Merge pull request #62 from ralexstokes/master

Simplifies the boolean-bitfield implementation to use `bit-vec` crate
This commit is contained in:
Paul Hauner 2018-11-23 09:44:07 +11:00 committed by GitHub
commit 7995200903
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 304 additions and 286 deletions

View File

@ -31,7 +31,7 @@ impl Encodable for AttestationRecord {
s.append(&self.shard_id);
s.append_vec(&self.oblique_parent_hashes);
s.append(&self.shard_block_hash);
s.append_vec(&self.attester_bitfield.to_be_vec());
s.append(&self.attester_bitfield);
s.append(&self.justified_slot);
s.append(&self.justified_block_hash);
s.append_vec(&self.aggregate_sig.as_bytes());
@ -103,7 +103,7 @@ mod tests {
shard_id: 9,
oblique_parent_hashes: vec![Hash256::from(&vec![14; 32][..])],
shard_block_hash: Hash256::from(&vec![15; 32][..]),
attester_bitfield: Bitfield::from(&vec![17; 42][..]),
attester_bitfield: Bitfield::from_bytes(&vec![17; 42][..]),
justified_slot: 19,
justified_block_hash: Hash256::from(&vec![15; 32][..]),
aggregate_sig: AggregateSignature::new(),

View File

@ -14,7 +14,6 @@ pub mod special_record;
pub mod validator_record;
pub mod validator_registration;
use self::boolean_bitfield::BooleanBitfield;
use self::ethereum_types::{H160, H256, U256};
use std::collections::HashMap;
@ -32,7 +31,8 @@ pub use validator_registration::ValidatorRegistration;
pub type Hash256 = H256;
pub type Address = H160;
pub type EthBalance = U256;
pub type Bitfield = BooleanBitfield;
pub type Bitfield = boolean_bitfield::BooleanBitfield;
pub type BitfieldError = boolean_bitfield::Error;
/// Maps a (slot, shard_id) to attestation_indices.
pub type AttesterMap = HashMap<(u64, u16), Vec<usize>>;

View File

@ -5,3 +5,4 @@ authors = ["Paul Hauner <paul@paulhauner.com>"]
[dependencies]
ssz = { path = "../ssz" }
bit-vec = "0.5.0"

View File

@ -1,7 +1,3 @@
# Boolean Bitfield
A work-in-progress implementation of an unbounded boolean bitfield.
Based upon a `Vec<u8>`
Documentation TBC...
Implements a set of boolean as a tightly-packed vector of bits.

