodes in the new list.
for i in 0..new_overlay.num_leaf_nodes() {
// Iterate through the number of items that may be packing into the leaf node.
for j in 0..T::tree_hash_packing_factor() {
// Create a mut slice that can be filled with either a serialized item or
// padding.
let buf_slice = &mut buf[j * item_bytes..(j + 1) * item_bytes];
// Attempt to get the item for this portion of the chunk. If it exists,
// update `buf` with it's serialized bytes. If it doesn't exist, update
// `buf` with padding.
match vec.get(i * T::tree_hash_packing_factor() + j) {
Some(item) => {
buf_slice.copy_from_slice(&item.tree_hash_packed_encoding());
}
None => buf_slice.copy_from_slice(&vec![0; item_bytes]),
}
}
// Update the chunk if the generated `buf` is not the same as the cache.
let chunk = new_overlay.first_leaf_node() + i;
cache.maybe_update_chunk(chunk, &buf)?;
}
}
TreeHashType::Container | TreeHashType::List | TreeHashType::Vector => {
let longest_len =
std::cmp::max(new_overlay.num_leaf_nodes(), old_overlay.num_leaf_nodes());
let old_leaf_nodes = old_overlay.get_leaf_nodes(longest_len);
let new_leaf_nodes = if old_overlay == new_overlay {
old_leaf_nodes.clone()
} else {
new_overlay.get_leaf_nodes(longest_len)
};
for i in 0..longest_len {
match (&old_leaf_nodes[i], &new_leaf_nodes[i]) {
// The item existed in the previous list and exists in the current list.
//
// Update the item.
(LeafNode::Exists(_old), LeafNode::Exists(new)) => {
cache.chunk_index = new.start;
vec[i].update_tree_hash_cache(cache)?;
}
// The list has been lengthened and this is a new item that did not exist in
// the previous list.
//
// Splice the tree for the new item into the current chunk_index.
(LeafNode::DoesNotExist, LeafNode::Exists(new)) => {
splice_in_new_tree(
&vec[i],
new.start..new.start,
new_overlay.depth + 1,
cache,
)?;
cache.chunk_index = new.end;
}
// The list has been lengthened and this is a new item that was prevously a
// padding item.
//
// Splice the tree for the new item over the padding chunk.
(LeafNode::Padding, LeafNode::Exists(new)) => {
splice_in_new_tree(
&vec[i],
new.start..new.start + 1,
new_overlay.depth + 1,
cache,
)?;
cache.chunk_index = new.end;
}
// The list has been shortened and this item was removed from the list and made
// into padding.
//
// Splice a padding node over the number of nodes the previous item occupied,
// starting at the current chunk_index.
(LeafNode::Exists(old), LeafNode::Padding) => {
let num_chunks = old.end - old.start;
cache.splice(
cache.chunk_index..cache.chunk_index + num_chunks,
vec![0; HASHSIZE],
vec![true],
);
cache.chunk_index += 1;
}
// The list has been shortened and the item for this leaf existed in the
// previous list, but does not exist in this list.
//
// Remove the number of nodes the previous item occupied, starting at the
// current chunk_index.
(LeafNode::Exists(old), LeafNode::DoesNotExist) => {
let num_chunks = old.end - old.start;
cache.splice(
cache.chunk_index..cache.chunk_index + num_chunks,
vec![],
vec![],
);
}
// The list has been shortened and this leaf was padding in the previous list,
// however it should not exist in this list.
//
// Remove one node, starting at the current `chunk_index`.
(LeafNode::Padding, LeafNode::DoesNotExist) => {
cache.splice(cache.chunk_index..cache.chunk_index + 1, vec![], vec![]);
}
// The list has been lengthened and this leaf did not exist in the previous
// list, but should be padding for this list.
//
// Splice in a new padding node at the current chunk_index.
(LeafNode::DoesNotExist, LeafNode::Padding) => {
cache.splice(
cache.chunk_index..cache.chunk_index,
vec![0; HASHSIZE],
vec![true],
);
cache.chunk_index += 1;
}
// This leaf was padding in both lists, there's nothing to do.
(LeafNode::Padding, LeafNode::Padding) => (),
// As we are looping through the larger of the lists of leaf nodes, it should
// be impossible for either leaf to be non-existant.
(LeafNode::DoesNotExist, LeafNode::DoesNotExist) => unreachable!(),
}
}
// Clean out any excess schemas that may or may not be remaining if the list was
// shortened.
cache.remove_proceeding_child_schemas(cache.schema_index, new_overlay.depth);
}
}
cache.update_internal_nodes(&new_overlay)?;
cache.chunk_index = new_overlay.next_node();
Ok(new_overlay)
}
/// Create a new `TreeHashCache` from `item` and splice it over the `chunks_to_replace` chunks of
/// the given `cache`.
///
/// Useful for the case where a new element is added to a list.
///
/// The schemas created for `item` will have the given `depth`.
fn splice_in_new_tree<T>(
item: &T,
chunks_to_replace: Range<usize>,
depth: usize,
cache: &mut TreeHashCache,
) -> Result<(), Error>
where
T: CachedTreeHash,
{
let (bytes, mut bools, schemas) = TreeHashCache::new_at_depth(item, depth)?.into_components();
// Record the number of schemas, this will be used later in the fn.
let num_schemas = schemas.len();
// Flag the root node of the new tree as dirty.
bools[0] = true;
cache.splice(chunks_to_replace, bytes, bools);
cache
.schemas
.splice(cache.schema_index..cache.schema_index, schemas);
cache.schema_index += num_schemas;
Ok(())
}
/// Packs all of the leaves of `vec` into a single byte-array, appending `0` to ensure the number
/// of chunks in the byte-array is a power-of-two.
fn get_packed_leaves<T>(vec: &[T]) -> Result<Vec<u8>, Error>
where
T: CachedTreeHash,
{
let num_packed_bytes = (BYTES_PER_CHUNK / T::tree_hash_packing_factor()) * vec.len();
let num_leaves = num_sanitized_leaves(num_packed_bytes);
let mut packed = Vec::with_capacity(num_leaves * HASHSIZE);
for item in vec {
packed.append(&mut item.tree_hash_packed_encoding());
}
Ok(sanitise_bytes(packed))
}

View File

@ -0,0 +1,150 @@
//! Performs cached merkle-hashing adhering to the Ethereum 2.0 specification defined
//! [here](https://github.com/ethereum/eth2.0-specs/blob/v0.5.1/specs/simple-serialize.md#merkleization).
//!
//! Caching allows for reduced hashing when some object has only been partially modified. This
//! allows for significant CPU-time savings (at the cost of additional storage). For example,
//! determining the root of a list of 1024 items with a single modification has been observed to
//! run in 1/25th of the time of a full merkle hash.
//!
//!
//! # Example:
//!
//! ```
//! use cached_tree_hash::TreeHashCache;
//! use tree_hash_derive::{TreeHash, CachedTreeHash};
//!
//! #[derive(TreeHash, CachedTreeHash)]
//! struct Foo {
//! bar: u64,
//! baz: Vec<u64>
//! }
//!
//! let mut foo = Foo {
//! bar: 1,
//! baz: vec![0, 1, 2]
//! };
//!
//! let mut cache = TreeHashCache::new(&foo).unwrap();
//!
//! foo.baz[1] = 0;
//!
//! cache.update(&foo).unwrap();
//!
//! println!("Root is: {:?}", cache.tree_hash_root().unwrap());
//! ```
use hashing::hash;
use std::ops::Range;
use tree_hash::{TreeHash, TreeHashType, BYTES_PER_CHUNK, HASHSIZE};
mod btree_overlay;
mod errors;
mod impls;
pub mod merkleize;
mod resize;
mod tree_hash_cache;
pub use btree_overlay::{BTreeOverlay, BTreeSchema};
pub use errors::Error;
pub use impls::vec;
pub use tree_hash_cache::TreeHashCache;
pub trait CachedTreeHash: TreeHash {
fn tree_hash_cache_schema(&self, depth: usize) -> BTreeSchema;
fn num_tree_hash_cache_chunks(&self) -> usize {
self.tree_hash_cache_schema(0).into_overlay(0).num_chunks()
}
fn new_tree_hash_cache(&self, depth: usize) -> Result<TreeHashCache, Error>;
fn update_tree_hash_cache(&self, cache: &mut TreeHashCache) -> Result<(), Error>;
}
/// Implements `CachedTreeHash` on `$type` as a fixed-length tree-hash vector of the ssz encoding
/// of `$type`.
#[macro_export]
macro_rules! cached_tree_hash_ssz_encoding_as_vector {
($type: ident, $num_bytes: expr) => {
impl cached_tree_hash::CachedTreeHash for $type {
fn new_tree_hash_cache(
&self,
depth: usize,
) -> Result<cached_tree_hash::TreeHashCache, cached_tree_hash::Error> {
let (cache, _schema) =
cached_tree_hash::vec::new_tree_hash_cache(&ssz::ssz_encode(self), depth)?;
Ok(cache)
}
fn tree_hash_cache_schema(&self, depth: usize) -> cached_tree_hash::BTreeSchema {
let lengths =
vec![1; cached_tree_hash::merkleize::num_unsanitized_leaves($num_bytes)];
cached_tree_hash::BTreeSchema::from_lengths(depth, lengths)
}
fn update_tree_hash_cache(
&self,
cache: &mut cached_tree_hash::TreeHashCache,
) -> Result<(), cached_tree_hash::Error> {
cached_tree_hash::vec::update_tree_hash_cache(&ssz::ssz_encode(self), cache)?;
Ok(())
}
}
};
}
/// Implements `CachedTreeHash` on `$type` as a variable-length tree-hash list of the result of
/// calling `.as_bytes()` on `$type`.
#[macro_export]
macro_rules! cached_tree_hash_bytes_as_list {
($type: ident) => {
impl cached_tree_hash::CachedTreeHash for $type {
fn new_tree_hash_cache(
&self,
depth: usize,
) -> Result<cached_tree_hash::TreeHashCache, cached_tree_hash::Error> {
let bytes = self.to_bytes();
let (mut cache, schema) =
cached_tree_hash::vec::new_tree_hash_cache(&bytes, depth)?;
cache.add_length_nodes(schema.into_overlay(0).chunk_range(), bytes.len())?;
Ok(cache)
}
fn num_tree_hash_cache_chunks(&self) -> usize {
// Add two extra nodes to cater for the node before and after to allow mixing-in length.
cached_tree_hash::BTreeOverlay::new(self, 0, 0).num_chunks() + 2
}
fn tree_hash_cache_schema(&self, depth: usize) -> cached_tree_hash::BTreeSchema {
let bytes = self.to_bytes();
cached_tree_hash::vec::produce_schema(&bytes, depth)
}
fn update_tree_hash_cache(
&self,
cache: &mut cached_tree_hash::TreeHashCache,
) -> Result<(), cached_tree_hash::Error> {
let bytes = self.to_bytes();
// Skip the length-mixed-in root node.
cache.chunk_index += 1;
// Update the cache, returning the new overlay.
let new_overlay = cached_tree_hash::vec::update_tree_hash_cache(&bytes, cache)?;
// Mix in length
cache.mix_in_length(new_overlay.chunk_range(), bytes.len())?;
// Skip an extra node to clear the length node.
cache.chunk_index += 1;
Ok(())
}
}
};
}

