Add Store and db_encode_derive.

Implementation is not complete, but what is here works.
This commit is contained in:
Paul Hauner 2019-04-01 14:56:32 +11:00
parent b03dfdce59
commit ebe47a5b34
No known key found for this signature in database
GPG Key ID: D362883A9218FCC6
17 changed files with 1748 additions and 2 deletions

View File

@ -21,6 +21,9 @@ members = [
"eth2/utils/test_random_derive",
"beacon_node",
"beacon_node/db",
"beacon_node/db2",
"beacon_node/db_encode",
"beacon_node/db_encode_derive",
"beacon_node/client",
"beacon_node/network",
"beacon_node/eth2-libp2p",

View File

@ -9,5 +9,3 @@ blake2-rfc = "0.2.18"
bls = { path = "../../eth2/utils/bls" }
bytes = "0.4.10"
rocksdb = "0.10.1"
ssz = { path = "../../eth2/utils/ssz" }
types = { path = "../../eth2/types" }

View File

@ -0,0 +1,16 @@
[package]
name = "db2"
version = "0.1.0"
authors = ["Paul Hauner <paul@paulhauner.com>"]
edition = "2018"
[dependencies]
blake2-rfc = "0.2.18"
bls = { path = "../../eth2/utils/bls" }
bytes = "0.4.10"
db_encode = { path = "../db_encode" }
db_encode_derive = { path = "../db_encode_derive" }
rocksdb = "0.10.1"
ssz = { path = "../../eth2/utils/ssz" }
ssz_derive = { path = "../../eth2/utils/ssz_derive" }
types = { path = "../../eth2/types" }

View File

@ -0,0 +1,199 @@
extern crate rocksdb;
use super::rocksdb::Error as RocksError;
use super::rocksdb::{Options, DB};
use super::stores::COLUMNS;
use super::{ClientDB, DBError, DBValue};
use std::fs;
use std::path::Path;
/// A on-disk database which implements the ClientDB trait.
///
/// This implementation uses RocksDB with default options.
pub struct DiskDB {
db: DB,
}
impl DiskDB {
/// Open the RocksDB database, optionally supplying columns if required.
///
/// The RocksDB database will be contained in a directory titled
/// "database" in the supplied path.
///
/// # Panics
///
/// Panics if the database is unable to be created.
pub fn open(path: &Path, columns: Option<&[&str]>) -> Self {
// Rocks options.
let mut options = Options::default();
options.create_if_missing(true);
// Ensure the path exists.
fs::create_dir_all(&path).unwrap_or_else(|_| panic!("Unable to create {:?}", &path));
let db_path = path.join("database");
let columns = columns.unwrap_or(&COLUMNS);
if db_path.exists() {
Self {
db: DB::open_cf(&options, db_path, &COLUMNS)
.expect("Unable to open local database"),
}
} else {
let mut db = Self {
db: DB::open(&options, db_path).expect("Unable to open local database"),
};
for cf in columns {
db.create_col(cf).unwrap();
}
db
}
}
/// Create a RocksDB column family. Corresponds to the
/// `create_cf()` function on the RocksDB API.
#[allow(dead_code)]
fn create_col(&mut self, col: &str) -> Result<(), DBError> {
match self.db.create_cf(col, &Options::default()) {
Err(e) => Err(e.into()),
Ok(_) => Ok(()),
}
}
}
impl From<RocksError> for DBError {
fn from(e: RocksError) -> Self {
Self {
message: e.to_string(),
}
}
}
impl ClientDB for DiskDB {
/// Get the value for some key on some column.
///
/// Corresponds to the `get_cf()` method on the RocksDB API.
/// Will attempt to get the `ColumnFamily` and return an Err
/// if it fails.
fn get(&self, col: &str, key: &[u8]) -> Result<Option<DBValue>, DBError> {
match self.db.cf_handle(col) {
None => Err(DBError {
message: "Unknown column".to_string(),
}),
Some(handle) => match self.db.get_cf(handle, key)? {
None => Ok(None),
Some(db_vec) => Ok(Some(DBValue::from(&*db_vec))),
},
}
}
/// Set some value for some key on some column.
///
/// Corresponds to the `cf_handle()` method on the RocksDB API.
/// Will attempt to get the `ColumnFamily` and return an Err
/// if it fails.
fn put(&self, col: &str, key: &[u8], val: &[u8]) -> Result<(), DBError> {
match self.db.cf_handle(col) {
None => Err(DBError {
message: "Unknown column".to_string(),
}),
Some(handle) => self.db.put_cf(handle, key, val).map_err(|e| e.into()),
}
}
/// Return true if some key exists in some column.
fn exists(&self, col: &str, key: &[u8]) -> Result<bool, DBError> {
/*
* I'm not sure if this is the correct way to read if some
* block exists. Naively I would expect this to unncessarily
* copy some data, but I could be wrong.
*/
match self.db.cf_handle(col) {
None => Err(DBError {
message: "Unknown column".to_string(),
}),
Some(handle) => Ok(self.db.get_cf(handle, key)?.is_some()),
}
}
/// Delete the value for some key on some column.
///
/// Corresponds to the `delete_cf()` method on the RocksDB API.
/// Will attempt to get the `ColumnFamily` and return an Err
/// if it fails.
fn delete(&self, col: &str, key: &[u8]) -> Result<(), DBError> {
match self.db.cf_handle(col) {
None => Err(DBError {
message: "Unknown column".to_string(),
}),
Some(handle) => {
self.db.delete_cf(handle, key)?;
Ok(())
}
}
}
}
#[cfg(test)]
mod tests {
use super::super::ClientDB;
use super::*;
use std::sync::Arc;
use std::{env, fs, thread};
#[test]
#[ignore]
fn test_rocksdb_can_use_db() {
let pwd = env::current_dir().unwrap();
let path = pwd.join("testdb_please_remove");
let _ = fs::remove_dir_all(&path);
fs::create_dir_all(&path).unwrap();
let col_name: &str = "TestColumn";
let column_families = vec![col_name];
let mut db = DiskDB::open(&path, None);
for cf in column_families {
db.create_col(&cf).unwrap();
}
let db = Arc::new(db);
let thread_count = 10;
let write_count = 10;
// We're execting the product of these numbers to fit in one byte.
assert!(thread_count * write_count <= 255);
let mut handles = vec![];
for t in 0..thread_count {
let wc = write_count;
let db = db.clone();
let col = col_name.clone();
let handle = thread::spawn(move || {
for w in 0..wc {
let key = (t * w) as u8;
let val = 42;
db.put(&col, &vec![key], &vec![val]).unwrap();
}
});
handles.push(handle);
}
for handle in handles {
handle.join().unwrap();
}
for t in 0..thread_count {
for w in 0..write_count {
let key = (t * w) as u8;
let val = db.get(&col_name, &vec![key]).unwrap().unwrap();
assert_eq!(vec![42], val);
}
}
fs::remove_dir_all(&path).unwrap();
}
}

