Add ssz_types crate
This commit is contained in:
parent
1dc9368b13
commit
5943e176cf
@ -19,6 +19,7 @@ members = [
|
||||
"eth2/utils/slot_clock",
|
||||
"eth2/utils/ssz",
|
||||
"eth2/utils/ssz_derive",
|
||||
"eth2/utils/ssz_types",
|
||||
"eth2/utils/swap_or_not_shuffle",
|
||||
"eth2/utils/tree_hash",
|
||||
"eth2/utils/tree_hash_derive",
|
||||
|
19
eth2/utils/ssz_types/Cargo.toml
Normal file
19
eth2/utils/ssz_types/Cargo.toml
Normal file
@ -0,0 +1,19 @@
|
||||
[package]
|
||||
name = "ssz_types"
|
||||
version = "0.1.0"
|
||||
authors = ["Paul Hauner <paul@paulhauner.com>"]
|
||||
edition = "2018"
|
||||
|
||||
[dependencies]
|
||||
bit_reverse = "0.1"
|
||||
bit-vec = "0.5.0"
|
||||
cached_tree_hash = { path = "../cached_tree_hash" }
|
||||
tree_hash = { path = "../tree_hash" }
|
||||
serde = "1.0"
|
||||
serde_derive = "1.0"
|
||||
serde_hex = { path = "../serde_hex" }
|
||||
ssz = { path = "../ssz" }
|
||||
typenum = "1.10"
|
||||
|
||||
[dev-dependencies]
|
||||
serde_yaml = "0.8"
|
229
eth2/utils/ssz_types/src/bit_vector.rs
Normal file
229
eth2/utils/ssz_types/src/bit_vector.rs
Normal file
@ -0,0 +1,229 @@
|
||||
use crate::bitfield::{Bitfield, Error};
|
||||
use crate::{FixedSizedError, VariableSizedError};
|
||||
use std::marker::PhantomData;
|
||||
use typenum::Unsigned;
|
||||
|
||||
/// Provides a common `impl` for structs that wrap a `Bitfield`.
|
||||
macro_rules! common_impl {
|
||||
($name: ident, $error: ident) => {
|
||||
impl<N: Unsigned> $name<N> {
|
||||
/// Create a new bitfield with the given length `initial_len` and all values set to `bit`.
|
||||
///
|
||||
/// Note: if `initial_len` is not a multiple of 8, the remaining bits will be set to `false`
|
||||
/// regardless of `bit`.
|
||||
pub fn from_elem(initial_len: usize, bit: bool) -> Result<Self, $error> {
|
||||
let bitfield = Bitfield::from_elem(initial_len, bit);
|
||||
Self::from_bitfield(bitfield)
|
||||
}
|
||||
|
||||
/// Create a new BitList using the supplied `bytes` as input
|
||||
pub fn from_bytes(bytes: &[u8]) -> Result<Self, $error> {
|
||||
let bitfield = Bitfield::from_bytes(bytes);
|
||||
Self::from_bitfield(bitfield)
|
||||
}
|
||||
|
||||
/// Returns a vector of bytes representing the bitfield
|
||||
pub fn to_bytes(&self) -> Vec<u8> {
|
||||
self.bitfield.to_bytes()
|
||||
}
|
||||
|
||||
/// Read the value of a bit.
|
||||
///
|
||||
/// If the index is in bounds, then result is Ok(value) where value is `true` if the bit is 1 and `false` if the bit is 0.
|
||||
/// If the index is out of bounds, we return an error to that extent.
|
||||
pub fn get(&self, i: usize) -> Result<bool, Error> {
|
||||
self.bitfield.get(i)
|
||||
}
|
||||
|
||||
fn capacity() -> usize {
|
||||
N::to_usize()
|
||||
}
|
||||
|
||||
/// Set the value of a bit.
|
||||
///
|
||||
/// Returns an `Err` if `i` is outside of the maximum permitted length.
|
||||
pub fn set(&mut self, i: usize, value: bool) -> Result<(), VariableSizedError> {
|
||||
if i < Self::capacity() {
|
||||
self.bitfield.set(i, value);
|
||||
Ok(())
|
||||
} else {
|
||||
Err(VariableSizedError::ExceedsMaxLength {
|
||||
len: Self::capacity() + 1,
|
||||
max_len: Self::capacity(),
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the number of bits in this bitfield.
|
||||
pub fn len(&self) -> usize {
|
||||
self.bitfield.len()
|
||||
}
|
||||
|
||||
/// Returns true if `self.len() == 0`
|
||||
pub fn is_empty(&self) -> bool {
|
||||
self.bitfield.is_empty()
|
||||
}
|
||||
|
||||
/// Returns true if all bits are set to 0.
|
||||
pub fn is_zero(&self) -> bool {
|
||||
self.bitfield.is_zero()
|
||||
}
|
||||
|
||||
/// Returns the number of bytes required to represent this bitfield.
|
||||
pub fn num_bytes(&self) -> usize {
|
||||
self.bitfield.num_bytes()
|
||||
}
|
||||
|
||||
/// Returns the number of `1` bits in the bitfield
|
||||
pub fn num_set_bits(&self) -> usize {
|
||||
self.bitfield.num_set_bits()
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
/// Emulates a SSZ `Bitvector`.
|
||||
///
|
||||
/// An ordered, heap-allocated, fixed-length, collection of `bool` values, with `N` values.