View File

@ -0,0 +1,83 @@
use hashing::hash;
use tree_hash::{BYTES_PER_CHUNK, HASHSIZE, MERKLE_HASH_CHUNK};
/// Split `values` into a power-of-two, identical-length chunks (padding with `0`) and merkleize
/// them, returning the entire merkle tree.
///
/// The root hash is `merkleize(values)[0..BYTES_PER_CHUNK]`.
pub fn merkleize(values: Vec<u8>) -> Vec<u8> {
let values = sanitise_bytes(values);
let leaves = values.len() / HASHSIZE;
if leaves == 0 {
panic!("No full leaves");
}
if !leaves.is_power_of_two() {
panic!("leaves is not power of two");
}
let mut o: Vec<u8> = vec![0; (num_nodes(leaves) - leaves) * HASHSIZE];
o.append(&mut values.to_vec());
let mut i = o.len();
let mut j = o.len() - values.len();
while i >= MERKLE_HASH_CHUNK {
i -= MERKLE_HASH_CHUNK;
let hash = hash(&o[i..i + MERKLE_HASH_CHUNK]);
j -= HASHSIZE;
o[j..j + HASHSIZE].copy_from_slice(&hash);
}
o
}
/// Ensures that the given `bytes` are a power-of-two chunks, padding with zero if not.
pub fn sanitise_bytes(mut bytes: Vec<u8>) -> Vec<u8> {
let present_leaves = num_unsanitized_leaves(bytes.len());
let required_leaves = present_leaves.next_power_of_two();
if (present_leaves != required_leaves) | last_leaf_needs_padding(bytes.len()) {
bytes.resize(num_bytes(required_leaves), 0);
}
bytes
}
/// Pads out `bytes` to ensure it is a clean `num_leaves` chunks.
pub fn pad_for_leaf_count(num_leaves: usize, bytes: &mut Vec<u8>) {
let required_leaves = num_leaves.next_power_of_two();
bytes.resize(
bytes.len() + (required_leaves - num_leaves) * BYTES_PER_CHUNK,
0,
);
}
fn last_leaf_needs_padding(num_bytes: usize) -> bool {
num_bytes % HASHSIZE != 0
}
/// Returns the number of leaves for a given `bytes_len` number of bytes, rounding up if
/// `num_bytes` is not a client multiple of chunk size.
pub fn num_unsanitized_leaves(bytes_len: usize) -> usize {
(bytes_len + HASHSIZE - 1) / HASHSIZE
}
fn num_bytes(num_leaves: usize) -> usize {
num_leaves * HASHSIZE
}
fn num_nodes(num_leaves: usize) -> usize {
2 * num_leaves - 1
}
/// Returns the power-of-two number of leaves that would result from the given `bytes_len` number
/// of bytes.
pub fn num_sanitized_leaves(bytes_len: usize) -> usize {
let leaves = (bytes_len + HASHSIZE - 1) / HASHSIZE;
leaves.next_power_of_two()
}

View File

@ -1,55 +1,26 @@
#![allow(clippy::range_plus_one)] // Minor readability lint requiring structural changes; not worth it.
use super::*;
/// New vec is bigger than old vec.
pub fn grow_merkle_cache(
pub fn grow_merkle_tree(
old_bytes: &[u8],
old_flags: &[bool],
from_height: usize,
to_height: usize,
) -> Option<(Vec<u8>, Vec<bool>)> {
// Determine the size of our new tree. It is not just a simple `1 << to_height` as there can be
// an arbitrary number of nodes in `old_bytes` leaves if those leaves are subtrees.
let to_nodes = {
let old_nodes = old_bytes.len() / HASHSIZE;
let additional_nodes = old_nodes - nodes_in_tree_of_height(from_height);
nodes_in_tree_of_height(to_height) + additional_nodes
};
let to_nodes = nodes_in_tree_of_height(to_height);
let mut bytes = vec![0; to_nodes * HASHSIZE];
let mut flags = vec![true; to_nodes];
let leaf_level = from_height;
for i in 0..=from_height {
let old_byte_slice = old_bytes.get(byte_range_at_height(i))?;
let old_flag_slice = old_flags.get(node_range_at_height(i))?;
for i in 0..=from_height as usize {
// If we're on the leaf slice, grab the first byte and all the of the bytes after that.
// This is required because we can have an arbitrary number of bytes at the leaf level
// (e.g., the case where there are subtrees as leaves).
//
// If we're not on a leaf level, the number of nodes is fixed and known.
let (old_byte_slice, old_flag_slice) = if i == leaf_level {
(
old_bytes.get(first_byte_at_height(i)..)?,
old_flags.get(first_node_at_height(i)..)?,
)
} else {
(
old_bytes.get(byte_range_at_height(i))?,
old_flags.get(node_range_at_height(i))?,
)
};
let new_i = i + to_height - from_height;
let (new_byte_slice, new_flag_slice) = if i == leaf_level {
(
bytes.get_mut(first_byte_at_height(new_i)..)?,
flags.get_mut(first_node_at_height(new_i)..)?,
)
} else {
(
bytes.get_mut(byte_range_at_height(new_i))?,
flags.get_mut(node_range_at_height(new_i))?,
)
};
let offset = i + to_height - from_height;
let new_byte_slice = bytes.get_mut(byte_range_at_height(offset))?;
let new_flag_slice = flags.get_mut(node_range_at_height(offset))?;
new_byte_slice
.get_mut(0..old_byte_slice.len())?
@ -63,42 +34,24 @@ pub fn grow_merkle_cache(
}
/// New vec is smaller than old vec.
pub fn shrink_merkle_cache(
pub fn shrink_merkle_tree(
from_bytes: &[u8],
from_flags: &[bool],
from_height: usize,
to_height: usize,
to_nodes: usize,
) -> Option<(Vec<u8>, Vec<bool>)> {
let to_nodes = nodes_in_tree_of_height(to_height);
let mut bytes = vec![0; to_nodes * HASHSIZE];
let mut flags = vec![true; to_nodes];
for i in 0..=to_height as usize {
let from_i = i + from_height - to_height;
let offset = i + from_height - to_height;
let from_byte_slice = from_bytes.get(byte_range_at_height(offset))?;
let from_flag_slice = from_flags.get(node_range_at_height(offset))?;
let (from_byte_slice, from_flag_slice) = if from_i == from_height {
(
from_bytes.get(first_byte_at_height(from_i)..)?,
from_flags.get(first_node_at_height(from_i)..)?,
)
} else {
(
from_bytes.get(byte_range_at_height(from_i))?,
from_flags.get(node_range_at_height(from_i))?,
)
};
let (to_byte_slice, to_flag_slice) = if i == to_height {
(
bytes.get_mut(first_byte_at_height(i)..)?,
flags.get_mut(first_node_at_height(i)..)?,
)
} else {
(
bytes.get_mut(byte_range_at_height(i))?,
flags.get_mut(node_range_at_height(i))?,
)
};
let to_byte_slice = bytes.get_mut(byte_range_at_height(i))?;
let to_flag_slice = flags.get_mut(node_range_at_height(i))?;
to_byte_slice.copy_from_slice(from_byte_slice.get(0..to_byte_slice.len())?);
to_flag_slice.copy_from_slice(from_flag_slice.get(0..to_flag_slice.len())?);
@ -107,7 +60,7 @@ pub fn shrink_merkle_cache(
Some((bytes, flags))
}
fn nodes_in_tree_of_height(h: usize) -> usize {
pub fn nodes_in_tree_of_height(h: usize) -> usize {
2 * (1 << h) - 1
}
@ -120,10 +73,6 @@ fn node_range_at_height(h: usize) -> Range<usize> {
first_node_at_height(h)..last_node_at_height(h) + 1
}
fn first_byte_at_height(h: usize) -> usize {
first_node_at_height(h) * HASHSIZE
}
fn first_node_at_height(h: usize) -> usize {
(1 << h) - 1
}
@ -144,7 +93,7 @@ mod test {
let original_bytes = vec![42; small * HASHSIZE];
let original_flags = vec![false; small];
let (grown_bytes, grown_flags) = grow_merkle_cache(
let (grown_bytes, grown_flags) = grow_merkle_tree(
&original_bytes,
&original_flags,
(small + 1).trailing_zeros() as usize - 1,
@ -192,12 +141,11 @@ mod test {
assert_eq!(expected_bytes, grown_bytes);
assert_eq!(expected_flags, grown_flags);
let (shrunk_bytes, shrunk_flags) = shrink_merkle_cache(
let (shrunk_bytes, shrunk_flags) = shrink_merkle_tree(
&grown_bytes,
&grown_flags,
(big + 1).trailing_zeros() as usize - 1,
(small + 1).trailing_zeros() as usize - 1,
small,
)
.unwrap();
@ -213,7 +161,7 @@ mod test {
let original_bytes = vec![42; small * HASHSIZE];
let original_flags = vec![false; small];
let (grown_bytes, grown_flags) = grow_merkle_cache(
let (grown_bytes, grown_flags) = grow_merkle_tree(
&original_bytes,
&original_flags,
(small + 1).trailing_zeros() as usize - 1,
@ -261,12 +209,11 @@ mod test {
assert_eq!(expected_bytes, grown_bytes);
assert_eq!(expected_flags, grown_flags);
let (shrunk_bytes, shrunk_flags) = shrink_merkle_cache(
let (shrunk_bytes, shrunk_flags) = shrink_merkle_tree(
&grown_bytes,
&grown_flags,
(big + 1).trailing_zeros() as usize - 1,
(small + 1).trailing_zeros() as usize - 1,
small,
)
.unwrap();