151
beacon_node/db2/src/lib.rs Normal file
View File

@ -0,0 +1,151 @@
extern crate blake2_rfc as blake2;
extern crate bls;
extern crate rocksdb;
mod disk_db;
mod memory_db;
pub mod stores;
mod traits;
use self::stores::COLUMNS;
use db_encode::{db_encode, DBDecode, DBEncode};
use ssz::DecodeError;
use std::sync::Arc;
pub use self::disk_db::DiskDB;
pub use self::memory_db::MemoryDB;
pub use self::traits::{ClientDB, DBError, DBValue};
pub use types::*;
#[derive(Debug, PartialEq)]
pub enum Error {
SszDecodeError(DecodeError),
DBError { message: String },
}
impl From<DecodeError> for Error {
fn from(e: DecodeError) -> Error {
Error::SszDecodeError(e)
}
}
impl From<DBError> for Error {
fn from(e: DBError) -> Error {
Error::DBError { message: e.message }
}
}
/// Currently available database options
#[derive(Debug, Clone)]
pub enum DBType {
Memory,
RocksDB,
}
pub enum DBColumn {
Block,
State,
BeaconChain,
}
impl<'a> Into<&'a str> for DBColumn {
/// Returns a `&str` that can be used for keying a key-value data base.
fn into(self) -> &'a str {
match self {
DBColumn::Block => &"blk",
DBColumn::State => &"ste",
DBColumn::BeaconChain => &"bch",
}
}
}
pub trait DBRecord: DBEncode + DBDecode {
fn db_column() -> DBColumn;
}
pub struct Store<T>
where
T: ClientDB,
{
db: Arc<T>,
}
impl Store<MemoryDB> {
fn new_in_memory() -> Self {
Self {
db: Arc::new(MemoryDB::open()),
}
}
}
impl<T> Store<T>
where
T: ClientDB,
{
/// Put `item` in the store as `key`.
///
/// The `item` must implement `DBRecord` which defines the db column used.
fn put<I>(&self, key: &Hash256, item: &I) -> Result<(), Error>
where
I: DBRecord,
{
let column = I::db_column().into();
let key = key.as_bytes();
let val = db_encode(item);
self.db.put(column, key, &val).map_err(|e| e.into())
}
/// Retrieves an `Ok(Some(item)` from the store if `key` exists, otherwise returns `Ok(None)`.
///
/// The `item` must implement `DBRecord` which defines the db column used.
fn get<I>(&self, key: &Hash256) -> Result<Option<I>, Error>
where
I: DBRecord,
{
let column = I::db_column().into();
let key = key.as_bytes();
match self.db.get(column, key)? {
Some(bytes) => {
let (item, _index) = I::db_decode(&bytes, 0)?;
Ok(Some(item))
}
None => Ok(None),
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use db_encode_derive::{DBDecode, DBEncode};
use ssz::Decodable;
use ssz_derive::{Decode, Encode};
#[derive(PartialEq, Debug, Encode, Decode, DBEncode, DBDecode)]
struct StorableThing {
a: u64,
b: u64,
}
impl DBRecord for StorableThing {
fn db_column() -> DBColumn {
DBColumn::Block
}
}
#[test]
fn memorydb_can_store() {
let store = Store::new_in_memory();
let key = Hash256::random();
let item = StorableThing { a: 1, b: 42 };
store.put(&key, &item).unwrap();
let retrieved = store.get(&key).unwrap().unwrap();
assert_eq!(item, retrieved);
}
}