|
||||
pub struct BitVector<N> {
|
||||
bitfield: Bitfield,
|
||||
_phantom: PhantomData<N>,
|
||||
}
|
||||
|
||||
common_impl!(BitVector, FixedSizedError);
|
||||
|
||||
impl<N: Unsigned> BitVector<N> {
|
||||
/// Create a new bitfield.
|
||||
pub fn new() -> Self {
|
||||
Self {
|
||||
bitfield: Bitfield::with_capacity(N::to_usize()),
|
||||
_phantom: PhantomData,
|
||||
}
|
||||
}
|
||||
|
||||
fn from_bitfield(bitfield: Bitfield) -> Result<Self, FixedSizedError> {
|
||||
if bitfield.len() != Self::capacity() {
|
||||
Err(FixedSizedError::InvalidLength {
|
||||
len: bitfield.len(),
|
||||
fixed_len: Self::capacity(),
|
||||
})
|
||||
} else {
|
||||
Ok(Self {
|
||||
bitfield,
|
||||
_phantom: PhantomData,
|
||||
})
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Emulates a SSZ `Bitlist`.
|
||||
///
|
||||
/// An ordered, heap-allocated, variable-length, collection of `bool` values, limited to `N`
|
||||
/// values.
|
||||
pub struct BitList<N> {
|
||||
bitfield: Bitfield,
|
||||
_phantom: PhantomData<N>,
|
||||
}
|
||||
|
||||
common_impl!(BitList, VariableSizedError);
|
||||
|
||||
impl<N: Unsigned> BitList<N> {
|
||||
/// Create a new, empty BitList.
|
||||
pub fn new() -> Self {
|
||||
Self {
|
||||
bitfield: Bitfield::default(),
|
||||
_phantom: PhantomData,
|
||||
}
|
||||
}
|
||||
|
||||
/// Create a new BitList list with `initial_len` bits all set to `false`.
|
||||
pub fn with_capacity(initial_len: usize) -> Result<Self, VariableSizedError> {
|
||||
Self::from_elem(initial_len, false)
|
||||
}
|
||||
|
||||
/// The maximum possible number of bits.
|
||||
pub fn max_len() -> usize {
|
||||
N::to_usize()
|
||||
}
|
||||
|
||||
fn from_bitfield(bitfield: Bitfield) -> Result<Self, VariableSizedError> {
|
||||
if bitfield.len() > Self::max_len() {
|
||||
Err(VariableSizedError::ExceedsMaxLength {
|
||||
len: bitfield.len(),
|
||||
max_len: Self::max_len(),
|
||||
})
|
||||
} else {
|
||||
Ok(Self {
|
||||
bitfield,
|
||||
_phantom: PhantomData,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
/// Compute the intersection (binary-and) of this bitfield with another
|
||||
///
|
||||
/// ## Panics
|
||||
///
|
||||
/// If `self` and `other` have different lengths.
|
||||
pub fn intersection(&self, other: &Self) -> Self {
|
||||
assert_eq!(self.len(), other.len());
|
||||
let bitfield = self.bitfield.intersection(&other.bitfield);
|
||||
Self::from_bitfield(bitfield).expect(
|
||||
"An intersection of two same-sized sets cannot be larger than one of the initial sets",
|
||||
)
|
||||
}
|
||||
|
||||
/// Like `intersection` but in-place (updates `self`).
|
||||
///
|
||||
/// ## Panics
|
||||
///
|
||||
/// If `self` and `other` have different lengths.
|
||||
pub fn intersection_inplace(&mut self, other: &Self) {
|
||||
self.bitfield.intersection_inplace(&other.bitfield);
|
||||
}
|
||||
|
||||
/// Compute the union (binary-or) of this bitfield with another. Lengths must match.
|
||||
///
|
||||
/// ## Panics
|
||||
///
|
||||
/// If `self` and `other` have different lengths.
|
||||
pub fn union(&self, other: &Self) -> Self {
|
||||
assert_eq!(self.len(), other.len());
|
||||
let bitfield = self.bitfield.union(&other.bitfield);
|
||||
Self::from_bitfield(bitfield)
|
||||
.expect("A union of two same-sized sets cannot be larger than one of the initial sets")
|
||||
}
|
||||
|
||||
/// Like `union` but in-place (updates `self`).
|
||||
///
|
||||
/// ## Panics
|
||||
///
|
||||
/// If `self` and `other` have different lengths.
|
||||
pub fn union_inplace(&mut self, other: &Self) {
|
||||
self.bitfield.union_inplace(&other.bitfield)
|
||||
}
|
||||
|
||||
/// Compute the difference (binary-minus) of this bitfield with another. Lengths must match.
|
||||
///
|
||||
/// Computes `self - other`.
|
||||
///
|
||||
/// ## Panics
|
||||
///
|
||||
/// If `self` and `other` have different lengths.
|
||||
pub fn difference(&self, other: &Self) -> Self {
|
||||
assert_eq!(self.len(), other.len());
|
||||
let bitfield = self.bitfield.difference(&other.bitfield);
|
||||
Self::from_bitfield(bitfield).expect(
|
||||
"A difference of two same-sized sets cannot be larger than one of the initial sets",
|
||||
)
|
||||
}
|
||||
|
||||
/// Like `difference` but in-place (updates `self`).