View File

@ -0,0 +1,446 @@
#![allow(clippy::range_plus_one)] // Minor readability lint requiring structural changes; not worth it.
use super::*;
use crate::merkleize::{merkleize, pad_for_leaf_count};
use int_to_bytes::int_to_bytes32;
/// Provides cached tree hashing for some object implementing `CachedTreeHash`.
///
/// Caching allows for doing minimal internal-node hashing when an object has only been partially
/// changed.
///
/// See the crate root for an example.
#[derive(Debug, PartialEq, Clone)]
pub struct TreeHashCache {
/// Stores the binary-tree in 32-byte chunks.
pub bytes: Vec<u8>,
/// Maps to each chunk of `self.bytes`, indicating if the chunk is dirty.
pub chunk_modified: Vec<bool>,
/// Contains a schema for each variable-length item stored in the cache.
pub schemas: Vec<BTreeSchema>,
/// A counter used during updates.
pub chunk_index: usize,
/// A counter used during updates.
pub schema_index: usize,
}
impl Default for TreeHashCache {
/// Create an empty cache.
///
/// Note: an empty cache is effectively useless, an error will be raised if `self.update` is
/// called.
fn default() -> TreeHashCache {
TreeHashCache {
bytes: vec![],
chunk_modified: vec![],
schemas: vec![],
chunk_index: 0,
schema_index: 0,
}
}
}
impl TreeHashCache {
/// Instantiates a new cache from `item` at a depth of `0`.
///
/// The returned cache is fully-built and will return an accurate tree-hash root.
pub fn new<T>(item: &T) -> Result<Self, Error>
where
T: CachedTreeHash,
{
Self::new_at_depth(item, 0)
}
/// Instantiates a new cache from `item` at the specified `depth`.
///
/// The returned cache is fully-built and will return an accurate tree-hash root.
pub fn new_at_depth<T>(item: &T, depth: usize) -> Result<Self, Error>
where
T: CachedTreeHash,
{
item.new_tree_hash_cache(depth)
}
/// Updates the cache with `item`.
///
/// `item` _must_ be of the same type as the `item` used to build the cache, otherwise an error
/// may be returned.
///
/// After calling `update`, the cache will return an accurate tree-hash root using
/// `self.tree_hash_root()`.
pub fn update<T>(&mut self, item: &T) -> Result<(), Error>
where
T: CachedTreeHash,
{
if self.is_empty() {
Err(Error::CacheNotInitialized)
} else {
self.reset_modifications();
item.update_tree_hash_cache(self)
}
}
/// Builds a new cache for `item`, given `subtrees` contains a `Self` for field/item of `item`.
///
/// Each `subtree` in `subtree` will become a leaf-node of the merkle-tree of `item`.
pub fn from_subtrees<T>(item: &T, subtrees: Vec<Self>, depth: usize) -> Result<Self, Error>
where
T: CachedTreeHash,
{
let overlay = BTreeOverlay::new(item, 0, depth);
// Note how many leaves were provided. If is not a power-of-two, we'll need to pad it out
// later.
let num_provided_leaf_nodes = subtrees.len();
// Allocate enough bytes to store the internal nodes and the leaves and subtrees, then fill
// all the to-be-built internal nodes with zeros and append the leaves and subtrees.
let internal_node_bytes = overlay.num_internal_nodes() * BYTES_PER_CHUNK;
let subtrees_bytes = subtrees.iter().fold(0, |acc, t| acc + t.bytes.len());
let mut bytes = Vec::with_capacity(subtrees_bytes + internal_node_bytes);
bytes.resize(internal_node_bytes, 0);
// Allocate enough bytes to store all the leaves.
let mut leaves = Vec::with_capacity(overlay.num_leaf_nodes() * HASHSIZE);
let mut schemas = Vec::with_capacity(subtrees.len());
if T::tree_hash_type() == TreeHashType::List {
schemas.push(overlay.into());
}
// Iterate through all of the leaves/subtrees, adding their root as a leaf node and then
// concatenating their merkle trees.
for t in subtrees {
leaves.append(&mut t.tree_hash_root()?.to_vec());
let (mut t_bytes, _bools, mut t_schemas) = t.into_components();
bytes.append(&mut t_bytes);
schemas.append(&mut t_schemas);
}
// Pad the leaves to an even power-of-two, using zeros.
pad_for_leaf_count(num_provided_leaf_nodes, &mut bytes);
// Merkleize the leaves, then split the leaf nodes off them. Then, replace all-zeros
// internal nodes created earlier with the internal nodes generated by `merkleize`.
let mut merkleized = merkleize(leaves);
merkleized.split_off(internal_node_bytes);
bytes.splice(0..internal_node_bytes, merkleized);
Ok(Self {
chunk_modified: vec![true; bytes.len() / BYTES_PER_CHUNK],
bytes,
schemas,
chunk_index: 0,
schema_index: 0,
})
}
/// Instantiate a new cache from the pre-built `bytes` where each `self.chunk_modified` will be
/// set to `intitial_modified_state`.
///
/// Note: `bytes.len()` must be a multiple of 32
pub fn from_bytes(
bytes: Vec<u8>,
initial_modified_state: bool,
schema: Option<BTreeSchema>,
) -> Result<Self, Error> {
if bytes.len() % BYTES_PER_CHUNK > 0 {
return Err(Error::BytesAreNotEvenChunks(bytes.len()));
}
let schemas = match schema {
Some(schema) => vec![schema],
None => vec![],
};
Ok(Self {
chunk_modified: vec![initial_modified_state; bytes.len() / BYTES_PER_CHUNK],
bytes,
schemas,
chunk_index: 0,
schema_index: 0,
})
}
/// Returns `true` if this cache is empty (i.e., it has never been built for some item).
///
/// Note: an empty cache is effectively useless, an error will be raised if `self.update` is
/// called.
pub fn is_empty(&self) -> bool {
self.chunk_modified.is_empty()
}
/// Return an overlay, built from the schema at `schema_index` with an offset of `chunk_index`.
pub fn get_overlay(
&self,
schema_index: usize,
chunk_index: usize,
) -> Result<BTreeOverlay, Error> {
Ok(self
.schemas
.get(schema_index)
.ok_or_else(|| Error::NoSchemaForIndex(schema_index))?
.clone()
.into_overlay(chunk_index))
}
/// Resets the per-update counters, allowing a new update to start.
///
/// Note: this does _not_ delete the contents of the cache.
pub fn reset_modifications(&mut self) {
// Reset the per-hash counters.
self.chunk_index = 0;
self.schema_index = 0;
for chunk_modified in &mut self.chunk_modified {
*chunk_modified = false;
}
}
/// Replace the schema at `schema_index` with the schema derived from `new_overlay`.
///
/// If the `new_overlay` schema has a different number of internal nodes to the schema at
/// `schema_index`, the cache will be updated to add/remove these new internal nodes.
pub fn replace_overlay(
&mut self,
schema_index: usize,
// TODO: remove chunk index (if possible)
chunk_index: usize,
new_overlay: BTreeOverlay,
) -> Result<BTreeOverlay, Error> {
let old_overlay = self.get_overlay(schema_index, chunk_index)?;
// If the merkle tree required to represent the new list is of a different size to the one
// required for the previous list, then update the internal nodes.
//
// Leaf nodes are not touched, they should be updated externally to this function.
//
// This grows/shrinks the bytes to accommodate the new tree, preserving as much of the tree
// as possible.
if new_overlay.num_internal_nodes() != old_overlay.num_internal_nodes() {
// Get slices of the existing tree from the cache.
let (old_bytes, old_flags) = self
.slices(old_overlay.internal_chunk_range())
.ok_or_else(|| Error::UnableToObtainSlices)?;
let (new_bytes, new_flags) = if new_overlay.num_internal_nodes() == 0 {
// The new tree has zero internal nodes, simply return empty lists.
(vec![], vec![])
} else if old_overlay.num_internal_nodes() == 0 {
// The old tree has zero nodes and the new tree has some nodes. Create new nodes to
// suit.
let nodes = resize::nodes_in_tree_of_height(new_overlay.height() - 1);
(vec![0; nodes * HASHSIZE], vec![true; nodes])
} else if new_overlay.num_internal_nodes() > old_overlay.num_internal_nodes() {
// The new tree is bigger than the old tree.
//
// Grow the internal nodes, preserving any existing nodes.
resize::grow_merkle_tree(
old_bytes,
old_flags,
old_overlay.height() - 1,
new_overlay.height() - 1,
)
.ok_or_else(|| Error::UnableToGrowMerkleTree)?
} else {
// The new tree is smaller than the old tree.
//
// Shrink the internal nodes, preserving any existing nodes.
resize::shrink_merkle_tree(
old_bytes,
old_flags,
old_overlay.height() - 1,
new_overlay.height() - 1,
)
.ok_or_else(|| Error::UnableToShrinkMerkleTree)?
};
// Splice the resized created elements over the existing elements, effectively updating
// the number of stored internal nodes for this tree.
self.splice(old_overlay.internal_chunk_range(), new_bytes, new_flags);
}
let old_schema = std::mem::replace(&mut self.schemas[schema_index], new_overlay.into());
Ok(old_schema.into_overlay(chunk_index))
}
/// Remove all of the child schemas following `schema_index`.
///
/// Schema `a` is a child of schema `b` if `a.depth < b.depth`.
pub fn remove_proceeding_child_schemas(&mut self, schema_index: usize, depth: usize) {
let end = self
.schemas
.iter()
.skip(schema_index)
.position(|o| o.depth <= depth)
.and_then(|i| Some(i + schema_index))
.unwrap_or_else(|| self.schemas.len());
self.schemas.splice(schema_index..end, vec![]);
}
/// Iterate through the internal nodes chunks of `overlay`, updating the chunk with the
/// merkle-root of it's children if either of those children are dirty.
pub fn update_internal_nodes(&mut self, overlay: &BTreeOverlay) -> Result<(), Error> {
for (parent, children) in overlay.internal_parents_and_children().into_iter().rev() {
if self.either_modified(children)? {
self.modify_chunk(parent, &self.hash_children(children)?)?;
}
}
Ok(())
}
/// Returns to the tree-hash root of the cache.
pub fn tree_hash_root(&self) -> Result<&[u8], Error> {
if self.is_empty() {
Err(Error::CacheNotInitialized)
} else {
self.bytes
.get(0..HASHSIZE)
.ok_or_else(|| Error::NoBytesForRoot)
}
}
/// Splices the given `bytes` over `self.bytes` and `bools` over `self.chunk_modified` at the
/// specified `chunk_range`.
pub fn splice(&mut self, chunk_range: Range<usize>, bytes: Vec<u8>, bools: Vec<bool>) {
// Update the `chunk_modified` vec, marking all spliced-in nodes as changed.
self.chunk_modified.splice(chunk_range.clone(), bools);
self.bytes
.splice(node_range_to_byte_range(&chunk_range), bytes);
}
/// If the bytes at `chunk` are not the same as `to`, `self.bytes` is updated and
/// `self.chunk_modified` is set to `true`.
pub fn maybe_update_chunk(&mut self, chunk: usize, to: &[u8]) -> Result<(), Error> {
let start = chunk * BYTES_PER_CHUNK;
let end = start + BYTES_PER_CHUNK;
if !self.chunk_equals(chunk, to)? {
self.bytes
.get_mut(start..end)
.ok_or_else(|| Error::NoModifiedFieldForChunk(chunk))?
.copy_from_slice(to);
self.chunk_modified[chunk] = true;
}
Ok(())
}
/// Returns the slices of `self.bytes` and `self.chunk_modified` at the given `chunk_range`.
fn slices(&self, chunk_range: Range<usize>) -> Option<(&[u8], &[bool])> {
Some((
self.bytes.get(node_range_to_byte_range(&chunk_range))?,
self.chunk_modified.get(chunk_range)?,
))
}
/// Updates `self.bytes` at `chunk` and sets `self.chunk_modified` for the `chunk` to `true`.
pub fn modify_chunk(&mut self, chunk: usize, to: &[u8]) -> Result<(), Error> {
let start = chunk * BYTES_PER_CHUNK;
let end = start + BYTES_PER_CHUNK;
self.bytes
.get_mut(start..end)
.ok_or_else(|| Error::NoBytesForChunk(chunk))?
.copy_from_slice(to);
self.chunk_modified[chunk] = true;
Ok(())
}
/// Returns the bytes at `chunk`.
fn get_chunk(&self, chunk: usize) -> Result<&[u8], Error> {
let start = chunk * BYTES_PER_CHUNK;
let end = start + BYTES_PER_CHUNK;
Ok(self
.bytes
.get(start..end)
.ok_or_else(|| Error::NoModifiedFieldForChunk(chunk))?)
}
/// Returns `true` if the bytes at `chunk` are equal to `other`.
fn chunk_equals(&mut self, chunk: usize, other: &[u8]) -> Result<bool, Error> {
Ok(self.get_chunk(chunk)? == other)
}
/// Returns `true` if `chunk` is dirty.
pub fn changed(&self, chunk: usize) -> Result<bool, Error> {
self.chunk_modified
.get(chunk)
.cloned()
.ok_or_else(|| Error::NoModifiedFieldForChunk(chunk))
}
/// Returns `true` if either of the `children` chunks is dirty.
fn either_modified(&self, children: (usize, usize)) -> Result<bool, Error> {
Ok(self.changed(children.0)? | self.changed(children.1)?)
}
/// Returns the hash of the concatenation of the given `children`.
pub fn hash_children(&self, children: (usize, usize)) -> Result<Vec<u8>, Error> {
let mut child_bytes = Vec::with_capacity(BYTES_PER_CHUNK * 2);
child_bytes.append(&mut self.get_chunk(children.0)?.to_vec());
child_bytes.append(&mut self.get_chunk(children.1)?.to_vec());
Ok(hash(&child_bytes))
}
/// Adds a chunk before and after the given `chunk` range and calls `self.mix_in_length()`.
pub fn add_length_nodes(
&mut self,
chunk_range: Range<usize>,
length: usize,
) -> Result<(), Error> {
self.chunk_modified[chunk_range.start] = true;
let byte_range = node_range_to_byte_range(&chunk_range);
// Add the last node.
self.bytes
.splice(byte_range.end..byte_range.end, vec![0; HASHSIZE]);
self.chunk_modified
.splice(chunk_range.end..chunk_range.end, vec![false]);
// Add the first node.
self.bytes
.splice(byte_range.start..byte_range.start, vec![0; HASHSIZE]);
self.chunk_modified
.splice(chunk_range.start..chunk_range.start, vec![false]);
self.mix_in_length(chunk_range.start + 1..chunk_range.end + 1, length)?;
Ok(())
}
/// Sets `chunk_range.end + 1` equal to the little-endian serialization of `length`. Sets
/// `chunk_range.start - 1` equal to `self.hash_children(chunk_range.start, chunk_range.end + 1)`.
pub fn mix_in_length(&mut self, chunk_range: Range<usize>, length: usize) -> Result<(), Error> {
// Update the length chunk.
self.maybe_update_chunk(chunk_range.end, &int_to_bytes32(length as u64))?;
// Update the mixed-in root if the main root or the length have changed.
let children = (chunk_range.start, chunk_range.end);
if self.either_modified(children)? {
self.modify_chunk(chunk_range.start - 1, &self.hash_children(children)?)?;
}
Ok(())
}
/// Returns `(self.bytes, self.chunk_modified, self.schemas)`.
pub fn into_components(self) -> (Vec<u8>, Vec<bool>, Vec<BTreeSchema>) {
(self.bytes, self.chunk_modified, self.schemas)
}
}
fn node_range_to_byte_range(node_range: &Range<usize>) -> Range<usize> {
node_range.start * HASHSIZE..node_range.end * HASHSIZE
}