View File

@ -1,161 +1,124 @@
/*
* Implemenation of a bitfield as a vec. Only
* supports bytes (Vec<u8>) as the underlying
* storage.
*
* A future implementation should be more efficient,
* this is just to get the job done for now.
*/
extern crate bit_vec;
extern crate ssz;
use std::cmp::max;
use bit_vec::BitVec;
#[derive(Eq, Clone, Default, Debug)]
pub struct BooleanBitfield {
len: usize,
vec: Vec<u8>,
use std::default;
/// A BooleanBitfield represents a set of booleans compactly stored as a vector of bits.
/// The BooleanBitfield is given a fixed size during construction. Reads outside of the current size return an out-of-bounds error. Writes outside of the current size expand the size of the set.
#[derive(Debug, Clone, PartialEq)]
pub struct BooleanBitfield(BitVec);
/// Error represents some reason a request against a bitfield was not satisfied
#[derive(Debug, PartialEq)]
pub enum Error {
/// OutOfBounds refers to indexing into a bitfield where no bits exist; returns the illegal index and the current size of the bitfield, respectively
OutOfBounds(usize, usize),
}
impl BooleanBitfield {
/// Create a new bitfield with a length of zero.
/// Create a new bitfield.
pub fn new() -> Self {
Default::default()
}
/// Create a new bitfield with the given length `initial_len` and all values set to `bit`.
pub fn from_elem(inital_len: usize, bit: bool) -> Self {
Self {
len: 0,
vec: vec![0],
0: BitVec::from_elem(inital_len, bit),
}
}
/// Create a new bitfield of a certain capacity
pub fn with_capacity(capacity: usize) -> Self {
let mut vec = Vec::with_capacity(capacity / 8 + 1);
vec.push(0);
Self { len: 0, vec }
/// Create a new bitfield using the supplied `bytes` as input
pub fn from_bytes(bytes: &[u8]) -> Self {
Self {
0: BitVec::from_bytes(bytes),
}
}
/// Read the value of a bit.
///
/// Will return `true` if the bit has been set to `true`
/// without then being set to `False`.
pub fn get_bit(&self, i: usize) -> bool {
let bit = |i: usize| i % 8;
let byte = |i: usize| i / 8;
if byte(i) >= self.vec.len() {
false
} else {
self.vec[byte(i)] & (1 << (bit(i) as u8)) != 0
/// If the index is in bounds, then result is Ok(value) where value is `true` if the bit is 1 and `false` if the bit is 0.
/// If the index is out of bounds, we return an error to that extent.
pub fn get(&self, i: usize) -> Result<bool, Error> {
match self.0.get(i) {
Some(value) => Ok(value),
None => Err(Error::OutOfBounds(i, self.0.len())),
}
}
/// Set the value of a bit.
///
/// If this bit is larger than the length of the underlying byte
/// array it will be extended.
pub fn set_bit(&mut self, i: usize, to: bool) {
let bit = |i: usize| i % 8;
let byte = |i: usize| i / 8;
self.len = max(self.len, i + 1);
if byte(i) >= self.vec.len() {
self.vec.resize(byte(i) + 1, 0);
}
if to {
self.vec[byte(i)] = self.vec[byte(i)] | (1 << (bit(i) as u8))
} else {
self.vec[byte(i)] = self.vec[byte(i)] & !(1 << (bit(i) as u8))
}
/// If the index is out of bounds, we expand the size of the underlying set to include the new index.
/// Returns the previous value if there was one.
pub fn set(&mut self, i: usize, value: bool) -> Option<bool> {
let previous = match self.get(i) {
Ok(previous) => Some(previous),
Err(Error::OutOfBounds(_, len)) => {
let new_len = i - len + 1;
self.0.grow(new_len, false);
None
}
};
self.0.set(i, value);
previous
}
/// Return the "length" of this bitfield. Length is defined as
/// the highest bit that has been set.
///
/// Note: this is distinct from the length of the underlying
/// vector.
/// Returns the index of the highest set bit. Some(n) if some bit is set, None otherwise.
pub fn highest_set_bit(&self) -> Option<usize> {
self.0.iter().rposition(|bit| bit)
}
/// Returns the number of bits in this bitfield.