|
||||
///
|
||||
/// ## Panics
|
||||
///
|
||||
/// If `self` and `other` have different lengths.
|
||||
pub fn difference_inplace(&mut self, other: &Self) {
|
||||
self.bitfield.difference_inplace(&other.bitfield)
|
||||
}
|
||||
}
|
570
eth2/utils/ssz_types/src/bitfield.rs
Normal file
570
eth2/utils/ssz_types/src/bitfield.rs
Normal file
@ -0,0 +1,570 @@
|
||||
use bit_reverse::LookupReverse;
|
||||
use bit_vec::BitVec;
|
||||
use cached_tree_hash::cached_tree_hash_bytes_as_list;
|
||||
use serde::de::{Deserialize, Deserializer};
|
||||
use serde::ser::{Serialize, Serializer};
|
||||
use serde_hex::{encode, PrefixedHexVisitor};
|
||||
use ssz::{Decode, Encode};
|
||||
use std::cmp;
|
||||
use std::default;
|
||||
|
||||
/// A Bitfield represents a set of booleans compactly stored as a vector of bits.
|
||||
/// The Bitfield is given a fixed size during construction. Reads outside of the current size return an out-of-bounds error. Writes outside of the current size expand the size of the set.
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct Bitfield(BitVec);
|
||||
|
||||
/// Error represents some reason a request against a bitfield was not satisfied
|
||||
#[derive(Debug, PartialEq)]
|
||||
pub enum Error {
|
||||
/// OutOfBounds refers to indexing into a bitfield where no bits exist; returns the illegal index and the current size of the bitfield, respectively
|
||||
OutOfBounds(usize, usize),
|
||||
}
|
||||
|
||||
impl Bitfield {
|
||||
pub fn with_capacity(initial_len: usize) -> Self {
|
||||
Self::from_elem(initial_len, false)
|
||||
}
|
||||
|
||||
/// Create a new bitfield with the given length `initial_len` and all values set to `bit`.
|
||||
///
|
||||
/// Note: if `initial_len` is not a multiple of 8, the remaining bits will be set to `false`
|
||||
/// regardless of `bit`.
|
||||
pub fn from_elem(initial_len: usize, bit: bool) -> Self {
|
||||
// BitVec can panic if we don't set the len to be a multiple of 8.
|
||||
let full_len = ((initial_len + 7) / 8) * 8;
|
||||
let mut bitfield = BitVec::from_elem(full_len, false);
|
||||
|
||||
if bit {
|
||||
for i in 0..initial_len {
|
||||
bitfield.set(i, true);
|
||||
}
|
||||
}
|
||||
|
||||
Self { 0: bitfield }
|
||||
}
|
||||
|
||||
/// Create a new bitfield using the supplied `bytes` as input
|
||||
pub fn from_bytes(bytes: &[u8]) -> Self {
|
||||
Self {
|
||||
0: BitVec::from_bytes(&reverse_bit_order(bytes.to_vec())),
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns a vector of bytes representing the bitfield
|
||||
pub fn to_bytes(&self) -> Vec<u8> {
|
||||
reverse_bit_order(self.0.to_bytes().to_vec())
|
||||
}
|
||||
|
||||
/// Read the value of a bit.
|
||||
///
|
||||
/// If the index is in bounds, then result is Ok(value) where value is `true` if the bit is 1 and `false` if the bit is 0.
|
||||
/// If the index is out of bounds, we return an error to that extent.
|
||||
pub fn get(&self, i: usize) -> Result<bool, Error> {
|
||||
match self.0.get(i) {
|
||||
Some(value) => Ok(value),
|
||||
None => Err(Error::OutOfBounds(i, self.0.len())),
|
||||
}
|
||||
}
|
||||
|
||||
/// Set the value of a bit.
|
||||
///
|
||||
/// If the index is out of bounds, we expand the size of the underlying set to include the new index.
|
||||
/// Returns the previous value if there was one.
|
||||
pub fn set(&mut self, i: usize, value: bool) -> Option<bool> {
|
||||
let previous = match self.get(i) {
|
||||
Ok(previous) => Some(previous),
|
||||
Err(Error::OutOfBounds(_, len)) => {
|
||||
let new_len = i - len + 1;
|
||||
self.0.grow(new_len, false);
|
||||
None
|
||||
}
|
||||
};
|
||||
self.0.set(i, value);
|
||||
previous
|
||||
}
|
||||
|
||||
/// Returns the number of bits in this bitfield.
|
||||
pub fn len(&self) -> usize {
|
||||
self.0.len()
|
||||
}
|
||||
|
||||
/// Returns true if `self.len() == 0`
|
||||
pub fn is_empty(&self) -> bool {
|
||||
self.len() == 0
|
||||
}
|
||||
|
||||
/// Returns true if all bits are set to 0.
|
||||
pub fn is_zero(&self) -> bool {
|
||||
self.0.none()
|
||||
}
|
||||
|
||||
/// Returns the number of bytes required to represent this bitfield.
|
||||
pub fn num_bytes(&self) -> usize {
|
||||
self.to_bytes().len()
|
||||
}
|
||||
|
||||
/// Returns the number of `1` bits in the bitfield
|
||||
pub fn num_set_bits(&self) -> usize {
|
||||
self.0.iter().filter(|&bit| bit).count()
|
||||
}
|
||||
|
||||
/// Compute the intersection (binary-and) of this bitfield with another. Lengths must match.