View File

@ -0,0 +1,677 @@
use cached_tree_hash::{merkleize::merkleize, *};
use ethereum_types::H256 as Hash256;
use int_to_bytes::int_to_bytes32;
use tree_hash_derive::{CachedTreeHash, TreeHash};
#[test]
fn modifications() {
let n = 2048;
let vec: Vec<Hash256> = (0..n).map(|_| Hash256::random()).collect();
let mut cache = TreeHashCache::new(&vec).unwrap();
cache.update(&vec).unwrap();
let modifications = cache.chunk_modified.iter().filter(|b| **b).count();
assert_eq!(modifications, 0);
let mut modified_vec = vec.clone();
modified_vec[n - 1] = Hash256::random();
cache.update(&modified_vec).unwrap();
let modifications = cache.chunk_modified.iter().filter(|b| **b).count();
assert_eq!(modifications, n.trailing_zeros() as usize + 2);
}
#[derive(Clone, Debug, TreeHash, CachedTreeHash)]
pub struct NestedStruct {
pub a: u64,
pub b: Inner,
}
fn test_routine<T>(original: T, modified: Vec<T>)
where
T: CachedTreeHash + std::fmt::Debug,
{
let mut cache = TreeHashCache::new(&original).unwrap();
let standard_root = original.tree_hash_root();
let cached_root = cache.tree_hash_root().unwrap();
assert_eq!(standard_root, cached_root, "Initial cache build failed.");
for (i, modified) in modified.iter().enumerate() {
println!("-- Start of modification {} --", i);
// Update the existing hasher.
cache
.update(modified)
.expect(&format!("Modification {}", i));
// Create a new hasher from the "modified" struct.
let modified_cache = TreeHashCache::new(modified).unwrap();
assert_eq!(
cache.chunk_modified.len(),
modified_cache.chunk_modified.len(),
"Number of chunks is different"
);
assert_eq!(
cache.bytes.len(),
modified_cache.bytes.len(),
"Number of bytes is different"
);
assert_eq!(cache.bytes, modified_cache.bytes, "Bytes are different");
assert_eq!(
cache.schemas.len(),
modified_cache.schemas.len(),
"Number of schemas is different"
);
assert_eq!(
cache.schemas, modified_cache.schemas,
"Schemas are different"
);
// Test the root generated by the updated hasher matches a non-cached tree hash root.
let standard_root = modified.tree_hash_root();
let cached_root = cache
.tree_hash_root()
.expect(&format!("Modification {}", i));
assert_eq!(
standard_root, cached_root,
"Modification {} failed. \n Cache: {:?}",
i, cache
);
}
}
#[test]
fn test_nested_struct() {
let original = NestedStruct {
a: 42,
b: Inner {
a: 12,
b: 13,
c: 14,
d: 15,
},
};
let modified = vec![NestedStruct {
a: 99,
..original.clone()
}];
test_routine(original, modified);
}
#[test]
fn test_inner() {
let original = Inner {
a: 12,
b: 13,
c: 14,
d: 15,
};
let modified = vec![Inner {
a: 99,
..original.clone()
}];
test_routine(original, modified);
}
#[test]
fn test_vec_of_hash256() {
let n = 16;
let original: Vec<Hash256> = (0..n).map(|_| Hash256::random()).collect();
let modified: Vec<Vec<Hash256>> = vec![
original[..].to_vec(),
original[0..n / 2].to_vec(),
vec![],
original[0..1].to_vec(),
original[0..3].to_vec(),
original[0..n - 12].to_vec(),
];
test_routine(original, modified);
}
#[test]
fn test_vec_of_u64() {
let original: Vec<u64> = vec![1, 2, 3, 4, 5];
let modified: Vec<Vec<u64>> = vec![
vec![1, 2, 3, 4, 42],
vec![1, 2, 3, 4],
vec![],
vec![42; 2_usize.pow(4)],
vec![],
vec![],
vec![1, 2, 3, 4, 42],
vec![1, 2, 3],
vec![1],
];
test_routine(original, modified);
}
#[test]
fn test_nested_list_of_u64() {
let original: Vec<Vec<u64>> = vec![vec![42]];
let modified = vec![
vec![vec![1]],
vec![vec![1], vec![2]],
vec![vec![1], vec![3], vec![4]],
vec![],
vec![vec![1], vec![3], vec![4]],
vec![],
vec![vec![1, 2], vec![3], vec![4, 5, 6, 7, 8]],
vec![],
vec![vec![1], vec![2], vec![3]],
vec![vec![1, 2, 3, 4, 5, 6], vec![1, 2, 3, 4, 5, 6, 7]],
vec![vec![], vec![], vec![]],
vec![vec![0, 0, 0], vec![0], vec![0]],
];
test_routine(original, modified);
}
#[test]
fn test_shrinking_vec_of_vec() {
let original: Vec<Vec<u64>> = vec![vec![1], vec![2], vec![3], vec![4], vec![5]];
let modified: Vec<Vec<u64>> = original[0..3].to_vec();
let new_cache = TreeHashCache::new(&modified).unwrap();
let mut modified_cache = TreeHashCache::new(&original).unwrap();
modified_cache.update(&modified).unwrap();
assert_eq!(
new_cache.schemas.len(),
modified_cache.schemas.len(),
"Schema count is different"
);
assert_eq!(
new_cache.chunk_modified.len(),
modified_cache.chunk_modified.len(),
"Chunk count is different"
);
}
#[derive(Clone, Debug, TreeHash, CachedTreeHash)]
pub struct StructWithVec {
pub a: u64,
pub b: Inner,
pub c: Vec<u64>,
}
#[test]
fn test_struct_with_vec() {
let original = StructWithVec {
a: 42,
b: Inner {
a: 12,
b: 13,
c: 14,
d: 15,
},
c: vec![1, 2, 3, 4, 5],
};
let modified = vec![
StructWithVec {
a: 99,
..original.clone()
},
StructWithVec {
a: 100,
..original.clone()
},
StructWithVec {
c: vec![1, 2, 3, 4, 5],
..original.clone()
},
StructWithVec {
c: vec![1, 3, 4, 5, 6],
..original.clone()
},
StructWithVec {
c: vec![1, 3, 4, 5, 6, 7, 8, 9],
..original.clone()
},
StructWithVec {
c: vec![1, 3, 4, 5],
..original.clone()
},
StructWithVec {
b: Inner {
a: u64::max_value(),
b: u64::max_value(),
c: u64::max_value(),
d: u64::max_value(),
},
c: vec![],
..original.clone()
},
StructWithVec {
b: Inner {
a: 0,
b: 1,
c: 2,
d: 3,
},
..original.clone()
},
];
test_routine(original, modified);
}
#[test]
fn test_vec_of_struct_with_vec() {
let a = StructWithVec {
a: 42,
b: Inner {
a: 12,
b: 13,
c: 14,
d: 15,
},
c: vec![1, 2, 3, 4, 5],
};
let b = StructWithVec {
c: vec![],
..a.clone()
};
let c = StructWithVec {
b: Inner {
a: 99,
b: 100,
c: 101,
d: 102,
},
..a.clone()
};
let d = StructWithVec { a: 0, ..a.clone() };
let original: Vec<StructWithVec> = vec![a.clone(), c.clone()];
let modified = vec![
vec![a.clone(), c.clone()],
vec![],
vec![a.clone(), b.clone(), c.clone(), d.clone()],
vec![b.clone(), a.clone(), c.clone(), d.clone()],
vec![],
vec![a.clone()],
vec![],
vec![a.clone(), b.clone(), c.clone(), d.clone()],
];
test_routine(original, modified);
}
#[derive(Clone, Debug, TreeHash, CachedTreeHash)]
pub struct StructWithVecOfStructs {
pub a: u64,
pub b: Inner,
pub c: Vec<Inner>,
}
fn get_inners() -> Vec<Inner> {
vec![
Inner {
a: 12,
b: 13,
c: 14,
d: 15,
},
Inner {
a: 99,
b: 100,
c: 101,
d: 102,
},
Inner {
a: 255,
b: 256,
c: 257,
d: 0,
},
Inner {
a: 1000,
b: 2000,
c: 3000,
d: 0,
},
Inner {
a: 0,
b: 0,
c: 0,
d: 0,
},
]
}
fn get_struct_with_vec_of_structs() -> Vec<StructWithVecOfStructs> {
let inner_a = Inner {
a: 12,
b: 13,
c: 14,
d: 15,
};
let inner_b = Inner {
a: 99,