View File

@ -0,0 +1,236 @@
use super::blake2::blake2b::blake2b;
use super::COLUMNS;
use super::{ClientDB, DBError, DBValue};
use std::collections::{HashMap, HashSet};
use std::sync::RwLock;
type DBHashMap = HashMap<Vec<u8>, Vec<u8>>;
type ColumnHashSet = HashSet<String>;
/// An in-memory database implementing the ClientDB trait.
///
/// It is not particularily optimized, it exists for ease and speed of testing. It's not expected
/// this DB would be used outside of tests.
pub struct MemoryDB {
db: RwLock<DBHashMap>,
known_columns: RwLock<ColumnHashSet>,
}
impl MemoryDB {
/// Open the in-memory database.
///
/// All columns must be supplied initially, you will get an error if you try to access a column
/// that was not declared here. This condition is enforced artificially to simulate RocksDB.
pub fn open() -> Self {
let db: DBHashMap = HashMap::new();
let mut known_columns: ColumnHashSet = HashSet::new();
for col in &COLUMNS {
known_columns.insert(col.to_string());
}
Self {
db: RwLock::new(db),
known_columns: RwLock::new(known_columns),
}
}
/// Hashes a key and a column name in order to get a unique key for the supplied column.
fn get_key_for_col(col: &str, key: &[u8]) -> Vec<u8> {
blake2b(32, col.as_bytes(), key).as_bytes().to_vec()
}
}
impl ClientDB for MemoryDB {
/// Get the value of some key from the database. Returns `None` if the key does not exist.
fn get(&self, col: &str, key: &[u8]) -> Result<Option<DBValue>, DBError> {
// Panic if the DB locks are poisoned.
let db = self.db.read().unwrap();
let known_columns = self.known_columns.read().unwrap();
if known_columns.contains(&col.to_string()) {
let column_key = MemoryDB::get_key_for_col(col, key);
Ok(db.get(&column_key).and_then(|val| Some(val.clone())))
} else {
Err(DBError {
message: "Unknown column".to_string(),
})
}
}
/// Puts a key in the database.
fn put(&self, col: &str, key: &[u8], val: &[u8]) -> Result<(), DBError> {
// Panic if the DB locks are poisoned.
let mut db = self.db.write().unwrap();
let known_columns = self.known_columns.read().unwrap();
if known_columns.contains(&col.to_string()) {
let column_key = MemoryDB::get_key_for_col(col, key);
db.insert(column_key, val.to_vec());
Ok(())
} else {
Err(DBError {
message: "Unknown column".to_string(),
})
}
}
/// Return true if some key exists in some column.
fn exists(&self, col: &str, key: &[u8]) -> Result<bool, DBError> {
// Panic if the DB locks are poisoned.
let db = self.db.read().unwrap();
let known_columns = self.known_columns.read().unwrap();
if known_columns.contains(&col.to_string()) {
let column_key = MemoryDB::get_key_for_col(col, key);
Ok(db.contains_key(&column_key))
} else {
Err(DBError {
message: "Unknown column".to_string(),
})
}
}
/// Delete some key from the database.
fn delete(&self, col: &str, key: &[u8]) -> Result<(), DBError> {
// Panic if the DB locks are poisoned.
let mut db = self.db.write().unwrap();
let known_columns = self.known_columns.read().unwrap();
if known_columns.contains(&col.to_string()) {
let column_key = MemoryDB::get_key_for_col(col, key);
db.remove(&column_key);
Ok(())
} else {
Err(DBError {
message: "Unknown column".to_string(),
})
}
}
}
#[cfg(test)]
mod tests {
use super::super::stores::{BLOCKS_DB_COLUMN, VALIDATOR_DB_COLUMN};
use super::super::ClientDB;
use super::*;
use std::sync::Arc;
use std::thread;
#[test]
fn test_memorydb_can_delete() {
let col_a: &str = BLOCKS_DB_COLUMN;
let db = MemoryDB::open();
db.put(col_a, "dogs".as_bytes(), "lol".as_bytes()).unwrap();
assert_eq!(
db.get(col_a, "dogs".as_bytes()).unwrap().unwrap(),
"lol".as_bytes()
);
db.delete(col_a, "dogs".as_bytes()).unwrap();
assert_eq!(db.get(col_a, "dogs".as_bytes()).unwrap(), None);
}
#[test]
fn test_memorydb_column_access() {
let col_a: &str = BLOCKS_DB_COLUMN;
let col_b: &str = VALIDATOR_DB_COLUMN;
let db = MemoryDB::open();
/*
* Testing that if we write to the same key in different columns that
* there is not an overlap.
*/
db.put(col_a, "same".as_bytes(), "cat".as_bytes()).unwrap();
db.put(col_b, "same".as_bytes(), "dog".as_bytes()).unwrap();
assert_eq!(
db.get(col_a, "same".as_bytes()).unwrap().unwrap(),
"cat".as_bytes()
);
assert_eq!(
db.get(col_b, "same".as_bytes()).unwrap().unwrap(),
"dog".as_bytes()
);
}
#[test]
fn test_memorydb_unknown_column_access() {
let col_a: &str = BLOCKS_DB_COLUMN;
let col_x: &str = "ColumnX";
let db = MemoryDB::open();
/*
* Test that we get errors when using undeclared columns
*/
assert!(db.put(col_a, "cats".as_bytes(), "lol".as_bytes()).is_ok());
assert!(db.put(col_x, "cats".as_bytes(), "lol".as_bytes()).is_err());
assert!(db.get(col_a, "cats".as_bytes()).is_ok());
assert!(db.get(col_x, "cats".as_bytes()).is_err());
}
#[test]
fn test_memorydb_exists() {
let col_a: &str = BLOCKS_DB_COLUMN;
let col_b: &str = VALIDATOR_DB_COLUMN;
let db = MemoryDB::open();
/*
* Testing that if we write to the same key in different columns that
* there is not an overlap.
*/
db.put(col_a, "cats".as_bytes(), "lol".as_bytes()).unwrap();
assert_eq!(true, db.exists(col_a, "cats".as_bytes()).unwrap());
assert_eq!(false, db.exists(col_b, "cats".as_bytes()).unwrap());
assert_eq!(false, db.exists(col_a, "dogs".as_bytes()).unwrap());
assert_eq!(false, db.exists(col_b, "dogs".as_bytes()).unwrap());
}
#[test]
fn test_memorydb_threading() {
let col_name: &str = BLOCKS_DB_COLUMN;
let db = Arc::new(MemoryDB::open());
let thread_count = 10;
let write_count = 10;
// We're execting the product of these numbers to fit in one byte.
assert!(thread_count * write_count <= 255);
let mut handles = vec![];
for t in 0..thread_count {
let wc = write_count;
let db = db.clone();
let col = col_name.clone();
let handle = thread::spawn(move || {
for w in 0..wc {
let key = (t * w) as u8;
let val = 42;
db.put(&col, &vec![key], &vec![val]).unwrap();
}
});
handles.push(handle);
}
for handle in handles {
handle.join().unwrap();
}
for t in 0..thread_count {
for w in 0..write_count {
let key = (t * w) as u8;
let val = db.get(&col_name, &vec![key]).unwrap().unwrap();
assert_eq!(vec![42], val);
}
}
}
}