|
||||
pub fn intersection(&self, other: &Self) -> Self {
|
||||
let mut res = self.clone();
|
||||
res.intersection_inplace(other);
|
||||
res
|
||||
}
|
||||
|
||||
/// Like `intersection` but in-place (updates `self`).
|
||||
pub fn intersection_inplace(&mut self, other: &Self) {
|
||||
self.0.intersect(&other.0);
|
||||
}
|
||||
|
||||
/// Compute the union (binary-or) of this bitfield with another. Lengths must match.
|
||||
pub fn union(&self, other: &Self) -> Self {
|
||||
let mut res = self.clone();
|
||||
res.union_inplace(other);
|
||||
res
|
||||
}
|
||||
|
||||
/// Like `union` but in-place (updates `self`).
|
||||
pub fn union_inplace(&mut self, other: &Self) {
|
||||
self.0.union(&other.0);
|
||||
}
|
||||
|
||||
/// Compute the difference (binary-minus) of this bitfield with another. Lengths must match.
|
||||
///
|
||||
/// Computes `self - other`.
|
||||
pub fn difference(&self, other: &Self) -> Self {
|
||||
let mut res = self.clone();
|
||||
res.difference_inplace(other);
|
||||
res
|
||||
}
|
||||
|
||||
/// Like `difference` but in-place (updates `self`).
|
||||
pub fn difference_inplace(&mut self, other: &Self) {
|
||||
self.0.difference(&other.0);
|
||||
}
|
||||
}
|
||||
|
||||
impl default::Default for Bitfield {
|
||||
/// default provides the "empty" bitfield
|
||||
/// Note: the empty bitfield is set to the `0` byte.
|
||||
fn default() -> Self {
|
||||
Self::from_elem(8, false)
|
||||
}
|
||||
}
|
||||
|
||||
impl cmp::PartialEq for Bitfield {
|
||||
/// Determines equality by comparing the `ssz` encoding of the two candidates.
|
||||
/// This method ensures that the presence of high-order (empty) bits in the highest byte do not exclude equality when they are in fact representing the same information.
|
||||
fn eq(&self, other: &Self) -> bool {
|
||||
ssz::ssz_encode(self) == ssz::ssz_encode(other)
|
||||
}
|
||||
}
|
||||
|
||||
/// Create a new bitfield that is a union of two other bitfields.
|
||||
///
|
||||
/// For example `union(0101, 1000) == 1101`
|
||||
// TODO: length-independent intersection for BitAnd
|
||||
impl std::ops::BitOr for Bitfield {
|
||||
type Output = Self;
|
||||
|
||||
fn bitor(self, other: Self) -> Self {
|
||||
let (biggest, smallest) = if self.len() > other.len() {
|
||||
(&self, &other)
|
||||
} else {
|
||||
(&other, &self)
|
||||
};
|
||||
let mut new = biggest.clone();
|
||||
for i in 0..smallest.len() {
|
||||
if let Ok(true) = smallest.get(i) {
|
||||
new.set(i, true);
|
||||
}
|
||||
}
|
||||
new
|
||||
}
|
||||
}
|
||||
|
||||
impl Encode for Bitfield {
|
||||
fn is_ssz_fixed_len() -> bool {
|
||||
false
|
||||
}
|
||||
|
||||
fn ssz_append(&self, buf: &mut Vec<u8>) {
|
||||
buf.append(&mut self.to_bytes())
|
||||
}
|
||||
}
|
||||
|
||||
impl Decode for Bitfield {
|
||||
fn is_ssz_fixed_len() -> bool {
|
||||
false
|
||||
}
|
||||
|
||||
fn from_ssz_bytes(bytes: &[u8]) -> Result<Self, ssz::DecodeError> {
|
||||
Ok(Bitfield::from_bytes(bytes))
|
||||
}
|
||||
}
|
||||
|
||||
// Reverse the bit order of a whole byte vec, so that the ith bit
|
||||
// of the input vec is placed in the (N - i)th bit of the output vec.
|
||||
// This function is necessary for converting bitfields to and from YAML,
|
||||
// as the BitVec library and the hex-parser use opposing bit orders.
|
||||
fn reverse_bit_order(mut bytes: Vec<u8>) -> Vec<u8> {
|
||||
bytes.reverse();
|
||||
bytes.into_iter().map(LookupReverse::swap_bits).collect()
|
||||
}
|
||||
|
||||
impl Serialize for Bitfield {
|
||||
/// Serde serialization is compliant with the Ethereum YAML test format.
|
||||
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
|
||||
where
|
||||
S: Serializer,
|
||||
{
|
||||
serializer.serialize_str(&encode(self.to_bytes()))
|
||||
}
|
||||
}
|
||||
|
||||
impl<'de> Deserialize<'de> for Bitfield {
|
||||
/// Serde serialization is compliant with the Ethereum YAML test format.
|
||||
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
|
||||
where
|
||||
D: Deserializer<'de>,
|
||||
{
|
||||
// We reverse the bit-order so that the BitVec library can read its 0th
|
||||
// bit from the end of the hex string, e.g.