pub fn len(&self) -> usize {
self.len
self.0.len()
}
/// True if no bits have ever been set. A bit that is set and then
/// unset will still count to the length of the bitfield.
///
/// Note: this is distinct from the length of the underlying
/// vector.
pub fn is_empty(&self) -> bool {
self.len == 0
}
/// The number of bytes required to represent the bitfield.
/// Returns the number of bytes required to represent this bitfield.
pub fn num_bytes(&self) -> usize {
self.vec.len()
self.to_bytes().len()
}
/// Iterate through the underlying vector and count the number of
/// true bits.
pub fn num_true_bits(&self) -> u64 {
let mut count: u64 = 0;
for byte in &self.vec {
for bit in 0..8 {
if byte & (1 << (bit as u8)) != 0 {
count += 1;
}
}
}
count
/// Returns the number of `1` bits in the bitfield
pub fn num_set_bits(&self) -> usize {
self.0.iter().filter(|&bit| bit).count()
}
/// Iterate through the underlying vector and find the highest
/// set bit. Useful for instantiating a new instance from
/// some set of bytes.
pub fn compute_length(bytes: &[u8]) -> usize {
for byte in (0..bytes.len()).rev() {
for bit in (0..8).rev() {
if bytes[byte] & (1 << (bit as u8)) != 0 {
return (byte * 8) + bit + 1;
}
}
}
0
}
/// Get the byte at a position, assuming big-endian encoding.
pub fn get_byte(&self, n: usize) -> Option<&u8> {
self.vec.get(n)
}
/// Clone and return the underlying byte array (`Vec<u8>`).
pub fn to_vec(&self) -> Vec<u8> {
self.vec.clone()
}
/// Clone and return the underlying byte array (`Vec<u8>`) in big-endinan format.
pub fn to_be_vec(&self) -> Vec<u8> {
let mut o = self.vec.clone();
o.reverse();
o
/// Returns a vector of bytes representing the bitfield
/// Note that this returns the bit layout of the underlying implementation in the `bit-vec` crate.
pub fn to_bytes(&self) -> Vec<u8> {
self.0.to_bytes()
}
}
impl<'a> From<&'a [u8]> for BooleanBitfield {
fn from(input: &[u8]) -> Self {
let mut vec = input.to_vec();
vec.reverse();
BooleanBitfield {
vec,
len: BooleanBitfield::compute_length(input),
}
impl default::Default for BooleanBitfield {
/// default provides the "empty" bitfield
/// Note: the empty bitfield is set to the `0` byte.
fn default() -> Self {
Self::from_elem(8, false)
}
}
impl PartialEq for BooleanBitfield {
fn eq(&self, other: &BooleanBitfield) -> bool {
(self.vec == other.vec) & (self.len == other.len)
// borrowed from bit_vec crate
fn reverse_bits(byte: u8) -> u8 {
let mut result = 0;
for i in 0..8 {
result = result | ((byte >> i) & 1) << (7 - i);
}
result
}
impl ssz::Encodable for BooleanBitfield {
// ssz_append encodes Self according to the `ssz` spec.
// Note that we have to flip the endianness of the encoding with `reverse_bits` to account for an implementation detail of `bit-vec` crate.
fn ssz_append(&self, s: &mut ssz::SszStream) {
s.append_vec(&self.to_vec());
let bytes: Vec<u8> = self
.to_bytes()
.iter()
.map(|&byte| reverse_bits(byte))
.collect();
s.append_vec(&bytes);
}
}
@ -165,12 +128,24 @@ impl ssz::Decodable for BooleanBitfield {
if (ssz::LENGTH_BYTES + len) > bytes.len() {
return Err(ssz::DecodeError::TooShort);
}
if len == 0 {
Ok((BooleanBitfield::new(), index + ssz::LENGTH_BYTES))
} else {
let b = BooleanBitfield::from(&bytes[(index + 4)..(index + len + 4)]);
let bytes = &bytes[(index + 4)..(index + len + 4)];
let mut field = BooleanBitfield::from_elem(0, false);
for (byte_index, byte) in bytes.iter().enumerate() {
for i in 0..8 {
let bit = byte & (1 << i);
if bit != 0 {
field.set(8 * byte_index + i, true);
}
}
}
let index = index + ssz::LENGTH_BYTES + len;
Ok((b, index))
Ok((field, index))
}
}
}
@ -178,149 +153,192 @@ impl ssz::Decodable for BooleanBitfield {
#[cfg(test)]
mod tests {
use super::*;