View File

@ -0,0 +1,246 @@
use super::BLOCKS_DB_COLUMN as DB_COLUMN;
use super::{ClientDB, DBError};
use ssz::Decodable;
use std::sync::Arc;
use types::{BeaconBlock, Hash256, Slot};
#[derive(Clone, Debug, PartialEq)]
pub enum BeaconBlockAtSlotError {
UnknownBeaconBlock(Hash256),
InvalidBeaconBlock(Hash256),
DBError(String),
}
pub struct BeaconBlockStore<T>
where
T: ClientDB,
{
db: Arc<T>,
}
// Implements `put`, `get`, `exists` and `delete` for the store.
impl_crud_for_store!(BeaconBlockStore, DB_COLUMN);
impl<T: ClientDB> BeaconBlockStore<T> {
pub fn new(db: Arc<T>) -> Self {
Self { db }
}
pub fn get_deserialized(&self, hash: &Hash256) -> Result<Option<BeaconBlock>, DBError> {
match self.get(&hash)? {
None => Ok(None),
Some(ssz) => {
let (block, _) = BeaconBlock::ssz_decode(&ssz, 0).map_err(|_| DBError {
message: "Bad BeaconBlock SSZ.".to_string(),
})?;
Ok(Some(block))
}
}
}
/// Retrieve the block at a slot given a "head_hash" and a slot.
///
/// A "head_hash" must be a block hash with a slot number greater than or equal to the desired
/// slot.
///
/// This function will read each block down the chain until it finds a block with the given
/// slot number. If the slot is skipped, the function will return None.
///
/// If a block is found, a tuple of (block_hash, serialized_block) is returned.
///
/// Note: this function uses a loop instead of recursion as the compiler is over-strict when it
/// comes to recursion and the `impl Trait` pattern. See:
/// https://stackoverflow.com/questions/54032940/using-impl-trait-in-a-recursive-function
pub fn block_at_slot(
&self,
head_hash: &Hash256,
slot: Slot,
) -> Result<Option<(Hash256, BeaconBlock)>, BeaconBlockAtSlotError> {
let mut current_hash = *head_hash;
loop {
if let Some(block) = self.get_deserialized(&current_hash)? {
if block.slot == slot {
break Ok(Some((current_hash, block)));
} else if block.slot < slot {
break Ok(None);
} else {
current_hash = block.previous_block_root;
}
} else {
break Err(BeaconBlockAtSlotError::UnknownBeaconBlock(current_hash));
}
}
}
}
impl From<DBError> for BeaconBlockAtSlotError {
fn from(e: DBError) -> Self {
BeaconBlockAtSlotError::DBError(e.message)
}
}
#[cfg(test)]
mod tests {
use super::super::super::MemoryDB;
use super::*;
use std::sync::Arc;
use std::thread;
use ssz::ssz_encode;
use types::test_utils::{SeedableRng, TestRandom, XorShiftRng};
use types::BeaconBlock;
use types::Hash256;
test_crud_for_store!(BeaconBlockStore, DB_COLUMN);
#[test]
fn head_hash_slot_too_low() {
let db = Arc::new(MemoryDB::open());
let bs = Arc::new(BeaconBlockStore::new(db.clone()));
let mut rng = XorShiftRng::from_seed([42; 16]);
let mut block = BeaconBlock::random_for_test(&mut rng);
block.slot = Slot::from(10_u64);
let block_root = block.canonical_root();
bs.put(&block_root, &ssz_encode(&block)).unwrap();
let result = bs.block_at_slot(&block_root, Slot::from(11_u64)).unwrap();
assert_eq!(result, None);
}
#[test]
fn test_invalid_block_at_slot() {
let db = Arc::new(MemoryDB::open());
let store = BeaconBlockStore::new(db.clone());
let ssz = "definitly not a valid block".as_bytes();
let hash = &Hash256::from([0xAA; 32]);
db.put(DB_COLUMN, hash.as_bytes(), ssz).unwrap();
assert_eq!(
store.block_at_slot(hash, Slot::from(42_u64)),
Err(BeaconBlockAtSlotError::DBError(
"Bad BeaconBlock SSZ.".into()
))
);
}
#[test]
fn test_unknown_block_at_slot() {
let db = Arc::new(MemoryDB::open());
let store = BeaconBlockStore::new(db.clone());
let ssz = "some bytes".as_bytes();
let hash = &Hash256::from([0xAA; 32]);
let other_hash = &Hash256::from([0xBB; 32]);
db.put(DB_COLUMN, hash.as_bytes(), ssz).unwrap();
assert_eq!(
store.block_at_slot(other_hash, Slot::from(42_u64)),
Err(BeaconBlockAtSlotError::UnknownBeaconBlock(*other_hash))
);
}
#[test]
fn test_block_store_on_memory_db() {
let db = Arc::new(MemoryDB::open());
let bs = Arc::new(BeaconBlockStore::new(db.clone()));
let thread_count = 10;
let write_count = 10;
let mut handles = vec![];
for t in 0..thread_count {
let wc = write_count;
let bs = bs.clone();
let handle = thread::spawn(move || {
for w in 0..wc {
let key = t * w;
let val = 42;
bs.put(&Hash256::from_low_u64_le(key), &vec![val]).unwrap();
}
});
handles.push(handle);
}
for handle in handles {
handle.join().unwrap();
}
for t in 0..thread_count {
for w in 0..write_count {
let key = t * w;
assert!(bs.exists(&Hash256::from_low_u64_le(key)).unwrap());
let val = bs.get(&Hash256::from_low_u64_le(key)).unwrap().unwrap();
assert_eq!(vec![42], val);
}
}
}
#[test]
#[ignore]
fn test_block_at_slot() {
let db = Arc::new(MemoryDB::open());
let bs = Arc::new(BeaconBlockStore::new(db.clone()));
let mut rng = XorShiftRng::from_seed([42; 16]);
// Specify test block parameters.
let hashes = [
Hash256::from([0; 32]),
Hash256::from([1; 32]),
Hash256::from([2; 32]),
Hash256::from([3; 32]),
Hash256::from([4; 32]),
];
let parent_hashes = [
Hash256::from([255; 32]), // Genesis block.
Hash256::from([0; 32]),
Hash256::from([1; 32]),
Hash256::from([2; 32]),
Hash256::from([3; 32]),
];
let unknown_hash = Hash256::from([101; 32]); // different from all above
let slots: Vec<Slot> = vec![0, 1, 3, 4, 5].iter().map(|x| Slot::new(*x)).collect();
// Generate a vec of random blocks and store them in the DB.
let block_count = 5;
let mut blocks: Vec<BeaconBlock> = Vec::with_capacity(5);
for i in 0..block_count {
let mut block = BeaconBlock::random_for_test(&mut rng);
block.previous_block_root = parent_hashes[i];
block.slot = slots[i];
let ssz = ssz_encode(&block);
db.put(DB_COLUMN, hashes[i].as_bytes(), &ssz).unwrap();
blocks.push(block);
}
// Test that certain slots can be reached from certain hashes.
let test_cases = vec![(4, 4), (4, 3), (4, 2), (4, 1), (4, 0)];
for (hashes_index, slot_index) in test_cases {
let (matched_block_hash, block) = bs
.block_at_slot(&hashes[hashes_index], slots[slot_index])
.unwrap()
.unwrap();
assert_eq!(matched_block_hash, hashes[slot_index]);
assert_eq!(block.slot, slots[slot_index]);
}
let ssz = bs.block_at_slot(&hashes[4], Slot::new(2)).unwrap();
assert_eq!(ssz, None);
let ssz = bs.block_at_slot(&hashes[4], Slot::new(6)).unwrap();
assert_eq!(ssz, None);
let ssz = bs.block_at_slot(&unknown_hash, Slot::new(2));
assert_eq!(
ssz,
Err(BeaconBlockAtSlotError::UnknownBeaconBlock(unknown_hash))
);
}
}