|
||||
// "0xef01" => [0xef, 0x01] => [0b1000_0000, 0b1111_1110]
|
||||
let bytes = deserializer.deserialize_str(PrefixedHexVisitor)?;
|
||||
Ok(Bitfield::from_bytes(&bytes))
|
||||
}
|
||||
}
|
||||
|
||||
impl tree_hash::TreeHash for Bitfield {
|
||||
fn tree_hash_type() -> tree_hash::TreeHashType {
|
||||
tree_hash::TreeHashType::List
|
||||
}
|
||||
|
||||
fn tree_hash_packed_encoding(&self) -> Vec<u8> {
|
||||
unreachable!("List should never be packed.")
|
||||
}
|
||||
|
||||
fn tree_hash_packing_factor() -> usize {
|
||||
unreachable!("List should never be packed.")
|
||||
}
|
||||
|
||||
fn tree_hash_root(&self) -> Vec<u8> {
|
||||
self.to_bytes().tree_hash_root()
|
||||
}
|
||||
}
|
||||
|
||||
cached_tree_hash_bytes_as_list!(Bitfield);
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use serde_yaml;
|
||||
use ssz::ssz_encode;
|
||||
use tree_hash::TreeHash;
|
||||
|
||||
impl Bitfield {
|
||||
/// Create a new bitfield.
|
||||
pub fn new() -> Self {
|
||||
Default::default()
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
pub fn test_cached_tree_hash() {
|
||||
let original = Bitfield::from_bytes(&vec![18; 12][..]);
|
||||
|
||||
let mut cache = cached_tree_hash::TreeHashCache::new(&original).unwrap();
|
||||
|
||||
assert_eq!(
|
||||
cache.tree_hash_root().unwrap().to_vec(),
|
||||
original.tree_hash_root()
|
||||
);
|
||||
|
||||
let modified = Bitfield::from_bytes(&vec![2; 1][..]);
|
||||
|
||||
cache.update(&modified).unwrap();
|
||||
|
||||
assert_eq!(
|
||||
cache.tree_hash_root().unwrap().to_vec(),
|
||||
modified.tree_hash_root()
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_new_bitfield() {
|
||||
let mut field = Bitfield::new();
|
||||
let original_len = field.len();
|
||||
|
||||
for i in 0..100 {
|
||||
if i < original_len {
|
||||
assert!(!field.get(i).unwrap());
|
||||
} else {
|
||||
assert!(field.get(i).is_err());
|
||||
}
|
||||
let previous = field.set(i, true);
|
||||
if i < original_len {
|
||||
assert!(!previous.unwrap());
|
||||
} else {
|
||||
assert!(previous.is_none());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_empty_bitfield() {
|
||||
let mut field = Bitfield::from_elem(0, false);
|
||||
let original_len = field.len();
|
||||
|
||||
assert_eq!(original_len, 0);
|
||||
|
||||
for i in 0..100 {
|
||||
if i < original_len {
|
||||
assert!(!field.get(i).unwrap());
|
||||
} else {
|
||||
assert!(field.get(i).is_err());
|
||||
}
|
||||
let previous = field.set(i, true);
|
||||
if i < original_len {
|
||||
assert!(!previous.unwrap());
|
||||
} else {
|
||||
assert!(previous.is_none());
|
||||
}
|
||||
}
|
||||
|
||||
assert_eq!(field.len(), 100);
|
||||
assert_eq!(field.num_set_bits(), 100);
|
||||
}
|
||||
|
||||
const INPUT: &[u8] = &[0b0100_0000, 0b0100_0000];
|
||||
|
||||
#[test]
|
||||
fn test_get_from_bitfield() {
|
||||
let field = Bitfield::from_bytes(INPUT);
|
||||
let unset = field.get(0).unwrap();
|
||||
assert!(!unset);
|
||||
let set = field.get(6).unwrap();
|
||||
assert!(set);
|
||||
let set = field.get(14).unwrap();
|
||||
assert!(set);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_set_for_bitfield() {
|
||||
let mut field = Bitfield::from_bytes(INPUT);
|
||||
let previous = field.set(10, true).unwrap();
|
||||
assert!(!previous);
|
||||
let previous = field.get(10).unwrap();
|
||||
assert!(previous);
|
||||
let previous = field.set(6, false).unwrap();
|
||||
assert!(previous);
|
||||
let previous = field.get(6).unwrap();
|
||||
assert!(!previous);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_len() {
|
||||
let field = Bitfield::from_bytes(INPUT);
|
||||
assert_eq!(field.len(), 16);
|
||||
|
||||
let field = Bitfield::new();
|
||||
assert_eq!(field.len(), 8);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_num_set_bits() {
|
||||
let field = Bitfield::from_bytes(INPUT);
|
||||
assert_eq!(field.num_set_bits(), 2);
|
||||
|
||||
let field = Bitfield::new();
|
||||
assert_eq!(field.num_set_bits(), 0);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_to_bytes() {
|
||||
let field = Bitfield::from_bytes(INPUT);
|
||||
assert_eq!(field.to_bytes(), INPUT);
|
||||
|
||||
let field = Bitfield::new();
|
||||
assert_eq!(field.to_bytes(), vec![0]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_out_of_bounds() {
|
||||
let mut field = Bitfield::from_bytes(INPUT);
|
||||
|
||||
let out_of_bounds_index = field.len();
|
||||
assert!(field.set(out_of_bounds_index, true).is_none());
|
||||
assert!(field.len() == out_of_bounds_index + 1);
|
||||
assert!(field.get(out_of_bounds_index).unwrap());
|
||||
|
||||
for i in 0..100 {
|
||||
if i <= out_of_bounds_index {
|
||||
assert!(field.set(i, true).is_some());
|
||||
} else {
|
||||
assert!(field.set(i, true).is_none());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_grows_with_false() {
|
||||
let input_all_set: &[u8] = &[0b1111_1111, 0b1111_1111];
|
||||
let mut field = Bitfield::from_bytes(input_all_set);
|
||||
|
||||
// Define `a` and `b`, where both are out of bounds and `b` is greater than `a`.