use ssz::Decodable;
use ssz::SszStream;
#[test]
fn test_new_from_slice() {
let s = [0];
let b = BooleanBitfield::from(&s[..]);
assert_eq!(b.len, 0);
fn test_new_bitfield() {
let mut field = BooleanBitfield::new();
let original_len = field.len();
let s = [255];
let b = BooleanBitfield::from(&s[..]);
assert_eq!(b.len, 8);
let s = [0, 1];
let b = BooleanBitfield::from(&s[..]);
assert_eq!(b.len, 9);
let s = [31];
let b = BooleanBitfield::from(&s[..]);
assert_eq!(b.len, 5);
}
#[test]
fn test_ssz_encoding() {
let mut b = BooleanBitfield::new();
b.set_bit(8, true);
let mut stream = ssz::SszStream::new();
stream.append(&b);
assert_eq!(stream.drain(), vec![0, 0, 0, 2, 0, 1]);
}
/*
#[test]
fn test_ssz_decoding() {
/*
* Correct input
*/
let input = vec![0, 0, 0, 2, 0, 1];
let (b, i) = BooleanBitfield::ssz_decode(&input, 0).unwrap();
assert_eq!(i, 6);
assert_eq!(b.num_true_bits(), 1);
assert_eq!(b.get_bit(8), true);
/*
* Input too long
*/
let mut input = vec![0, 0, 0, 2, 0, 1];
input.push(42);
let (b, i) = BooleanBitfield::ssz_decode(&input, 0).unwrap();
assert_eq!(i, 6);
assert_eq!(b.num_true_bits(), 1);
assert_eq!(b.get_bit(8), true);
/*
* Input too short
*/
let input = vec![0, 0, 0, 2, 1];
let res = BooleanBitfield::ssz_decode(&input, 0);
assert_eq!(res, Err(ssz::DecodeError::TooShort));
}
*/
#[test]
fn test_new_bitfield_len() {
let b = BooleanBitfield::new();
assert_eq!(b.len(), 0);
assert_eq!(b.to_be_vec(), vec![0]);
let b = BooleanBitfield::with_capacity(100);
assert_eq!(b.len(), 0);
assert_eq!(b.to_be_vec(), vec![0]);
}
#[test]
fn test_bitfield_set() {
let mut b = BooleanBitfield::new();
b.set_bit(0, false);
assert_eq!(b.to_be_vec(), [0]);
b = BooleanBitfield::new();
b.set_bit(7, true);
assert_eq!(b.to_be_vec(), [128]);
b.set_bit(7, false);
assert_eq!(b.to_be_vec(), [0]);
assert_eq!(b.len(), 8);
b = BooleanBitfield::new();
b.set_bit(7, true);
b.set_bit(0, true);
assert_eq!(b.to_be_vec(), [129]);
b.set_bit(7, false);
assert_eq!(b.to_be_vec(), [1]);
assert_eq!(b.len(), 8);
b = BooleanBitfield::new();
b.set_bit(8, true);
assert_eq!(b.to_be_vec(), [1, 0]);
assert_eq!(b.len(), 9);
b.set_bit(8, false);
assert_eq!(b.to_be_vec(), [0, 0]);
assert_eq!(b.len(), 9);
b = BooleanBitfield::new();
b.set_bit(15, true);
assert_eq!(b.to_be_vec(), [128, 0]);
b.set_bit(15, false);
assert_eq!(b.to_be_vec(), [0, 0]);
assert_eq!(b.len(), 16);
b = BooleanBitfield::new();
b.set_bit(8, true);
b.set_bit(15, true);
assert_eq!(b.to_be_vec(), [129, 0]);
b.set_bit(15, false);
assert_eq!(b.to_be_vec(), [1, 0]);
assert_eq!(b.len(), 16);
}
#[test]
fn test_bitfield_get() {
let test_nums = vec![0, 8, 15, 42, 1337];
for i in test_nums {
let mut b = BooleanBitfield::new();
assert_eq!(b.get_bit(i), false);
b.set_bit(i, true);
assert_eq!(b.get_bit(i), true);
b.set_bit(i, true);
for i in 0..100 {
if i < original_len {
assert!(!field.get(i).unwrap());
} else {
assert!(field.get(i).is_err());
}
let previous = field.set(i, true);
if i < original_len {
assert!(!previous.unwrap());
} else {
assert!(previous.is_none());
}
}
}
#[test]
fn test_bitfield_num_true_bits() {
let mut b = BooleanBitfield::new();
assert_eq!(b.num_true_bits(), 0);
b.set_bit(15, true);
assert_eq!(b.num_true_bits(), 1);
b.set_bit(15, false);
assert_eq!(b.num_true_bits(), 0);
b.set_bit(0, true);
b.set_bit(7, true);
b.set_bit(8, true);
b.set_bit(1337, true);
assert_eq!(b.num_true_bits(), 4);
fn test_empty_bitfield() {
let mut field = BooleanBitfield::from_elem(0, false);
let original_len = field.len();
assert_eq!(original_len, 0);
for i in 0..100 {
if i < original_len {
assert!(!field.get(i).unwrap());
} else {
assert!(field.get(i).is_err());
}
let previous = field.set(i, true);
if i < original_len {
assert!(!previous.unwrap());
} else {