b: 100,
c: 101,
d: 102,
};
let inner_c = Inner {
a: 255,
b: 256,
c: 257,
d: 0,
};
let a = StructWithVecOfStructs {
a: 42,
b: inner_a.clone(),
c: vec![inner_a.clone(), inner_b.clone(), inner_c.clone()],
};
let b = StructWithVecOfStructs {
c: vec![],
..a.clone()
};
let c = StructWithVecOfStructs {
a: 800,
..a.clone()
};
let d = StructWithVecOfStructs {
b: inner_c.clone(),
..a.clone()
};
let e = StructWithVecOfStructs {
c: vec![inner_a.clone(), inner_b.clone()],
..a.clone()
};
let f = StructWithVecOfStructs {
c: vec![inner_a.clone()],
..a.clone()
};
vec![a, b, c, d, e, f]
}
#[test]
fn test_struct_with_vec_of_structs() {
let variants = get_struct_with_vec_of_structs();
test_routine(variants[0].clone(), variants.clone());
test_routine(variants[1].clone(), variants.clone());
test_routine(variants[2].clone(), variants.clone());
test_routine(variants[3].clone(), variants.clone());
test_routine(variants[4].clone(), variants.clone());
test_routine(variants[5].clone(), variants.clone());
}
#[derive(Clone, Debug, TreeHash, CachedTreeHash)]
pub struct StructWithVecOfStructWithVecOfStructs {
pub a: Vec<StructWithVecOfStructs>,
pub b: u64,
}
#[test]
fn test_struct_with_vec_of_struct_with_vec_of_structs() {
let structs = get_struct_with_vec_of_structs();
let variants = vec![
StructWithVecOfStructWithVecOfStructs {
a: structs[..].to_vec(),
b: 99,
},
StructWithVecOfStructWithVecOfStructs { a: vec![], b: 99 },
StructWithVecOfStructWithVecOfStructs {
a: structs[0..2].to_vec(),
b: 99,
},
StructWithVecOfStructWithVecOfStructs {
a: structs[0..2].to_vec(),
b: 100,
},
StructWithVecOfStructWithVecOfStructs {
a: structs[0..1].to_vec(),
b: 100,
},
StructWithVecOfStructWithVecOfStructs {
a: structs[0..4].to_vec(),
b: 100,
},
StructWithVecOfStructWithVecOfStructs {
a: structs[0..5].to_vec(),
b: 8,
},
];
for v in &variants {
test_routine(v.clone(), variants.clone());
}
}
#[derive(Clone, Debug, TreeHash, CachedTreeHash)]
pub struct StructWithTwoVecs {
pub a: Vec<Inner>,
pub b: Vec<Inner>,
}
fn get_struct_with_two_vecs() -> Vec<StructWithTwoVecs> {
let inners = get_inners();
vec![
StructWithTwoVecs {
a: inners[..].to_vec(),
b: inners[..].to_vec(),
},
StructWithTwoVecs {
a: inners[0..1].to_vec(),
b: inners[..].to_vec(),
},
StructWithTwoVecs {
a: inners[0..1].to_vec(),
b: inners[0..2].to_vec(),
},
StructWithTwoVecs {
a: inners[0..4].to_vec(),
b: inners[0..2].to_vec(),
},
StructWithTwoVecs {
a: vec![],
b: inners[..].to_vec(),
},
StructWithTwoVecs {
a: inners[..].to_vec(),
b: vec![],
},
StructWithTwoVecs {
a: inners[0..3].to_vec(),
b: inners[0..1].to_vec(),
},
]
}
#[test]
fn test_struct_with_two_vecs() {
let variants = get_struct_with_two_vecs();
for v in &variants {
test_routine(v.clone(), variants.clone());
}
}
#[test]
fn test_vec_of_struct_with_two_vecs() {
let structs = get_struct_with_two_vecs();
let variants = vec![
structs[0..].to_vec(),
structs[0..2].to_vec(),
structs[2..3].to_vec(),
vec![],
structs[2..4].to_vec(),
];
test_routine(variants[0].clone(), vec![variants[2].clone()]);
for v in &variants {
test_routine(v.clone(), variants.clone());
}
}
#[derive(Clone, Debug, TreeHash, CachedTreeHash)]
pub struct U64AndTwoStructs {
pub a: u64,
pub b: Inner,
pub c: Inner,
}
#[test]
fn test_u64_and_two_structs() {
let inners = get_inners();
let variants = vec![
U64AndTwoStructs {
a: 99,
b: inners[0].clone(),
c: inners[1].clone(),
},
U64AndTwoStructs {
a: 10,
b: inners[2].clone(),
c: inners[3].clone(),
},
U64AndTwoStructs {
a: 0,
b: inners[1].clone(),
c: inners[1].clone(),
},
U64AndTwoStructs {
a: 0,
b: inners[1].clone(),
c: inners[1].clone(),
},
];
for v in &variants {
test_routine(v.clone(), variants.clone());
}
}
#[derive(Clone, Debug, TreeHash, CachedTreeHash)]
pub struct Inner {
pub a: u64,
pub b: u64,
pub c: u64,
pub d: u64,
}
fn generic_test(index: usize) {
let inner = Inner {
a: 1,
b: 2,
c: 3,
d: 4,
};
let mut cache = TreeHashCache::new(&inner).unwrap();
let changed_inner = match index {
0 => Inner {
a: 42,
..inner.clone()
},
1 => Inner {
b: 42,
..inner.clone()
},
2 => Inner {
c: 42,
..inner.clone()
},
3 => Inner {
d: 42,
..inner.clone()
},
_ => panic!("bad index"),
};
changed_inner.update_tree_hash_cache(&mut cache).unwrap();
let data1 = int_to_bytes32(1);
let data2 = int_to_bytes32(2);
let data3 = int_to_bytes32(3);
let data4 = int_to_bytes32(4);
let mut data = vec![data1, data2, data3, data4];
data[index] = int_to_bytes32(42);
let expected = merkleize(join(data));
let (cache_bytes, _, _) = cache.into_components();
assert_eq!(expected, cache_bytes);
}
#[test]
fn cached_hash_on_inner() {
generic_test(0);
generic_test(1);
generic_test(2);
generic_test(3);
}
#[test]
fn inner_builds() {
let data1 = int_to_bytes32(1);
let data2 = int_to_bytes32(2);
let data3 = int_to_bytes32(3);
let data4 = int_to_bytes32(4);
let data = join(vec![data1, data2, data3, data4]);
let expected = merkleize(data);
let inner = Inner {
a: 1,
b: 2,
c: 3,
d: 4,
};
let (cache_bytes, _, _) = TreeHashCache::new(&inner).unwrap().into_components();
assert_eq!(expected, cache_bytes);
}
fn join(many: Vec<Vec<u8>>) -> Vec<u8> {
let mut all = vec![];
for one in many {
all.extend_from_slice(&mut one.clone())
}
all
}

View File

@ -4,6 +4,9 @@ version = "0.1.0"
authors = ["Paul Hauner <paul@paulhauner.com>"]
edition = "2018"
[dev-dependencies]
tree_hash_derive = { path = "../tree_hash_derive" }
[dependencies]
ethereum-types = "0.5"
hashing = { path = "../hashing" }

View File

@ -0,0 +1,76 @@
# Tree hashing
Provides both cached and non-cached tree hashing methods.
## Standard Tree Hash
```rust
use tree_hash_derive::TreeHash;
#[derive(TreeHash)]
struct Foo {
a: u64,
b: Vec<u64>,
}
fn main() {
let foo = Foo {
a: 42,
b: vec![1, 2, 3]
};
println!("root: {}", foo.tree_hash_root());
}
```
## Cached Tree Hash
```rust
use tree_hash_derive::{TreeHash, CachedTreeHash};
#[derive(TreeHash, CachedTreeHash)]
struct Foo {
a: u64,
b: Vec<u64>,
}
#[derive(TreeHash, CachedTreeHash)]
struct Bar {
a: Vec<Foo>,
b: u64,
}
fn main() {
let bar = Bar {
a: vec![
Foo {
a: 42,
b: vec![1, 2, 3]
}
],
b: 42
};
let modified_bar = Bar {
a: vec![
Foo {
a: 100,
b: vec![1, 2, 3, 4, 5, 6]
},
Foo {
a: 42,
b: vec![]
}
],
b: 99
};
let mut hasher = CachedTreeHasher::new(&bar).unwrap();
hasher.update(&modified_bar).unwrap();
// Assert that the cached tree hash matches a standard tree hash.
assert_eq!(hasher.tree_hash_root(), modified_bar.tree_hash_root());
}
```