View File

@ -0,0 +1,62 @@
use super::STATES_DB_COLUMN as DB_COLUMN;
use super::{ClientDB, DBError};
use ssz::Decodable;
use std::sync::Arc;
use types::{BeaconState, Hash256};
pub struct BeaconStateStore<T>
where
T: ClientDB,
{
db: Arc<T>,
}
// Implements `put`, `get`, `exists` and `delete` for the store.
impl_crud_for_store!(BeaconStateStore, DB_COLUMN);
impl<T: ClientDB> BeaconStateStore<T> {
pub fn new(db: Arc<T>) -> Self {
Self { db }
}
pub fn get_deserialized(&self, hash: &Hash256) -> Result<Option<BeaconState>, DBError> {
match self.get(&hash)? {
None => Ok(None),
Some(ssz) => {
let (state, _) = BeaconState::ssz_decode(&ssz, 0).map_err(|_| DBError {
message: "Bad State SSZ.".to_string(),
})?;
Ok(Some(state))
}
}
}
}
#[cfg(test)]
mod tests {
use super::super::super::MemoryDB;
use super::*;
use ssz::ssz_encode;
use std::sync::Arc;
use types::test_utils::{SeedableRng, TestRandom, XorShiftRng};
use types::Hash256;
test_crud_for_store!(BeaconStateStore, DB_COLUMN);
#[test]
fn test_reader() {
let db = Arc::new(MemoryDB::open());
let store = BeaconStateStore::new(db.clone());
let mut rng = XorShiftRng::from_seed([42; 16]);
let state = BeaconState::random_for_test(&mut rng);
let state_root = state.canonical_root();
store.put(&state_root, &ssz_encode(&state)).unwrap();
let decoded = store.get_deserialized(&state_root).unwrap().unwrap();
assert_eq!(state, decoded);
}
}

View File

@ -0,0 +1,103 @@
macro_rules! impl_crud_for_store {
($store: ident, $db_column: expr) => {
impl<T: ClientDB> $store<T> {
pub fn put(&self, hash: &Hash256, ssz: &[u8]) -> Result<(), DBError> {
self.db.put($db_column, hash.as_bytes(), ssz)
}
pub fn get(&self, hash: &Hash256) -> Result<Option<Vec<u8>>, DBError> {
self.db.get($db_column, hash.as_bytes())
}
pub fn exists(&self, hash: &Hash256) -> Result<bool, DBError> {
self.db.exists($db_column, hash.as_bytes())
}
pub fn delete(&self, hash: &Hash256) -> Result<(), DBError> {
self.db.delete($db_column, hash.as_bytes())
}
}
};
}
#[cfg(test)]
macro_rules! test_crud_for_store {
($store: ident, $db_column: expr) => {
#[test]
fn test_put() {
let db = Arc::new(MemoryDB::open());
let store = $store::new(db.clone());
let ssz = "some bytes".as_bytes();
let hash = &Hash256::from([0xAA; 32]);
store.put(hash, ssz).unwrap();
assert_eq!(db.get(DB_COLUMN, hash.as_bytes()).unwrap().unwrap(), ssz);
}
#[test]
fn test_get() {
let db = Arc::new(MemoryDB::open());
let store = $store::new(db.clone());
let ssz = "some bytes".as_bytes();
let hash = &Hash256::from([0xAA; 32]);
db.put(DB_COLUMN, hash.as_bytes(), ssz).unwrap();
assert_eq!(store.get(hash).unwrap().unwrap(), ssz);
}
#[test]
fn test_get_unknown() {
let db = Arc::new(MemoryDB::open());
let store = $store::new(db.clone());
let ssz = "some bytes".as_bytes();
let hash = &Hash256::from([0xAA; 32]);
let other_hash = &Hash256::from([0xBB; 32]);
db.put(DB_COLUMN, other_hash.as_bytes(), ssz).unwrap();
assert_eq!(store.get(hash).unwrap(), None);
}
#[test]
fn test_exists() {
let db = Arc::new(MemoryDB::open());
let store = $store::new(db.clone());
let ssz = "some bytes".as_bytes();
let hash = &Hash256::from([0xAA; 32]);
db.put(DB_COLUMN, hash.as_bytes(), ssz).unwrap();
assert!(store.exists(hash).unwrap());
}
#[test]
fn test_block_does_not_exist() {
let db = Arc::new(MemoryDB::open());
let store = $store::new(db.clone());
let ssz = "some bytes".as_bytes();
let hash = &Hash256::from([0xAA; 32]);
let other_hash = &Hash256::from([0xBB; 32]);
db.put(DB_COLUMN, hash.as_bytes(), ssz).unwrap();
assert!(!store.exists(other_hash).unwrap());
}
#[test]
fn test_delete() {
let db = Arc::new(MemoryDB::open());
let store = $store::new(db.clone());
let ssz = "some bytes".as_bytes();
let hash = &Hash256::from([0xAA; 32]);
db.put(DB_COLUMN, hash.as_bytes(), ssz).unwrap();
assert!(db.exists(DB_COLUMN, hash.as_bytes()).unwrap());
store.delete(hash).unwrap();
assert!(!db.exists(DB_COLUMN, hash.as_bytes()).unwrap());
}
};
}

View File

@ -0,0 +1,25 @@
use super::{ClientDB, DBError};
#[macro_use]
mod macros;
mod beacon_block_store;
mod beacon_state_store;
mod pow_chain_store;
mod validator_store;
pub use self::beacon_block_store::{BeaconBlockAtSlotError, BeaconBlockStore};
pub use self::beacon_state_store::BeaconStateStore;
pub use self::pow_chain_store::PoWChainStore;
pub use self::validator_store::{ValidatorStore, ValidatorStoreError};
pub const BLOCKS_DB_COLUMN: &str = "blocks";
pub const STATES_DB_COLUMN: &str = "states";
pub const POW_CHAIN_DB_COLUMN: &str = "powchain";
pub const VALIDATOR_DB_COLUMN: &str = "validator";
pub const COLUMNS: [&str; 4] = [
BLOCKS_DB_COLUMN,
STATES_DB_COLUMN,
POW_CHAIN_DB_COLUMN,
VALIDATOR_DB_COLUMN,
];