assert!(previous.is_none());
}
}
assert_eq!(field.len(), 100);
assert_eq!(field.num_set_bits(), 100);
}
const INPUT: &[u8] = &[0b0000_0010, 0b0000_0010];
#[test]
fn test_get_from_bitfield() {
let field = BooleanBitfield::from_bytes(INPUT);
let unset = field.get(0).unwrap();
assert!(!unset);
let set = field.get(6).unwrap();
assert!(set);
let set = field.get(14).unwrap();
assert!(set);
}
#[test]
fn test_set_for_bitfield() {
let mut field = BooleanBitfield::from_bytes(INPUT);
let previous = field.set(10, true).unwrap();
assert!(!previous);
let previous = field.get(10).unwrap();
assert!(previous);
let previous = field.set(6, false).unwrap();
assert!(previous);
let previous = field.get(6).unwrap();
assert!(!previous);
}
#[test]
fn test_highest_set_bit() {
let field = BooleanBitfield::from_bytes(INPUT);
assert_eq!(field.highest_set_bit().unwrap(), 14);
let field = BooleanBitfield::from_bytes(&[0b0000_0011]);
assert_eq!(field.highest_set_bit().unwrap(), 7);
let field = BooleanBitfield::new();
assert_eq!(field.highest_set_bit(), None);
}
#[test]
fn test_len() {
let field = BooleanBitfield::from_bytes(INPUT);
assert_eq!(field.len(), 16);
let field = BooleanBitfield::new();
assert_eq!(field.len(), 8);
}
#[test]
fn test_num_set_bits() {
let field = BooleanBitfield::from_bytes(INPUT);
assert_eq!(field.num_set_bits(), 2);
let field = BooleanBitfield::new();
assert_eq!(field.num_set_bits(), 0);
}
#[test]
fn test_to_bytes() {
let field = BooleanBitfield::from_bytes(INPUT);
assert_eq!(field.to_bytes(), INPUT);
let field = BooleanBitfield::new();
assert_eq!(field.to_bytes(), vec![0]);
}
#[test]
fn test_out_of_bounds() {
let mut field = BooleanBitfield::from_bytes(INPUT);
let out_of_bounds_index = field.len();
assert!(field.set(out_of_bounds_index, true).is_none());
assert!(field.len() == out_of_bounds_index + 1);
assert!(field.get(out_of_bounds_index).unwrap());
for i in 0..100 {
if i <= out_of_bounds_index {
assert!(field.set(i, true).is_some());
} else {
assert!(field.set(i, true).is_none());
}
}
}
#[test]
fn test_grows_with_false() {
let input_all_set: &[u8] = &[0b1111_1111, 0b1111_1111];
let mut field = BooleanBitfield::from_bytes(input_all_set);
// Define `a` and `b`, where both are out of bounds and `b` is greater than `a`.
let a = field.len();
let b = a + 1;
// Ensure `a` is out-of-bounds for test integrity.
assert!(field.get(a).is_err());
// Set `b` to `true`. Also, for test integrity, ensure it was previously out-of-bounds.
assert!(field.set(b, true).is_none());
// Ensure that `a` wasn't also set to `true` during the grow.
assert_eq!(field.get(a), Ok(false));
assert_eq!(field.get(b), Ok(true));
}
#[test]
fn test_num_bytes() {
let field = BooleanBitfield::from_bytes(INPUT);
assert_eq!(field.num_bytes(), 2);
let field = BooleanBitfield::from_elem(2, true);
assert_eq!(field.num_bytes(), 1);
let field = BooleanBitfield::from_elem(13, true);
assert_eq!(field.num_bytes(), 2);
}
#[test]
fn test_ssz_encode() {
let field = BooleanBitfield::from_elem(5, true);
let mut stream = SszStream::new();
stream.append(&field);
assert_eq!(stream.drain(), vec![0, 0, 0, 1, 31]);
let field = BooleanBitfield::from_elem(18, true);
let mut stream = SszStream::new();
stream.append(&field);
assert_eq!(stream.drain(), vec![0, 0, 0, 3, 255, 255, 3]);
}
#[test]
fn test_ssz_decode() {
let encoded = vec![0, 0, 0, 1, 31];
let (field, _): (BooleanBitfield, usize) = ssz::decode_ssz(&encoded, 0).unwrap();
let expected = BooleanBitfield::from_elem(5, true);
assert_eq!(field, expected);
let encoded = vec![0, 0, 0, 3, 255, 255, 3];
let (field, _): (BooleanBitfield, usize) = ssz::decode_ssz(&encoded, 0).unwrap();
let expected = BooleanBitfield::from_elem(18, true);
assert_eq!(field, expected);
}
}