View File

@ -1,309 +0,0 @@
use super::*;
use hashing::hash;
use int_to_bytes::int_to_bytes32;
use std::ops::Range;
pub mod btree_overlay;
pub mod impls;
pub mod resize;
pub use btree_overlay::BTreeOverlay;
#[derive(Debug, PartialEq, Clone)]
pub enum Error {
ShouldNotProduceBTreeOverlay,
NoFirstNode,
NoBytesForRoot,
UnableToObtainSlices,
UnableToGrowMerkleTree,
UnableToShrinkMerkleTree,
ShouldNeverBePacked(TreeHashType),
BytesAreNotEvenChunks(usize),
NoModifiedFieldForChunk(usize),
NoBytesForChunk(usize),
}
pub trait CachedTreeHash<T>: CachedTreeHashSubTree<T> + Sized {
fn update_internal_tree_hash_cache(self, old: T) -> Result<(Self, Self), Error>;
fn cached_tree_hash_root(&self) -> Option<Vec<u8>>;
fn clone_without_tree_hash_cache(&self) -> Self;
}
pub trait CachedTreeHashSubTree<Item>: TreeHash {
fn tree_hash_cache_overlay(&self, chunk_offset: usize) -> Result<BTreeOverlay, Error>;
fn new_tree_hash_cache(&self) -> Result<TreeHashCache, Error>;
fn update_tree_hash_cache(
&self,
other: &Item,
cache: &mut TreeHashCache,
chunk: usize,
) -> Result<usize, Error>;
}
fn children(parent: usize) -> (usize, usize) {
((2 * parent + 1), (2 * parent + 2))
}
fn node_range_to_byte_range(node_range: &Range<usize>) -> Range<usize> {
node_range.start * HASHSIZE..node_range.end * HASHSIZE
}
/// Split `values` into a power-of-two, identical-length chunks (padding with `0`) and merkleize
/// them, returning the entire merkle tree.
///
/// The root hash is `merkleize(values)[0..BYTES_PER_CHUNK]`.
pub fn merkleize(values: Vec<u8>) -> Vec<u8> {
let values = sanitise_bytes(values);
let leaves = values.len() / HASHSIZE;
if leaves == 0 {
panic!("No full leaves");
}
if !leaves.is_power_of_two() {
panic!("leaves is not power of two");
}
let mut o: Vec<u8> = vec![0; (num_nodes(leaves) - leaves) * HASHSIZE];
o.append(&mut values.to_vec());
let mut i = o.len();
let mut j = o.len() - values.len();
while i >= MERKLE_HASH_CHUNCK {
i -= MERKLE_HASH_CHUNCK;
let hash = hash(&o[i..i + MERKLE_HASH_CHUNCK]);
j -= HASHSIZE;
o[j..j + HASHSIZE].copy_from_slice(&hash);
}
o
}
pub fn sanitise_bytes(mut bytes: Vec<u8>) -> Vec<u8> {
let present_leaves = num_unsanitized_leaves(bytes.len());
let required_leaves = present_leaves.next_power_of_two();
if (present_leaves != required_leaves) | last_leaf_needs_padding(bytes.len()) {
bytes.resize(num_bytes(required_leaves), 0);
}
bytes
}
fn pad_for_leaf_count(num_leaves: usize, bytes: &mut Vec<u8>) {
let required_leaves = num_leaves.next_power_of_two();
bytes.resize(
bytes.len() + (required_leaves - num_leaves) * BYTES_PER_CHUNK,
0,
);
}
fn last_leaf_needs_padding(num_bytes: usize) -> bool {
num_bytes % HASHSIZE != 0
}
/// Rounds up
fn num_unsanitized_leaves(num_bytes: usize) -> usize {
(num_bytes + HASHSIZE - 1) / HASHSIZE
}
fn num_bytes(num_leaves: usize) -> usize {
num_leaves * HASHSIZE
}
#[derive(Debug, PartialEq, Clone)]
pub struct TreeHashCache {
cache: Vec<u8>,
chunk_modified: Vec<bool>,
}
impl Into<Vec<u8>> for TreeHashCache {
fn into(self) -> Vec<u8> {
self.cache
}
}
impl TreeHashCache {
pub fn new<T>(item: &T) -> Result<Self, Error>
where
T: CachedTreeHashSubTree<T>,
{
item.new_tree_hash_cache()
}
pub fn from_elems(cache: Vec<u8>, chunk_modified: Vec<bool>) -> Self {
Self {
cache,
chunk_modified,
}
}
pub fn from_leaves_and_subtrees<T>(
item: &T,
leaves_and_subtrees: Vec<Self>,
) -> Result<Self, Error>
where
T: CachedTreeHashSubTree<T>,
{
let offset_handler = BTreeOverlay::new(item, 0)?;
// Note how many leaves were provided. If is not a power-of-two, we'll need to pad it out
// later.
let num_provided_leaf_nodes = leaves_and_subtrees.len();
// Allocate enough bytes to store the internal nodes and the leaves and subtrees, then fill
// all the to-be-built internal nodes with zeros and append the leaves and subtrees.
let internal_node_bytes = offset_handler.num_internal_nodes * BYTES_PER_CHUNK;
let leaves_and_subtrees_bytes = leaves_and_subtrees
.iter()
.fold(0, |acc, t| acc + t.bytes_len());
let mut cache = Vec::with_capacity(leaves_and_subtrees_bytes + internal_node_bytes);
cache.resize(internal_node_bytes, 0);
// Allocate enough bytes to store all the leaves.
let mut leaves = Vec::with_capacity(offset_handler.num_leaf_nodes * HASHSIZE);
// Iterate through all of the leaves/subtrees, adding their root as a leaf node and then
// concatenating their merkle trees.
for t in leaves_and_subtrees {
leaves.append(&mut t.root().ok_or_else(|| Error::NoBytesForRoot)?.to_vec());
cache.append(&mut t.into_merkle_tree());
}
// Pad the leaves to an even power-of-two, using zeros.
pad_for_leaf_count(num_provided_leaf_nodes, &mut cache);
// Merkleize the leaves, then split the leaf nodes off them. Then, replace all-zeros
// internal nodes created earlier with the internal nodes generated by `merkleize`.
let mut merkleized = merkleize(leaves);
merkleized.split_off(internal_node_bytes);
cache.splice(0..internal_node_bytes, merkleized);
Ok(Self {
chunk_modified: vec![false; cache.len() / BYTES_PER_CHUNK],
cache,
})
}
pub fn from_bytes(bytes: Vec<u8>, initial_modified_state: bool) -> Result<Self, Error> {
if bytes.len() % BYTES_PER_CHUNK > 0 {
return Err(Error::BytesAreNotEvenChunks(bytes.len()));
}
Ok(Self {
chunk_modified: vec![initial_modified_state; bytes.len() / BYTES_PER_CHUNK],
cache: bytes,
})
}
pub fn bytes_len(&self) -> usize {
self.cache.len()
}
pub fn root(&self) -> Option<&[u8]> {
self.cache.get(0..HASHSIZE)
}
pub fn splice(&mut self, chunk_range: Range<usize>, replace_with: Self) {
let (bytes, bools) = replace_with.into_components();
// Update the `chunk_modified` vec, marking all spliced-in nodes as changed.
self.chunk_modified.splice(chunk_range.clone(), bools);
self.cache
.splice(node_range_to_byte_range(&chunk_range), bytes);
}
pub fn maybe_update_chunk(&mut self, chunk: usize, to: &[u8]) -> Result<(), Error> {
let start = chunk * BYTES_PER_CHUNK;
let end = start + BYTES_PER_CHUNK;
if !self.chunk_equals(chunk, to)? {
self.cache
.get_mut(start..end)
.ok_or_else(|| Error::NoModifiedFieldForChunk(chunk))?
.copy_from_slice(to);
self.chunk_modified[chunk] = true;
}
Ok(())
}
pub fn slices(&self, chunk_range: Range<usize>) -> Option<(&[u8], &[bool])> {
Some((
self.cache.get(node_range_to_byte_range(&chunk_range))?,
self.chunk_modified.get(chunk_range)?,
))
}
pub fn modify_chunk(&mut self, chunk: usize, to: &[u8]) -> Result<(), Error> {
let start = chunk * BYTES_PER_CHUNK;
let end = start + BYTES_PER_CHUNK;
self.cache
.get_mut(start..end)
.ok_or_else(|| Error::NoBytesForChunk(chunk))?
.copy_from_slice(to);
self.chunk_modified[chunk] = true;
Ok(())
}
pub fn get_chunk(&self, chunk: usize) -> Result<&[u8], Error> {
let start = chunk * BYTES_PER_CHUNK;
let end = start + BYTES_PER_CHUNK;
Ok(self
.cache
.get(start..end)
.ok_or_else(|| Error::NoModifiedFieldForChunk(chunk))?)
}
pub fn chunk_equals(&mut self, chunk: usize, other: &[u8]) -> Result<bool, Error> {
Ok(self.get_chunk(chunk)? == other)
}
pub fn changed(&self, chunk: usize) -> Result<bool, Error> {
self.chunk_modified
.get(chunk)
.cloned()
.ok_or_else(|| Error::NoModifiedFieldForChunk(chunk))
}
pub fn either_modified(&self, children: (&usize, &usize)) -> Result<bool, Error> {
Ok(self.changed(*children.0)? | self.changed(*children.1)?)
}
pub fn hash_children(&self, children: (&usize, &usize)) -> Result<Vec<u8>, Error> {
let mut child_bytes = Vec::with_capacity(BYTES_PER_CHUNK * 2);
child_bytes.append(&mut self.get_chunk(*children.0)?.to_vec());
child_bytes.append(&mut self.get_chunk(*children.1)?.to_vec());
Ok(hash(&child_bytes))
}
pub fn mix_in_length(&self, chunk: usize, length: usize) -> Result<Vec<u8>, Error> {
let mut bytes = Vec::with_capacity(2 * BYTES_PER_CHUNK);
bytes.append(&mut self.get_chunk(chunk)?.to_vec());
bytes.append(&mut int_to_bytes32(length as u64));
Ok(hash(&bytes))
}
pub fn into_merkle_tree(self) -> Vec<u8> {
self.cache
}
pub fn into_components(self) -> (Vec<u8>, Vec<bool>) {
(self.cache, self.chunk_modified)
}
}

View File

@ -1,100 +0,0 @@
use super::*;
#[derive(Debug)]
pub struct BTreeOverlay {
pub num_internal_nodes: usize,
pub num_leaf_nodes: usize,
pub first_node: usize,
pub next_node: usize,
offsets: Vec<usize>,
}
impl BTreeOverlay {
pub fn new<T>(item: &T, initial_offset: usize) -> Result<Self, Error>
where
T: CachedTreeHashSubTree<T>,
{
item.tree_hash_cache_overlay(initial_offset)
}
pub fn from_lengths(offset: usize, mut lengths: Vec<usize>) -> Result<Self, Error> {
// Extend it to the next power-of-two, if it is not already.
let num_leaf_nodes = if lengths.len().is_power_of_two() {
lengths.len()
} else {
let num_leaf_nodes = lengths.len().next_power_of_two();
lengths.resize(num_leaf_nodes, 1);
num_leaf_nodes
};
let num_nodes = num_nodes(num_leaf_nodes);
let num_internal_nodes = num_nodes - num_leaf_nodes;
let mut offsets = Vec::with_capacity(num_nodes);
offsets.append(&mut (offset..offset + num_internal_nodes).collect());
let mut next_node = num_internal_nodes + offset;
for i in 0..num_leaf_nodes {
offsets.push(next_node);
next_node += lengths[i];
}
Ok(Self {
num_internal_nodes,
num_leaf_nodes,
offsets,
first_node: offset,
next_node,
})
}
pub fn root(&self) -> usize {
self.first_node
}
pub fn height(&self) -> usize {
self.num_leaf_nodes.trailing_zeros() as usize
}
pub fn chunk_range(&self) -> Range<usize> {
self.first_node..self.next_node
}
pub fn total_chunks(&self) -> usize {
self.next_node - self.first_node
}
pub fn total_nodes(&self) -> usize {
self.num_internal_nodes + self.num_leaf_nodes
}
pub fn first_leaf_node(&self) -> Result<usize, Error> {
self.offsets
.get(self.num_internal_nodes)
.cloned()
.ok_or_else(|| Error::NoFirstNode)
}
/// Returns an iterator visiting each internal node, providing the left and right child chunks
/// for the node.
pub fn iter_internal_nodes<'a>(
&'a self,
) -> impl DoubleEndedIterator<Item = (&'a usize, (&'a usize, &'a usize))> {
let internal_nodes = &self.offsets[0..self.num_internal_nodes];
internal_nodes.iter().enumerate().map(move |(i, parent)| {
let children = children(i);
(
parent,
(&self.offsets[children.0], &self.offsets[children.1]),
)
})
}
/// Returns an iterator visiting each leaf node, providing the chunk for that node.
pub fn iter_leaf_nodes<'a>(&'a self) -> impl DoubleEndedIterator<Item = &'a usize> {
let leaf_nodes = &self.offsets[self.num_internal_nodes..];
leaf_nodes.iter()
}
}

