merkle_proof: implement tree construction

Plus QuickCheck tests!
This commit is contained in:
Michael Sproul 2019-06-25 18:46:57 +10:00 committed by Paul Hauner
parent 25f2e212c3
commit e154b30232
No known key found for this signature in database
GPG Key ID: 5E2CFF9B75FA63DF
2 changed files with 193 additions and 5 deletions

View File

@ -7,3 +7,8 @@ edition = "2018"
[dependencies]
ethereum-types = "0.6"
eth2_hashing = { path = "../eth2_hashing" }
lazy_static = "1.3.0"
[dev-dependencies]
quickcheck = "0.8"
quickcheck_macros = "0.8"

View File

@ -1,6 +1,138 @@
#[macro_use]
extern crate lazy_static;
use eth2_hashing::hash;
use ethereum_types::H256;
const MAX_TREE_DEPTH: usize = 32;
const EMPTY_SLICE: &[H256] = &[];
lazy_static! {
/// Cached zero hashes where `ZERO_HASHES[i]` is the hash of a Merkle tree with 2^i zero leaves.
static ref ZERO_HASHES: Vec<H256> = {
let mut hashes = vec![H256::from([0; 32]); MAX_TREE_DEPTH + 1];
for i in 0..MAX_TREE_DEPTH {
hashes[i + 1] = hash_concat(hashes[i], hashes[i]);
}
hashes
};
/// Zero nodes to act as "synthetic" left and right subtrees of other zero nodes.
static ref ZERO_NODES: Vec<MerkleTree> = {
(0..MAX_TREE_DEPTH + 1).map(MerkleTree::Zero).collect()
};
}
/// Right-sparse Merkle tree.
///
/// Efficiently represents a Merkle tree of fixed depth where only the first N
/// indices are populated by non-zero leaves (perfect for the deposit contract tree).
#[derive(Debug)]
pub enum MerkleTree {
/// Leaf node with the hash of its content.
Leaf(H256),
/// Internal node with hash, left subtree and right subtree.
Node(H256, Box<Self>, Box<Self>),
/// Zero subtree of a given depth.
///
/// It represents a Merkle tree of 2^depth zero leaves.
Zero(usize),
}
impl MerkleTree {
/// Create a new Merkle tree from a list of leaves and a fixed depth.
pub fn create(leaves: &[H256], depth: usize) -> Self {
use MerkleTree::*;
if leaves.is_empty() {
return Zero(depth);
}
match depth {
0 => {
debug_assert_eq!(leaves.len(), 1);
Leaf(leaves[0])
}
_ => {
// Split leaves into left and right subtrees
let subtree_capacity = 2usize.pow(depth as u32 - 1);
let (left_leaves, right_leaves) = if leaves.len() <= subtree_capacity {
(leaves, EMPTY_SLICE)
} else {
leaves.split_at(subtree_capacity)
};
let left_subtree = MerkleTree::create(left_leaves, depth - 1);
let right_subtree = MerkleTree::create(right_leaves, depth - 1);
let hash = hash_concat(left_subtree.hash(), right_subtree.hash());
Node(hash, Box::new(left_subtree), Box::new(right_subtree))
}
}
}
/// Retrieve the root hash of this Merkle tree.
pub fn hash(&self) -> H256 {
match *self {
MerkleTree::Leaf(h) => h,
MerkleTree::Node(h, _, _) => h,
MerkleTree::Zero(depth) => ZERO_HASHES[depth],
}
}
/// Get a reference to the left and right subtrees if they exist.
pub fn left_and_right_branches(&self) -> Option<(&Self, &Self)> {
match *self {
MerkleTree::Leaf(_) | MerkleTree::Zero(0) => None,
MerkleTree::Node(_, ref l, ref r) => Some((l, r)),
MerkleTree::Zero(depth) => Some((&ZERO_NODES[depth - 1], &ZERO_NODES[depth - 1])),
}
}
/// Is this Merkle tree a leaf?
pub fn is_leaf(&self) -> bool {
match self {
MerkleTree::Leaf(_) => true,
_ => false,
}
}
/// Return the leaf at `index` and a Merkle proof of its inclusion.