View File

@ -0,0 +1,68 @@
use super::POW_CHAIN_DB_COLUMN as DB_COLUMN;
use super::{ClientDB, DBError};
use std::sync::Arc;
pub struct PoWChainStore<T>
where
T: ClientDB,
{
db: Arc<T>,
}
impl<T: ClientDB> PoWChainStore<T> {
pub fn new(db: Arc<T>) -> Self {
Self { db }
}
pub fn put_block_hash(&self, hash: &[u8]) -> Result<(), DBError> {
self.db.put(DB_COLUMN, hash, &[0])
}
pub fn block_hash_exists(&self, hash: &[u8]) -> Result<bool, DBError> {
self.db.exists(DB_COLUMN, hash)
}
}
#[cfg(test)]
mod tests {
extern crate types;
use super::super::super::MemoryDB;
use super::*;
use self::types::Hash256;
#[test]
fn test_put_block_hash() {
let db = Arc::new(MemoryDB::open());
let store = PoWChainStore::new(db.clone());
let hash = &Hash256::from([0xAA; 32]).as_bytes().to_vec();
store.put_block_hash(hash).unwrap();
assert!(db.exists(DB_COLUMN, hash).unwrap());
}
#[test]
fn test_block_hash_exists() {
let db = Arc::new(MemoryDB::open());
let store = PoWChainStore::new(db.clone());
let hash = &Hash256::from([0xAA; 32]).as_bytes().to_vec();
db.put(DB_COLUMN, hash, &[0]).unwrap();
assert!(store.block_hash_exists(hash).unwrap());
}
#[test]
fn test_block_hash_does_not_exist() {
let db = Arc::new(MemoryDB::open());
let store = PoWChainStore::new(db.clone());
let hash = &Hash256::from([0xAA; 32]).as_bytes().to_vec();
let other_hash = &Hash256::from([0xBB; 32]).as_bytes().to_vec();
db.put(DB_COLUMN, hash, &[0]).unwrap();
assert!(!store.block_hash_exists(other_hash).unwrap());
}
}

View File

@ -0,0 +1,215 @@
extern crate bytes;
use self::bytes::{BufMut, BytesMut};
use super::VALIDATOR_DB_COLUMN as DB_COLUMN;
use super::{ClientDB, DBError};
use bls::PublicKey;
use ssz::{ssz_encode, Decodable};
use std::sync::Arc;
#[derive(Debug, PartialEq)]
pub enum ValidatorStoreError {
DBError(String),
DecodeError,
}
impl From<DBError> for ValidatorStoreError {
fn from(error: DBError) -> Self {
ValidatorStoreError::DBError(error.message)
}
}
#[derive(Debug, PartialEq)]
enum KeyPrefixes {
PublicKey,
}
pub struct ValidatorStore<T>
where
T: ClientDB,
{
db: Arc<T>,
}
impl<T: ClientDB> ValidatorStore<T> {
pub fn new(db: Arc<T>) -> Self {
Self { db }
}
fn prefix_bytes(&self, key_prefix: &KeyPrefixes) -> Vec<u8> {
match key_prefix {
KeyPrefixes::PublicKey => b"pubkey".to_vec(),
}
}
fn get_db_key_for_index(&self, key_prefix: &KeyPrefixes, index: usize) -> Vec<u8> {
let mut buf = BytesMut::with_capacity(6 + 8);
buf.put(self.prefix_bytes(key_prefix));
buf.put_u64_be(index as u64);
buf.take().to_vec()
}
pub fn put_public_key_by_index(
&self,
index: usize,
public_key: &PublicKey,
) -> Result<(), ValidatorStoreError> {
let key = self.get_db_key_for_index(&KeyPrefixes::PublicKey, index);
let val = ssz_encode(public_key);
self.db
.put(DB_COLUMN, &key[..], &val[..])
.map_err(ValidatorStoreError::from)
}
pub fn get_public_key_by_index(
&self,
index: usize,
) -> Result<Option<PublicKey>, ValidatorStoreError> {
let key = self.get_db_key_for_index(&KeyPrefixes::PublicKey, index);
let val = self.db.get(DB_COLUMN, &key[..])?;
match val {
None => Ok(None),
Some(val) => match PublicKey::ssz_decode(&val, 0) {
Ok((key, _)) => Ok(Some(key)),
Err(_) => Err(ValidatorStoreError::DecodeError),
},
}
}
}
#[cfg(test)]
mod tests {
use super::super::super::MemoryDB;
use super::*;
use bls::Keypair;
#[test]
fn test_prefix_bytes() {
let db = Arc::new(MemoryDB::open());
let store = ValidatorStore::new(db.clone());
assert_eq!(
store.prefix_bytes(&KeyPrefixes::PublicKey),
b"pubkey".to_vec()
);
}
#[test]
fn test_get_db_key_for_index() {
let db = Arc::new(MemoryDB::open());
let store = ValidatorStore::new(db.clone());
let mut buf = BytesMut::with_capacity(6 + 8);
buf.put(b"pubkey".to_vec());
buf.put_u64_be(42);
assert_eq!(
store.get_db_key_for_index(&KeyPrefixes::PublicKey, 42),
buf.take().to_vec()
)
}
#[test]
fn test_put_public_key_by_index() {
let db = Arc::new(MemoryDB::open());
let store = ValidatorStore::new(db.clone());
let index = 3;
let public_key = Keypair::random().pk;
store.put_public_key_by_index(index, &public_key).unwrap();
let public_key_at_index = db
.get(
DB_COLUMN,
&store.get_db_key_for_index(&KeyPrefixes::PublicKey, index)[..],
)
.unwrap()
.unwrap();
assert_eq!(public_key_at_index, ssz_encode(&public_key));
}
#[test]
fn test_get_public_key_by_index() {
let db = Arc::new(MemoryDB::open());
let store = ValidatorStore::new(db.clone());
let index = 4;
let public_key = Keypair::random().pk;
db.put(
DB_COLUMN,
&store.get_db_key_for_index(&KeyPrefixes::PublicKey, index)[..],
&ssz_encode(&public_key)[..],
)
.unwrap();
let public_key_at_index = store.get_public_key_by_index(index).unwrap().unwrap();
assert_eq!(public_key_at_index, public_key);
}
#[test]
fn test_get_public_key_by_unknown_index() {
let db = Arc::new(MemoryDB::open());
let store = ValidatorStore::new(db.clone());
let public_key = Keypair::random().pk;
db.put(
DB_COLUMN,
&store.get_db_key_for_index(&KeyPrefixes::PublicKey, 3)[..],
&ssz_encode(&public_key)[..],
)
.unwrap();
let public_key_at_index = store.get_public_key_by_index(4).unwrap();
assert_eq!(public_key_at_index, None);
}
#[test]
fn test_get_invalid_public_key() {
let db = Arc::new(MemoryDB::open());
let store = ValidatorStore::new(db.clone());
let key = store.get_db_key_for_index(&KeyPrefixes::PublicKey, 42);
db.put(DB_COLUMN, &key[..], "cats".as_bytes()).unwrap();
assert_eq!(
store.get_public_key_by_index(42),
Err(ValidatorStoreError::DecodeError)
);
}
#[test]
fn test_validator_store_put_get() {
let db = Arc::new(MemoryDB::open());
let store = ValidatorStore::new(db);
let keys = vec![
Keypair::random(),
Keypair::random(),
Keypair::random(),
Keypair::random(),
Keypair::random(),
];
for i in 0..keys.len() {
store.put_public_key_by_index(i, &keys[i].pk).unwrap();
}
/*
* Check all keys are retrieved correctly.
*/
for i in 0..keys.len() {
let retrieved = store.get_public_key_by_index(i).unwrap().unwrap();
assert_eq!(retrieved, keys[i].pk);
}
/*
* Check that an index that wasn't stored returns None.
*/
assert!(store
.get_public_key_by_index(keys.len() + 1)
.unwrap()
.is_none());
}
}