View File

@ -1,31 +0,0 @@
use super::resize::{grow_merkle_cache, shrink_merkle_cache};
use super::*;
mod vec;
impl CachedTreeHashSubTree<u64> for u64 {
fn new_tree_hash_cache(&self) -> Result<TreeHashCache, Error> {
Ok(TreeHashCache::from_bytes(
merkleize(self.to_le_bytes().to_vec()),
false,
)?)
}
fn tree_hash_cache_overlay(&self, chunk_offset: usize) -> Result<BTreeOverlay, Error> {
BTreeOverlay::from_lengths(chunk_offset, vec![1])
}
fn update_tree_hash_cache(
&self,
other: &Self,
cache: &mut TreeHashCache,
chunk: usize,
) -> Result<usize, Error> {
if self != other {
let leaf = merkleize(self.to_le_bytes().to_vec());
cache.modify_chunk(chunk, &leaf)?;
}
Ok(chunk + 1)
}
}

View File

@ -1,171 +0,0 @@
use super::*;
impl<T> CachedTreeHashSubTree<Vec<T>> for Vec<T>
where
T: CachedTreeHashSubTree<T> + TreeHash,
{
fn new_tree_hash_cache(&self) -> Result<TreeHashCache, Error> {
match T::tree_hash_type() {
TreeHashType::Basic => {
TreeHashCache::from_bytes(merkleize(get_packed_leaves(self)?), false)
}
TreeHashType::Container | TreeHashType::List | TreeHashType::Vector => {
let subtrees = self
.iter()
.map(|item| TreeHashCache::new(item))
.collect::<Result<Vec<TreeHashCache>, _>>()?;
TreeHashCache::from_leaves_and_subtrees(self, subtrees)
}
}
}
fn tree_hash_cache_overlay(&self, chunk_offset: usize) -> Result<BTreeOverlay, Error> {
let lengths = match T::tree_hash_type() {
TreeHashType::Basic => vec![1; self.len() / T::tree_hash_packing_factor()],
TreeHashType::Container | TreeHashType::List | TreeHashType::Vector => {
let mut lengths = vec![];
for item in self {
lengths.push(BTreeOverlay::new(item, 0)?.total_nodes())
}
lengths
}
};
BTreeOverlay::from_lengths(chunk_offset, lengths)
}
fn update_tree_hash_cache(
&self,
other: &Vec<T>,
cache: &mut TreeHashCache,
chunk: usize,
) -> Result<usize, Error> {
let offset_handler = BTreeOverlay::new(self, chunk)?;
let old_offset_handler = BTreeOverlay::new(other, chunk)?;
if offset_handler.num_leaf_nodes != old_offset_handler.num_leaf_nodes {
let old_offset_handler = BTreeOverlay::new(other, chunk)?;
// Get slices of the exsiting tree from the cache.
let (old_bytes, old_flags) = cache
.slices(old_offset_handler.chunk_range())
.ok_or_else(|| Error::UnableToObtainSlices)?;
let (new_bytes, new_flags) =
if offset_handler.num_leaf_nodes > old_offset_handler.num_leaf_nodes {
grow_merkle_cache(
old_bytes,
old_flags,
old_offset_handler.height(),
offset_handler.height(),
)
.ok_or_else(|| Error::UnableToGrowMerkleTree)?
} else {
shrink_merkle_cache(
old_bytes,
old_flags,
old_offset_handler.height(),
offset_handler.height(),
offset_handler.total_chunks(),
)
.ok_or_else(|| Error::UnableToShrinkMerkleTree)?
};
// Create a `TreeHashCache` from the raw elements.
let modified_cache = TreeHashCache::from_elems(new_bytes, new_flags);
// Splice the newly created `TreeHashCache` over the existing elements.
cache.splice(old_offset_handler.chunk_range(), modified_cache);
}
match T::tree_hash_type() {
TreeHashType::Basic => {
let leaves = get_packed_leaves(self)?;
for (i, chunk) in offset_handler.iter_leaf_nodes().enumerate() {
if let Some(latest) = leaves.get(i * HASHSIZE..(i + 1) * HASHSIZE) {
cache.maybe_update_chunk(*chunk, latest)?;
}
}
let first_leaf_chunk = offset_handler.first_leaf_node()?;
cache.splice(
first_leaf_chunk..offset_handler.next_node,
TreeHashCache::from_bytes(leaves, true)?,
);
}
TreeHashType::Container | TreeHashType::List | TreeHashType::Vector => {
let mut i = offset_handler.num_leaf_nodes;
for &start_chunk in offset_handler.iter_leaf_nodes().rev() {
i -= 1;
match (other.get(i), self.get(i)) {
// The item existed in the previous list and exsits in the current list.
(Some(old), Some(new)) => {
new.update_tree_hash_cache(old, cache, start_chunk)?;
}
// The item existed in the previous list but does not exist in this list.
//
// I.e., the list has been shortened.
(Some(old), None) => {
// Splice out the entire tree of the removed node, replacing it with a
// single padding node.
let end_chunk = BTreeOverlay::new(old, start_chunk)?.next_node;
cache.splice(
start_chunk..end_chunk,
TreeHashCache::from_bytes(vec![0; HASHSIZE], true)?,
);
}
// The item existed in the previous list but does exist in this list.
//
// I.e., the list has been lengthened.
(None, Some(new)) => {
let bytes: Vec<u8> = TreeHashCache::new(new)?.into();
cache.splice(
start_chunk..start_chunk + 1,
TreeHashCache::from_bytes(bytes, true)?,
);
}
// The item didn't exist in the old list and doesn't exist in the new list,
// nothing to do.
(None, None) => {}
};
}
}
}
for (&parent, children) in offset_handler.iter_internal_nodes().rev() {
if cache.either_modified(children)? {
cache.modify_chunk(parent, &cache.hash_children(children)?)?;
}
}
// If the root node or the length has changed, mix in the length of the list.
let root_node = offset_handler.root();
if cache.changed(root_node)? | (self.len() != other.len()) {
cache.modify_chunk(root_node, &cache.mix_in_length(root_node, self.len())?)?;
}
Ok(offset_handler.next_node)
}
}
fn get_packed_leaves<T>(vec: &Vec<T>) -> Result<Vec<u8>, Error>
where
T: CachedTreeHashSubTree<T>,
{
let num_packed_bytes = (BYTES_PER_CHUNK / T::tree_hash_packing_factor()) * vec.len();
let num_leaves = num_sanitized_leaves(num_packed_bytes);
let mut packed = Vec::with_capacity(num_leaves * HASHSIZE);
for item in vec {
packed.append(&mut item.tree_hash_packed_encoding());
}
Ok(sanitise_bytes(packed))
}

View File

@ -1,5 +1,8 @@
use super::*;
use crate::merkleize::merkle_root;
use ethereum_types::H256;
use hashing::hash;
use int_to_bytes::int_to_bytes32;
macro_rules! impl_for_bitsize {
($type: ident, $bit_size: expr) => {
@ -16,6 +19,7 @@ macro_rules! impl_for_bitsize {
HASHSIZE / ($bit_size / 8)
}
#[allow(clippy::cast_lossless)]
fn tree_hash_root(&self) -> Vec<u8> {
int_to_bytes32(*self as u64)
}
@ -49,15 +53,15 @@ impl TreeHash for bool {
impl TreeHash for [u8; 4] {
fn tree_hash_type() -> TreeHashType {
TreeHashType::List
TreeHashType::Vector
}
fn tree_hash_packed_encoding(&self) -> Vec<u8> {
panic!("bytesN should never be packed.")
unreachable!("bytesN should never be packed.")
}
fn tree_hash_packing_factor() -> usize {
panic!("bytesN should never be packed.")
unreachable!("bytesN should never be packed.")
}
fn tree_hash_root(&self) -> Vec<u8> {
@ -83,31 +87,38 @@ impl TreeHash for H256 {
}
}
impl<T> TreeHash for Vec<T>
where
T: TreeHash,
{
fn tree_hash_type() -> TreeHashType {
TreeHashType::List
}
macro_rules! impl_for_list {
($type: ty) => {
impl<T> TreeHash for $type
where
T: TreeHash,
{
fn tree_hash_type() -> TreeHashType {
TreeHashType::List
}
fn tree_hash_packed_encoding(&self) -> Vec<u8> {
unreachable!("List should never be packed.")
}
fn tree_hash_packed_encoding(&self) -> Vec<u8> {
unreachable!("List should never be packed.")
}
fn tree_hash_packing_factor() -> usize {
unreachable!("List should never be packed.")
}
fn tree_hash_packing_factor() -> usize {
unreachable!("List should never be packed.")
}
fn tree_hash_root(&self) -> Vec<u8> {
let mut root_and_len = Vec::with_capacity(HASHSIZE * 2);
root_and_len.append(&mut vec_tree_hash_root(self));
root_and_len.append(&mut int_to_bytes32(self.len() as u64));
fn tree_hash_root(&self) -> Vec<u8> {
let mut root_and_len = Vec::with_capacity(HASHSIZE * 2);
root_and_len.append(&mut vec_tree_hash_root(self));
root_and_len.append(&mut int_to_bytes32(self.len() as u64));
hash(&root_and_len)
}
hash(&root_and_len)
}
}
};
}
impl_for_list!(Vec<T>);
impl_for_list!(&[T]);
pub fn vec_tree_hash_root<T>(vec: &[T]) -> Vec<u8>
where
T: TreeHash,

View File

@ -1,14 +1,9 @@
pub mod cached_tree_hash;
pub mod signed_root;
pub mod standard_tree_hash;
pub mod impls;
pub mod merkleize;
pub const BYTES_PER_CHUNK: usize = 32;
pub const HASHSIZE: usize = 32;
pub const MERKLE_HASH_CHUNCK: usize = 2 * BYTES_PER_CHUNK;
pub use cached_tree_hash::{BTreeOverlay, CachedTreeHashSubTree, Error, TreeHashCache};
pub use signed_root::SignedRoot;
pub use standard_tree_hash::{merkle_root, TreeHash};
pub const MERKLE_HASH_CHUNK: usize = 2 * BYTES_PER_CHUNK;
#[derive(Debug, PartialEq, Clone)]
pub enum TreeHashType {
@ -18,13 +13,18 @@ pub enum TreeHashType {
Container,
}
fn num_sanitized_leaves(num_bytes: usize) -> usize {
let leaves = (num_bytes + HASHSIZE - 1) / HASHSIZE;
leaves.next_power_of_two()
pub trait TreeHash {
fn tree_hash_type() -> TreeHashType;
fn tree_hash_packed_encoding(&self) -> Vec<u8>;
fn tree_hash_packing_factor() -> usize;
fn tree_hash_root(&self) -> Vec<u8>;
}
fn num_nodes(num_leaves: usize) -> usize {
2 * num_leaves - 1
pub trait SignedRoot: TreeHash {
fn signed_root(&self) -> Vec<u8>;
}
#[macro_export]
@ -44,11 +44,12 @@ macro_rules! tree_hash_ssz_encoding_as_vector {
}
fn tree_hash_root(&self) -> Vec<u8> {
tree_hash::merkle_root(&ssz::ssz_encode(self))
tree_hash::merkleize::merkle_root(&ssz::ssz_encode(self))
}
}
};
}
#[macro_export]
macro_rules! tree_hash_ssz_encoding_as_list {
($type: ident) => {