|
||||
let a = field.len();
|
||||
let b = a + 1;
|
||||
|
||||
// Ensure `a` is out-of-bounds for test integrity.
|
||||
assert!(field.get(a).is_err());
|
||||
|
||||
// Set `b` to `true`. Also, for test integrity, ensure it was previously out-of-bounds.
|
||||
assert!(field.set(b, true).is_none());
|
||||
|
||||
// Ensure that `a` wasn't also set to `true` during the grow.
|
||||
assert_eq!(field.get(a), Ok(false));
|
||||
assert_eq!(field.get(b), Ok(true));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_num_bytes() {
|
||||
let field = Bitfield::from_bytes(INPUT);
|
||||
assert_eq!(field.num_bytes(), 2);
|
||||
|
||||
let field = Bitfield::from_elem(2, true);
|
||||
assert_eq!(field.num_bytes(), 1);
|
||||
|
||||
let field = Bitfield::from_elem(13, true);
|
||||
assert_eq!(field.num_bytes(), 2);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_ssz_encode() {
|
||||
let field = create_test_bitfield();
|
||||
assert_eq!(field.as_ssz_bytes(), vec![0b0000_0011, 0b1000_0111]);
|
||||
|
||||
let field = Bitfield::from_elem(18, true);
|
||||
assert_eq!(
|
||||
field.as_ssz_bytes(),
|
||||
vec![0b0000_0011, 0b1111_1111, 0b1111_1111]
|
||||
);
|
||||
|
||||
let mut b = Bitfield::new();
|
||||
b.set(1, true);
|
||||
assert_eq!(ssz_encode(&b), vec![0b0000_0010]);
|
||||
}
|
||||
|
||||
fn create_test_bitfield() -> Bitfield {
|
||||
let count = 2 * 8;
|
||||
let mut field = Bitfield::with_capacity(count);
|
||||
|
||||
let indices = &[0, 1, 2, 7, 8, 9];
|
||||
for &i in indices {
|
||||
field.set(i, true);
|
||||
}
|
||||
field
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_ssz_decode() {
|
||||
let encoded = vec![0b0000_0011, 0b1000_0111];
|
||||
let field = Bitfield::from_ssz_bytes(&encoded).unwrap();
|
||||
let expected = create_test_bitfield();
|
||||
assert_eq!(field, expected);
|
||||
|
||||
let encoded = vec![255, 255, 3];
|
||||
let field = Bitfield::from_ssz_bytes(&encoded).unwrap();
|
||||
let expected = Bitfield::from_bytes(&[255, 255, 3]);
|
||||
assert_eq!(field, expected);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_serialize_deserialize() {
|
||||
use serde_yaml::Value;
|
||||
|
||||
let data: &[(_, &[_])] = &[
|
||||
("0x01", &[0b00000001]),
|
||||
("0xf301", &[0b11110011, 0b00000001]),
|
||||
];
|
||||
for (hex_data, bytes) in data {
|
||||
let bitfield = Bitfield::from_bytes(bytes);
|
||||
assert_eq!(
|
||||
serde_yaml::from_str::<Bitfield>(hex_data).unwrap(),
|
||||
bitfield
|
||||
);
|
||||
assert_eq!(
|
||||
serde_yaml::to_value(&bitfield).unwrap(),
|
||||
Value::String(hex_data.to_string())
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_ssz_round_trip() {
|
||||
let original = Bitfield::from_bytes(&vec![18; 12][..]);
|
||||
let ssz = ssz_encode(&original);
|
||||
let decoded = Bitfield::from_ssz_bytes(&ssz).unwrap();
|
||||
assert_eq!(original, decoded);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_bitor() {
|
||||
let a = Bitfield::from_bytes(&vec![2, 8, 1][..]);
|
||||
let b = Bitfield::from_bytes(&vec![4, 8, 16][..]);
|
||||
let c = Bitfield::from_bytes(&vec![6, 8, 17][..]);
|
||||
assert_eq!(c, a | b);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_is_zero() {
|
||||
let yes_data: &[&[u8]] = &[&[], &[0], &[0, 0], &[0, 0, 0]];
|
||||
for bytes in yes_data {
|
||||
assert!(Bitfield::from_bytes(bytes).is_zero());
|
||||
}
|
||||
let no_data: &[&[u8]] = &[&[1], &[6], &[0, 1], &[0, 0, 1], &[0, 0, 255]];
|
||||
for bytes in no_data {
|
||||
assert!(!Bitfield::from_bytes(bytes).is_zero());
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_intersection() {
|
||||
let a = Bitfield::from_bytes(&[0b1100, 0b0001]);
|
||||
let b = Bitfield::from_bytes(&[0b1011, 0b1001]);
|
||||
let c = Bitfield::from_bytes(&[0b1000, 0b0001]);
|
||||
assert_eq!(a.intersection(&b), c);
|
||||
assert_eq!(b.intersection(&a), c);
|
||||
assert_eq!(a.intersection(&c), c);
|
||||
assert_eq!(b.intersection(&c), c);
|
||||
assert_eq!(a.intersection(&a), a);