View File

@ -0,0 +1,38 @@
pub type DBValue = Vec<u8>;
#[derive(Debug)]
pub struct DBError {
pub message: String,
}
impl DBError {
pub fn new(message: String) -> Self {
Self { message }
}
}
/// A generic database to be used by the "client' (i.e.,
/// the lighthouse blockchain client).
///
/// The purpose of having this generic trait is to allow the
/// program to use a persistent on-disk database during production,
/// but use a transient database during tests.
pub trait ClientDB: Sync + Send {
fn get(&self, col: &str, key: &[u8]) -> Result<Option<DBValue>, DBError>;
fn put(&self, col: &str, key: &[u8], val: &[u8]) -> Result<(), DBError>;
fn exists(&self, col: &str, key: &[u8]) -> Result<bool, DBError>;
fn delete(&self, col: &str, key: &[u8]) -> Result<(), DBError>;
}
pub enum DBColumn {
Block,
State,
BeaconChain,
}
pub trait DBStore {
fn db_column(&self) -> DBColumn;
}

View File

@ -0,0 +1,9 @@
[package]
name = "db_encode"
version = "0.1.0"
authors = ["Paul Hauner <paul@paulhauner.com>"]
edition = "2018"
[dependencies]
ethereum-types = "0.5"
ssz = { path = "../../eth2/utils/ssz" }

View File

@ -0,0 +1,59 @@
use ethereum_types::{Address, H256};
use ssz::{ssz_encode, Decodable, DecodeError, Encodable, SszStream};
/// Convenience function to encode an object.
pub fn db_encode<T>(val: &T) -> Vec<u8>
where
T: DBEncode,
{
let mut ssz_stream = SszStream::new();
ssz_stream.append(val);
ssz_stream.drain()
}
/// An encoding scheme based solely upon SSZ.
///
/// The reason we have a separate encoding scheme is to allows us to store fields in the DB that we
/// don't want to transmit across the wire or hash.
///
/// For example, the cache fields on `BeaconState` should be stored in the DB, but they should not
/// be hashed or transmitted across the wire. `DBEncode` allows us to define two serialization
/// methods, one that encodes the caches and one that does not.
pub trait DBEncode: Encodable + Sized {
fn db_encode(&self, s: &mut SszStream) {
s.append(&ssz_encode(self));
}
}
/// A decoding scheme based solely upon SSZ.
///
/// See `DBEncode` for reasoning on why this trait exists.
pub trait DBDecode: Decodable {
fn db_decode(bytes: &[u8], index: usize) -> Result<(Self, usize), DecodeError> {
Self::ssz_decode(bytes, index)
}
}
// Implement encoding.
impl DBEncode for bool {}
impl DBEncode for u8 {}
impl DBEncode for u16 {}
impl DBEncode for u32 {}
impl DBEncode for u64 {}
impl DBEncode for usize {}
impl<T> DBEncode for Vec<T> where T: Encodable + Sized {}
impl DBEncode for H256 {}
impl DBEncode for Address {}
// Implement decoding.
impl DBDecode for bool {}
impl DBDecode for u8 {}
impl DBDecode for u16 {}
impl DBDecode for u32 {}
impl DBDecode for u64 {}
impl DBDecode for usize {}
impl<T> DBDecode for Vec<T> where T: Decodable {}
impl DBDecode for H256 {}
impl DBDecode for Address {}

View File

@ -0,0 +1,13 @@
[package]
name = "db_encode_derive"
version = "0.1.0"
authors = ["Paul Hauner <paul@paulhauner.com>"]
edition = "2018"
description = "Procedural derive macros for `db_encode` encoding and decoding."
[lib]
proc-macro = true
[dependencies]
syn = "0.15"
quote = "0.6"