View File

@ -1,20 +1,5 @@
use super::*;
use hashing::hash;
use int_to_bytes::int_to_bytes32;
pub use impls::vec_tree_hash_root;
mod impls;
pub trait TreeHash {
fn tree_hash_type() -> TreeHashType;
fn tree_hash_packed_encoding(&self) -> Vec<u8>;
fn tree_hash_packing_factor() -> usize;
fn tree_hash_root(&self) -> Vec<u8>;
}
pub fn merkle_root(bytes: &[u8]) -> Vec<u8> {
// TODO: replace this with a more memory efficient method.
@ -41,16 +26,16 @@ pub fn efficient_merkleize(bytes: &[u8]) -> Vec<u8> {
assert_eq!(o.len(), num_bytes);
let empty_chunk_hash = hash(&[0; MERKLE_HASH_CHUNCK]);
let empty_chunk_hash = hash(&[0; MERKLE_HASH_CHUNK]);
let mut i = nodes * HASHSIZE;
let mut j = internal_nodes * HASHSIZE;
while i >= MERKLE_HASH_CHUNCK {
i -= MERKLE_HASH_CHUNCK;
while i >= MERKLE_HASH_CHUNK {
i -= MERKLE_HASH_CHUNK;
j -= HASHSIZE;
let hash = match o.get(i..i + MERKLE_HASH_CHUNCK) {
let hash = match o.get(i..i + MERKLE_HASH_CHUNK) {
// All bytes are available, hash as ususal.
Some(slice) => hash(slice),
// Unable to get all the bytes.
@ -59,7 +44,7 @@ pub fn efficient_merkleize(bytes: &[u8]) -> Vec<u8> {
// Able to get some of the bytes, pad them out.
Some(slice) => {
let mut bytes = slice.to_vec();
bytes.resize(MERKLE_HASH_CHUNCK, 0);
bytes.resize(MERKLE_HASH_CHUNK, 0);
hash(&bytes)
}
// Unable to get any bytes, use the empty-chunk hash.
@ -73,3 +58,12 @@ pub fn efficient_merkleize(bytes: &[u8]) -> Vec<u8> {
o
}
fn num_sanitized_leaves(num_bytes: usize) -> usize {
let leaves = (num_bytes + HASHSIZE - 1) / HASHSIZE;
leaves.next_power_of_two()
}
fn num_nodes(num_leaves: usize) -> usize {
2 * num_leaves - 1
}

View File

@ -1,5 +0,0 @@
use crate::TreeHash;
pub trait SignedRoot: TreeHash {
fn signed_root(&self) -> Vec<u8>;
}

File diff suppressed because it is too large Load Diff

View File

@ -10,6 +10,7 @@ proc-macro = true
[dev-dependencies]
tree_hash = { path = "../tree_hash" }
cached_tree_hash = { path = "../cached_tree_hash" }
[dependencies]
syn = "0.15"

View File

@ -37,10 +37,10 @@ fn should_skip_hashing(field: &syn::Field) -> bool {
.any(|attr| attr.into_token_stream().to_string() == "# [ tree_hash ( skip_hashing ) ]")
}
/// Implements `tree_hash::CachedTreeHashSubTree` for some `struct`.
/// Implements `tree_hash::CachedTreeHash` for some `struct`.
///
/// Fields are hashed in the order they are defined.
#[proc_macro_derive(CachedTreeHashSubTree, attributes(tree_hash))]
#[proc_macro_derive(CachedTreeHash, attributes(tree_hash))]
pub fn subtree_derive(input: TokenStream) -> TokenStream {
let item = parse_macro_input!(input as DeriveInput);
@ -54,56 +54,57 @@ pub fn subtree_derive(input: TokenStream) -> TokenStream {
let idents_a = get_hashable_named_field_idents(&struct_data);
let idents_b = idents_a.clone();
let idents_c = idents_a.clone();
let idents_d = idents_a.clone();
let output = quote! {
impl tree_hash::CachedTreeHashSubTree<#name> for #name {
fn new_tree_hash_cache(&self) -> Result<tree_hash::TreeHashCache, tree_hash::Error> {
let tree = tree_hash::TreeHashCache::from_leaves_and_subtrees(
impl cached_tree_hash::CachedTreeHash for #name {
fn new_tree_hash_cache(&self, depth: usize) -> Result<cached_tree_hash::TreeHashCache, cached_tree_hash::Error> {
let tree = cached_tree_hash::TreeHashCache::from_subtrees(
self,
vec![
#(
self.#idents_a.new_tree_hash_cache()?,
self.#idents_a.new_tree_hash_cache(depth)?,
)*
],
depth
)?;
Ok(tree)
}
fn tree_hash_cache_overlay(&self, chunk_offset: usize) -> Result<tree_hash::BTreeOverlay, tree_hash::Error> {
fn num_tree_hash_cache_chunks(&self) -> usize {
cached_tree_hash::BTreeOverlay::new(self, 0, 0).num_chunks()
}
fn tree_hash_cache_schema(&self, depth: usize) -> cached_tree_hash::BTreeSchema {
let mut lengths = vec![];
#(
lengths.push(tree_hash::BTreeOverlay::new(&self.#idents_b, 0)?.total_nodes());
lengths.push(self.#idents_b.num_tree_hash_cache_chunks());
)*
tree_hash::BTreeOverlay::from_lengths(chunk_offset, lengths)
cached_tree_hash::BTreeSchema::from_lengths(depth, lengths)
}
fn update_tree_hash_cache(
&self,
other: &Self,
cache: &mut tree_hash::TreeHashCache,
chunk: usize,
) -> Result<usize, tree_hash::Error> {
let offset_handler = tree_hash::BTreeOverlay::new(self, chunk)?;
fn update_tree_hash_cache(&self, cache: &mut cached_tree_hash::TreeHashCache) -> Result<(), cached_tree_hash::Error> {
let overlay = cached_tree_hash::BTreeOverlay::new(self, cache.chunk_index, 0);
// Skip past the internal nodes and update any changed leaf nodes.
{
let chunk = offset_handler.first_leaf_node()?;
#(
let chunk = self.#idents_c.update_tree_hash_cache(&other.#idents_d, cache, chunk)?;
)*
}
for (&parent, children) in offset_handler.iter_internal_nodes().rev() {
if cache.either_modified(children)? {
cache.modify_chunk(parent, &cache.hash_children(children)?)?;
}
}
// Skip the chunk index to the first leaf node of this struct.
cache.chunk_index = overlay.first_leaf_node();
// Skip the overlay index to the first leaf node of this struct.
// cache.overlay_index += 1;
Ok(offset_handler.next_node)
// Recurse into the struct items, updating their caches.
#(
self.#idents_c.update_tree_hash_cache(cache)?;
)*
// Iterate through the internal nodes, updating them if their children have changed.
cache.update_internal_nodes(&overlay)?;
cache.chunk_index = overlay.next_node();
Ok(())
}
}
};
@ -147,7 +148,7 @@ pub fn tree_hash_derive(input: TokenStream) -> TokenStream {
leaves.append(&mut self.#idents.tree_hash_root());
)*
tree_hash::merkle_root(&leaves)
tree_hash::merkleize::merkle_root(&leaves)
}
}
};
@ -177,7 +178,7 @@ pub fn tree_hash_signed_root_derive(input: TokenStream) -> TokenStream {
leaves.append(&mut self.#idents.tree_hash_root());
)*
tree_hash::merkle_root(&leaves)
tree_hash::merkleize::merkle_root(&leaves)
}
}
};

View File

@ -1,7 +1,8 @@
use tree_hash::{CachedTreeHashSubTree, SignedRoot, TreeHash};
use tree_hash_derive::{CachedTreeHashSubTree, SignedRoot, TreeHash};
use cached_tree_hash::{CachedTreeHash, TreeHashCache};
use tree_hash::{merkleize::merkle_root, SignedRoot, TreeHash};
use tree_hash_derive::{CachedTreeHash, SignedRoot, TreeHash};
#[derive(Clone, Debug, TreeHash, CachedTreeHashSubTree)]
#[derive(Clone, Debug, TreeHash, CachedTreeHash)]
pub struct Inner {
pub a: u64,
pub b: u64,
@ -9,22 +10,18 @@ pub struct Inner {
pub d: u64,
}
fn test_standard_and_cached<T>(original: &T, modified: &T)
where
T: CachedTreeHashSubTree<T>,
{
let mut cache = original.new_tree_hash_cache().unwrap();
fn test_standard_and_cached<T: CachedTreeHash>(original: &T, modified: &T) {
// let mut cache = original.new_tree_hash_cache().unwrap();
let mut cache = TreeHashCache::new(original).unwrap();
let standard_root = original.tree_hash_root();
let cached_root = cache.root().unwrap().to_vec();
let cached_root = cache.tree_hash_root().unwrap();
assert_eq!(standard_root, cached_root);
// Test after a modification
modified
.update_tree_hash_cache(&original, &mut cache, 0)
.unwrap();
cache.update(modified).unwrap();
let standard_root = modified.tree_hash_root();
let cached_root = cache.root().unwrap().to_vec();
let cached_root = cache.tree_hash_root().unwrap();
assert_eq!(standard_root, cached_root);
}
@ -44,7 +41,7 @@ fn inner_standard_vs_cached() {
test_standard_and_cached(&original, &modified);
}
#[derive(Clone, Debug, TreeHash, CachedTreeHashSubTree)]
#[derive(Clone, Debug, TreeHash, CachedTreeHash)]
pub struct Uneven {
pub a: u64,
pub b: u64,
@ -120,7 +117,7 @@ impl CryptoKitties {
leaves.append(&mut self.best_kitty.tree_hash_root());
leaves.append(&mut self.worst_kitty.tree_hash_root());
leaves.append(&mut self.kitties.tree_hash_root());
tree_hash::merkle_root(&leaves)
merkle_root(&leaves)
}
}
@ -158,14 +155,14 @@ impl Casper {
let mut list = Vec::new();
list.append(&mut self.friendly.tree_hash_root());
list.append(&mut self.friends.tree_hash_root());
tree_hash::merkle_root(&list)
merkle_root(&list)
}
fn expected_tree_hash(&self) -> Vec<u8> {
let mut list = Vec::new();
list.append(&mut self.friendly.tree_hash_root());
list.append(&mut self.dead.tree_hash_root());
tree_hash::merkle_root(&list)
merkle_root(&list)
}
}