View File

@ -62,7 +62,7 @@ mod tests {
shard_id: 9,
oblique_parent_hashes: vec![Hash256::from(&vec![14; 32][..])],
shard_block_hash: Hash256::from(&vec![15; 32][..]),
attester_bitfield: Bitfield::from(&vec![17; 42][..]),
attester_bitfield: Bitfield::from_bytes(&vec![17; 42][..]),
justified_slot: 19,
justified_block_hash: Hash256::from(&vec![15; 32][..]),
aggregate_sig: AggregateSignature::new(),
@ -72,7 +72,7 @@ mod tests {
shard_id: 7,
oblique_parent_hashes: vec![Hash256::from(&vec![15; 32][..])],
shard_block_hash: Hash256::from(&vec![14; 32][..]),
attester_bitfield: Bitfield::from(&vec![19; 42][..]),
attester_bitfield: Bitfield::from_bytes(&vec![19; 42][..]),
justified_slot: 15,
justified_block_hash: Hash256::from(&vec![17; 32][..]),
aggregate_sig: AggregateSignature::new(),

View File

@ -32,6 +32,7 @@ pub enum AttestationValidationError {
NonZeroTrailingBits,
BadAggregateSignature,
DBError(String),
OutOfBoundsBitfieldIndex,
}
/// The context against which some attestation should be validated.
@ -242,6 +243,9 @@ impl From<SignatureVerificationError> for AttestationValidationError {
AttestationValidationError::NoPublicKeyForValidator
}
SignatureVerificationError::DBError(s) => AttestationValidationError::DBError(s),
SignatureVerificationError::OutOfBoundsBitfieldIndex => {
AttestationValidationError::OutOfBoundsBitfieldIndex
}
}
}
}