|
||||
assert_eq!(b.intersection(&b), b);
|
||||
assert_eq!(c.intersection(&c), c);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_union() {
|
||||
let a = Bitfield::from_bytes(&[0b1100, 0b0001]);
|
||||
let b = Bitfield::from_bytes(&[0b1011, 0b1001]);
|
||||
let c = Bitfield::from_bytes(&[0b1111, 0b1001]);
|
||||
assert_eq!(a.union(&b), c);
|
||||
assert_eq!(b.union(&a), c);
|
||||
assert_eq!(a.union(&a), a);
|
||||
assert_eq!(b.union(&b), b);
|
||||
assert_eq!(c.union(&c), c);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_difference() {
|
||||
let a = Bitfield::from_bytes(&[0b1100, 0b0001]);
|
||||
let b = Bitfield::from_bytes(&[0b1011, 0b1001]);
|
||||
let a_b = Bitfield::from_bytes(&[0b0100, 0b0000]);
|
||||
let b_a = Bitfield::from_bytes(&[0b0011, 0b1000]);
|
||||
assert_eq!(a.difference(&b), a_b);
|
||||
assert_eq!(b.difference(&a), b_a);
|
||||
assert!(a.difference(&a).is_zero());
|
||||
}
|
||||
}
|
335
eth2/utils/ssz_types/src/fixed_vector.rs
Normal file
335
eth2/utils/ssz_types/src/fixed_vector.rs
Normal file
@ -0,0 +1,335 @@
|
||||
use crate::FixedSizedError as Error;
|
||||
use serde_derive::{Deserialize, Serialize};
|
||||
use std::marker::PhantomData;
|
||||
use std::ops::{Deref, Index, IndexMut};
|
||||
use std::slice::SliceIndex;
|
||||
use typenum::Unsigned;
|
||||
|
||||
pub use typenum;
|
||||
|
||||
/// Emulates a SSZ `Vector` (distinct from a Rust `Vec`).
|
||||
///
|
||||
/// An ordered, heap-allocated, fixed-length, homogeneous collection of `T`, with `N` values.
|
||||
///
|
||||
/// This struct is backed by a Rust `Vec` but constrained such that it must be instantiated with a
|
||||
/// fixed number of elements and you may not add or remove elements, only modify.
|
||||
///
|
||||
/// The length of this struct is fixed at the type-level using
|
||||
/// [typenum](https://crates.io/crates/typenum).
|
||||
///
|
||||
/// ## Note
|
||||
///
|
||||
/// Whilst it is possible with this library, SSZ declares that a `FixedVector` with a length of `0`
|
||||
/// is illegal.
|
||||
///
|
||||
/// ## Example
|
||||
///
|
||||
/// ```
|
||||
/// use ssz_types::{FixedVector, typenum};
|
||||
///
|
||||
/// let base: Vec<u64> = vec![1, 2, 3, 4];
|
||||
///
|
||||
/// // Create a `FixedVector` from a `Vec` that has the expected length.
|
||||
/// let exact: FixedVector<_, typenum::U4> = FixedVector::from(base.clone());
|
||||
/// assert_eq!(&exact[..], &[1, 2, 3, 4]);
|
||||
///
|
||||
/// // Create a `FixedVector` from a `Vec` that is too long and the `Vec` is truncated.
|
||||
/// let short: FixedVector<_, typenum::U3> = FixedVector::from(base.clone());
|
||||
/// assert_eq!(&short[..], &[1, 2, 3]);
|
||||
///
|
||||
/// // Create a `FixedVector` from a `Vec` that is too short and the missing values are created
|
||||
/// // using `std::default::Default`.
|
||||
/// let long: FixedVector<_, typenum::U5> = FixedVector::from(base);
|
||||
/// assert_eq!(&long[..], &[1, 2, 3, 4, 0]);
|
||||
/// ```
|
||||
#[derive(Debug, PartialEq, Clone, Serialize, Deserialize)]
|
||||
#[serde(transparent)]
|
||||
pub struct FixedVector<T, N> {
|
||||
vec: Vec<T>,
|
||||
_phantom: PhantomData<N>,
|
||||
}
|
||||
|
||||
impl<T, N: Unsigned> FixedVector<T, N> {
|
||||
/// Returns `Some` if the given `vec` equals the fixed length of `Self`. Otherwise returns
|
||||
/// `None`.
|
||||
pub fn new(vec: Vec<T>) -> Result<Self, Error> {
|
||||
if vec.len() == Self::capacity() {
|
||||
Ok(Self {
|
||||
vec,
|
||||
_phantom: PhantomData,
|
||||
})
|
||||
} else {
|
||||
Err(Error::InvalidLength {
|
||||
len: vec.len(),
|
||||
fixed_len: Self::capacity(),
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
/// Identical to `self.capacity`, returns the type-level constant length.
|
||||
///
|
||||
/// Exists for compatibility with `Vec`.
|
||||
pub fn len(&self) -> usize {
|
||||
self.vec.len()
|
||||
}
|
||||
|
||||
/// True if the type-level constant length of `self` is zero.