///
/// The Merkle proof is in "bottom-up" order, starting with a leaf node
/// and moving up the tree. Its length will be exactly equal to `depth`.
pub fn generate_proof(&self, index: usize, depth: usize) -> (H256, Vec<H256>) {
let mut proof = vec![];
let mut current_node = self;
let mut current_depth = depth;
while current_depth > 0 {
let ith_bit = (index >> (current_depth - 1)) & 0x01;
// Note: unwrap is safe because leaves are only ever constructed at depth == 0.
let (left, right) = current_node.left_and_right_branches().unwrap();
// Go right, include the left branch in the proof.
if ith_bit == 1 {
proof.push(left.hash());
current_node = right;
} else {
proof.push(right.hash());
current_node = left;
}
current_depth -= 1;
}
debug_assert_eq!(proof.len(), depth);
debug_assert!(current_node.is_leaf());
// Put proof in bottom-up order.
proof.reverse();
(current_node.hash(), proof)
}
}
/// Verify a proof that `leaf` exists at `index` in a Merkle tree rooted at `root`.
///
/// The `branch` argument is the main component of the proof: it should be a list of internal
@ -46,15 +178,66 @@ fn concat(mut vec1: Vec<u8>, mut vec2: Vec<u8>) -> Vec<u8> {
vec1
}
/// Compute the hash of two other hashes concatenated.
fn hash_concat(h1: H256, h2: H256) -> H256 {
H256::from_slice(&hash(&concat(
h1.as_bytes().to_vec(),
h2.as_bytes().to_vec(),
)))
}
#[cfg(test)]
mod tests {
use super::*;
use quickcheck::TestResult;
use quickcheck_macros::quickcheck;
fn hash_concat(h1: H256, h2: H256) -> H256 {
H256::from_slice(&hash(&concat(
h1.as_bytes().to_vec(),
h2.as_bytes().to_vec(),
)))
/// Check that we can:
/// 1. Build a MerkleTree from arbitrary leaves and an arbitrary depth.
/// 2. Generate valid proofs for all of the leaves of this MerkleTree.
#[quickcheck]
fn quickcheck_create_and_verify(int_leaves: Vec<u64>, depth: usize) -> TestResult {
if depth > MAX_TREE_DEPTH || int_leaves.len() > 2usize.pow(depth as u32) {
return TestResult::discard();
}
let leaves: Vec<_> = int_leaves.into_iter().map(H256::from_low_u64_be).collect();
let merkle_tree = MerkleTree::create(&leaves, depth);
let merkle_root = merkle_tree.hash();
let proofs_ok = (0..leaves.len()).into_iter().all(|i| {
let (leaf, branch) = merkle_tree.generate_proof(i, depth);
leaf == leaves[i] && verify_merkle_proof(leaf, &branch, depth, i, merkle_root)
});
TestResult::from_bool(proofs_ok)
}
#[test]
fn sparse_zero_correct() {
let depth = 2;
let zero = H256::from([0x00; 32]);
let dense_tree = MerkleTree::create(&[zero, zero, zero, zero], depth);
let sparse_tree = MerkleTree::create(&[], depth);
assert_eq!(dense_tree.hash(), sparse_tree.hash());
}
#[test]
fn create_small_example() {
// Construct a small merkle tree manually and check that it's consistent with
// the MerkleTree type.
let leaf_b00 = H256::from([0xAA; 32]);
let leaf_b01 = H256::from([0xBB; 32]);
let leaf_b10 = H256::from([0xCC; 32]);
let leaf_b11 = H256::from([0xDD; 32]);
let node_b0x = hash_concat(leaf_b00, leaf_b01);
let node_b1x = hash_concat(leaf_b10, leaf_b11);
let root = hash_concat(node_b0x, node_b1x);
let tree = MerkleTree::create(&[leaf_b00, leaf_b01, leaf_b10, leaf_b11], 2);
assert_eq!(tree.hash(), root);
}
#[test]