View File

@ -1,7 +1,7 @@
use super::bls::{AggregatePublicKey, AggregateSignature};
use super::db::stores::{ValidatorStore, ValidatorStoreError};
use super::db::ClientDB;
use super::types::Bitfield;
use super::types::{Bitfield, BitfieldError};
use std::collections::HashSet;
#[derive(Debug, PartialEq)]
@ -10,6 +10,13 @@ pub enum SignatureVerificationError {
PublicKeyCorrupt,
NoPublicKeyForValidator,
DBError(String),
OutOfBoundsBitfieldIndex,
}
impl From<BitfieldError> for SignatureVerificationError {
fn from(_error: BitfieldError) -> Self {
SignatureVerificationError::OutOfBoundsBitfieldIndex
}
}
/// Verify an aggregate signature across the supplied message.
@ -33,7 +40,7 @@ where
let mut agg_pub_key = AggregatePublicKey::new();
for i in 0..attestation_indices.len() {
let voted = bitfield.get_bit(i);
let voted = bitfield.get(i)?;
if voted {
/*
* De-reference the attestation index into a canonical ValidatorRecord index.
@ -121,9 +128,9 @@ mod tests {
all_keypairs.append(&mut non_signing_keypairs.clone());
let attestation_indices: Vec<usize> = (0..all_keypairs.len()).collect();
let mut bitfield = Bitfield::new();
let mut bitfield = Bitfield::from_elem(all_keypairs.len(), false);
for i in 0..signing_keypairs.len() {
bitfield.set_bit(i, true);
bitfield.set(i, true).unwrap();
}
let db = Arc::new(MemoryDB::open());
@ -159,7 +166,7 @@ mod tests {
* Add another validator to the bitfield, run validation will all other
* parameters the same and assert that it fails.
*/
bitfield.set_bit(signing_keypairs.len() + 1, true);
bitfield.set(signing_keypairs.len() + 1, true).unwrap();
let voters = verify_aggregate_signature_for_indices(
&message,
&agg_sig,

View File

@ -63,7 +63,7 @@ pub fn generate_attestation(
signing_keys: &[Option<SecretKey>],
block_store: &BeaconBlockStore<MemoryDB>,
) -> AttestationRecord {
let mut attester_bitfield = Bitfield::new();
let mut attester_bitfield = Bitfield::from_elem(signing_keys.len(), false);
let mut aggregate_sig = AggregateSignature::new();
let parent_hashes_slice = {
@ -95,7 +95,7 @@ pub fn generate_attestation(
* and sign the aggregate sig.
*/
if let Some(sk) = secret_key {
attester_bitfield.set_bit(i, true);
attester_bitfield.set(i, true).unwrap();
let sig = Signature::new(&attestation_message, sk);
aggregate_sig.add(&sig);
}

View File

@ -129,16 +129,12 @@ fn test_attestation_validation_invalid_bad_bitfield_length() {
/*
* Extend the bitfield by one byte
*
* This is a little hacky and makes assumptions about the internals
* of the bitfield.
* We take advantage of the fact that setting a bit outside the current bounds will grow the bitvector.
*/
let one_byte_higher = rig.attester_count + 8;
rig.attestation
.attester_bitfield
.set_bit(one_byte_higher, true);
rig.attestation
.attester_bitfield
.set_bit(one_byte_higher, false);
.set(one_byte_higher, false);
let result = rig.context.validate_attestation(&rig.attestation);
assert_eq!(result, Err(AttestationValidationError::BadBitfieldLength));
@ -149,9 +145,7 @@ fn test_attestation_validation_invalid_invalid_bitfield_end_bit() {
let mut rig = generic_rig();
let one_bit_high = rig.attester_count + 1;
rig.attestation
.attester_bitfield
.set_bit(one_bit_high, true);
rig.attestation.attester_bitfield.set(one_bit_high, true);
let result = rig.context.validate_attestation(&rig.attestation);
assert_eq!(
@ -178,9 +172,7 @@ fn test_attestation_validation_invalid_invalid_bitfield_end_bit_with_irreguar_bi
one_bit_high % 8 != 0,
"the test is ineffective in this case."
);
rig.attestation
.attester_bitfield
.set_bit(one_bit_high, true);
rig.attestation.attester_bitfield.set(one_bit_high, true);
let result = rig.context.validate_attestation(&rig.attestation);
assert_eq!(