View File

@ -0,0 +1,305 @@
extern crate proc_macro;
use proc_macro::TokenStream;
use quote::quote;
use syn::{parse_macro_input, DeriveInput};
/// Returns a Vec of `syn::Ident` for each named field in the struct.
///
/// # Panics
/// Any unnamed struct field (like in a tuple struct) will raise a panic at compile time.
fn get_named_field_idents<'a>(struct_data: &'a syn::DataStruct) -> Vec<&'a syn::Ident> {
struct_data
.fields
.iter()
.map(|f| match &f.ident {
Some(ref ident) => ident,
_ => panic!("db_derive only supports named struct fields."),
})
.collect()
}
/// Implements `db_encode::DBEncode` for some `struct`.
///
/// Fields are encoded in the order they are defined.
#[proc_macro_derive(DBEncode)]
pub fn db_encode_derive(input: TokenStream) -> TokenStream {
let item = parse_macro_input!(input as DeriveInput);
let name = &item.ident;
let struct_data = match &item.data {
syn::Data::Struct(s) => s,
_ => panic!("db_derive only supports structs."),
};
let field_idents = get_named_field_idents(&struct_data);
let output = quote! {
impl db_encode::DBEncode for #name {
fn db_encode(&self, s: &mut ssz::SszStream) {
#(
s.append(&self.#field_idents);
)*
}
}
};
output.into()
}
/// Implements `db_encode::DBEncode` for some `struct`.
///
/// Fields are encoded in the order they are defined.
#[proc_macro_derive(DBDecode)]
pub fn db_decode_derive(input: TokenStream) -> TokenStream {
let item = parse_macro_input!(input as DeriveInput);
let name = &item.ident;
let struct_data = match &item.data {
syn::Data::Struct(s) => s,
_ => panic!("ssz_derive only supports structs."),
};
let field_idents = get_named_field_idents(&struct_data);
// Using a var in an iteration always consumes the var, therefore we must make a `fields_a` and
// a `fields_b` in order to perform two loops.
//
// https://github.com/dtolnay/quote/issues/8
let field_idents_a = &field_idents;
let field_idents_b = &field_idents;
let output = quote! {
impl db_encode::DBDecode for #name {
fn db_decode(bytes: &[u8], i: usize) -> Result<(Self, usize), ssz::DecodeError> {
#(
let (#field_idents_a, i) = <_>::ssz_decode(bytes, i)?;
)*
Ok((
Self {
#(
#field_idents_b,
)*
},
i
))
}
}
};
output.into()
}
/*
/// Returns true if some field has an attribute declaring it should not be deserialized.
///
/// The field attribute is: `#[ssz(skip_deserializing)]`
fn should_skip_deserializing(field: &syn::Field) -> bool {
for attr in &field.attrs {
if attr.tts.to_string() == "( skip_deserializing )" {
return true;
}
}
false
}
/// Implements `ssz::Decodable` for some `struct`.
///
/// Fields are decoded in the order they are defined.
#[proc_macro_derive(Decode)]
pub fn ssz_decode_derive(input: TokenStream) -> TokenStream {
let item = parse_macro_input!(input as DeriveInput);
let name = &item.ident;
let struct_data = match &item.data {
syn::Data::Struct(s) => s,
_ => panic!("ssz_derive only supports structs."),
};
let all_idents = get_named_field_idents(&struct_data);
// Build quotes for fields that should be deserialized and those that should be built from
// `Default`.
let mut quotes = vec![];
for field in &struct_data.fields {
match &field.ident {
Some(ref ident) => {
if should_skip_deserializing(field) {
quotes.push(quote! {
let #ident = <_>::default();
});
} else {
quotes.push(quote! {
let (#ident, i) = <_>::ssz_decode(bytes, i)?;
});
}
}
_ => panic!("ssz_derive only supports named struct fields."),
};
}
let output = quote! {
impl ssz::Decodable for #name {
fn ssz_decode(bytes: &[u8], i: usize) -> Result<(Self, usize), ssz::DecodeError> {
#(
#quotes
)*
Ok((
Self {
#(
#all_idents,
)*
},
i
))
}
}
};
output.into()
}
/// Returns a Vec of `syn::Ident` for each named field in the struct, whilst filtering out fields
/// that should not be tree hashed.
///
/// # Panics
/// Any unnamed struct field (like in a tuple struct) will raise a panic at compile time.
fn get_tree_hashable_named_field_idents<'a>(
struct_data: &'a syn::DataStruct,
) -> Vec<&'a syn::Ident> {
struct_data
.fields
.iter()
.filter_map(|f| {
if should_skip_tree_hash(&f) {
None
} else {
Some(match &f.ident {
Some(ref ident) => ident,
_ => panic!("ssz_derive only supports named struct fields."),
})
}
})
.collect()
}
/// Returns true if some field has an attribute declaring it should not be tree-hashed.
///
/// The field attribute is: `#[tree_hash(skip_hashing)]`
fn should_skip_tree_hash(field: &syn::Field) -> bool {
for attr in &field.attrs {
if attr.tts.to_string() == "( skip_hashing )" {
return true;
}
}
false
}
/// Implements `ssz::TreeHash` for some `struct`.
///
/// Fields are processed in the order they are defined.
#[proc_macro_derive(TreeHash, attributes(tree_hash))]
pub fn ssz_tree_hash_derive(input: TokenStream) -> TokenStream {
let item = parse_macro_input!(input as DeriveInput);
let name = &item.ident;
let struct_data = match &item.data {
syn::Data::Struct(s) => s,
_ => panic!("ssz_derive only supports structs."),
};
let field_idents = get_tree_hashable_named_field_idents(&struct_data);
let output = quote! {
impl ssz::TreeHash for #name {
fn hash_tree_root(&self) -> Vec<u8> {
let mut list: Vec<Vec<u8>> = Vec::new();
#(
list.push(self.#field_idents.hash_tree_root());
)*
ssz::merkle_hash(&mut list)
}
}
};
output.into()
}
/// Returns `true` if some `Ident` should be considered to be a signature type.
fn type_ident_is_signature(ident: &syn::Ident) -> bool {
match ident.to_string().as_ref() {
"Signature" => true,
"AggregateSignature" => true,
_ => false,
}
}
/// Takes a `Field` where the type (`ty`) portion is a path (e.g., `types::Signature`) and returns
/// the final `Ident` in that path.
///
/// E.g., for `types::Signature` returns `Signature`.
fn final_type_ident(field: &syn::Field) -> &syn::Ident {
match &field.ty {
syn::Type::Path(path) => &path.path.segments.last().unwrap().value().ident,
_ => panic!("ssz_derive only supports Path types."),
}
}
/// Implements `ssz::TreeHash` for some `struct`, whilst excluding any fields following and
/// including a field that is of type "Signature" or "AggregateSignature".
///
/// See:
/// https://github.com/ethereum/eth2.0-specs/blob/master/specs/simple-serialize.md#signed-roots
///
/// This is a rather horrendous macro, it will read the type of the object as a string and decide
/// if it's a signature by matching that string against "Signature" or "AggregateSignature". So,
/// it's important that you use those exact words as your type -- don't alias it to something else.
///
/// If you can think of a better way to do this, please make an issue!
///
/// Fields are processed in the order they are defined.
#[proc_macro_derive(SignedRoot)]
pub fn ssz_signed_root_derive(input: TokenStream) -> TokenStream {
let item = parse_macro_input!(input as DeriveInput);
let name = &item.ident;
let struct_data = match &item.data {
syn::Data::Struct(s) => s,
_ => panic!("ssz_derive only supports structs."),
};
let mut field_idents: Vec<&syn::Ident> = vec![];
for field in struct_data.fields.iter() {
let final_type_ident = final_type_ident(&field);
if type_ident_is_signature(final_type_ident) {
break;
} else {
let ident = field
.ident
.as_ref()
.expect("ssz_derive only supports named_struct fields.");
field_idents.push(ident);
}
}
let output = quote! {
impl ssz::SignedRoot for #name {
fn signed_root(&self) -> Vec<u8> {
let mut list: Vec<Vec<u8>> = Vec::new();
#(
list.push(self.#field_idents.hash_tree_root());
)*
ssz::merkle_hash(&mut list)
}
}
};
output.into()
}
*/