|
||||
pub fn is_empty(&self) -> bool {
|
||||
self.len() == 0
|
||||
}
|
||||
|
||||
/// Returns the type-level constant length.
|
||||
pub fn capacity() -> usize {
|
||||
N::to_usize()
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Default, N: Unsigned> From<Vec<T>> for FixedVector<T, N> {
|
||||
fn from(mut vec: Vec<T>) -> Self {
|
||||
vec.resize_with(Self::capacity(), Default::default);
|
||||
|
||||
Self {
|
||||
vec,
|
||||
_phantom: PhantomData,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T, N: Unsigned> Into<Vec<T>> for FixedVector<T, N> {
|
||||
fn into(self) -> Vec<T> {
|
||||
self.vec
|
||||
}
|
||||
}
|
||||
|
||||
impl<T, N: Unsigned> Default for FixedVector<T, N> {
|
||||
fn default() -> Self {
|
||||
Self {
|
||||
vec: Vec::default(),
|
||||
_phantom: PhantomData,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T, N: Unsigned, I: SliceIndex<[T]>> Index<I> for FixedVector<T, N> {
|
||||
type Output = I::Output;
|
||||
|
||||
#[inline]
|
||||
fn index(&self, index: I) -> &Self::Output {
|
||||
Index::index(&self.vec, index)
|
||||
}
|
||||
}
|
||||
|
||||
impl<T, N: Unsigned, I: SliceIndex<[T]>> IndexMut<I> for FixedVector<T, N> {
|
||||
#[inline]
|
||||
fn index_mut(&mut self, index: I) -> &mut Self::Output {
|
||||
IndexMut::index_mut(&mut self.vec, index)
|
||||
}
|
||||
}
|
||||
|
||||
impl<T, N: Unsigned> Deref for FixedVector<T, N> {
|
||||
type Target = [T];
|
||||
|
||||
fn deref(&self) -> &[T] {
|
||||
&self.vec[..]
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod test {
|
||||
use super::*;
|
||||
use typenum::*;
|
||||
|
||||
#[test]
|
||||
fn new() {
|
||||
let vec = vec![42; 5];
|
||||
let fixed: Result<FixedVector<u64, U4>, _> = FixedVector::new(vec.clone());
|
||||
assert!(fixed.is_err());
|
||||
|
||||
let vec = vec![42; 3];
|
||||
let fixed: Result<FixedVector<u64, U4>, _> = FixedVector::new(vec.clone());
|
||||
assert!(fixed.is_err());
|
||||
|
||||
let vec = vec![42; 4];
|
||||
let fixed: Result<FixedVector<u64, U4>, _> = FixedVector::new(vec.clone());
|
||||
assert!(fixed.is_ok());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn indexing() {
|
||||
let vec = vec![1, 2];
|
||||
|
||||
let mut fixed: FixedVector<u64, U8192> = vec.clone().into();
|
||||
|
||||
assert_eq!(fixed[0], 1);
|
||||
assert_eq!(&fixed[0..1], &vec[0..1]);
|
||||
assert_eq!((&fixed[..]).len(), 8192);
|
||||
|
||||
fixed[1] = 3;
|
||||
assert_eq!(fixed[1], 3);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn length() {
|
||||
let vec = vec![42; 5];
|
||||
let fixed: FixedVector<u64, U4> = FixedVector::from(vec.clone());
|
||||
assert_eq!(&fixed[..], &vec[0..4]);
|
||||
|
||||
let vec = vec![42; 3];
|
||||
let fixed: FixedVector<u64, U4> = FixedVector::from(vec.clone());
|
||||
assert_eq!(&fixed[0..3], &vec[..]);
|
||||
assert_eq!(&fixed[..], &vec![42, 42, 42, 0][..]);
|
||||
|
||||
let vec = vec![];
|
||||
let fixed: FixedVector<u64, U4> = FixedVector::from(vec.clone());
|
||||
assert_eq!(&fixed[..], &vec![0, 0, 0, 0][..]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn deref() {
|
||||
let vec = vec![0, 2, 4, 6];
|
||||
let fixed: FixedVector<u64, U4> = FixedVector::from(vec);
|
||||
|
||||
assert_eq!(fixed.get(0), Some(&0));
|
||||
assert_eq!(fixed.get(3), Some(&6));
|
||||
assert_eq!(fixed.get(4), None);
|
||||
}
|
||||
}
|
||||
|
||||
impl<T, N: Unsigned> tree_hash::TreeHash for FixedVector<T, N>
|
||||
where
|
||||
T: tree_hash::TreeHash,
|
||||
{
|
||||
fn tree_hash_type() -> tree_hash::TreeHashType {
|
||||
tree_hash::TreeHashType::Vector
|
||||
}
|
||||
|
||||
fn tree_hash_packed_encoding(&self) -> Vec<u8> {
|
||||
unreachable!("Vector should never be packed.")
|
||||
}
|
||||
|
||||
fn tree_hash_packing_factor() -> usize {
|
||||
unreachable!("Vector should never be packed.")
|
||||
}
|
||||
|
||||
fn tree_hash_root(&self) -> Vec<u8> {
|
||||
tree_hash::impls::vec_tree_hash_root(&self.vec)
|
||||
}
|
||||
}
|
||||
|
||||
impl<T, N: Unsigned> cached_tree_hash::CachedTreeHash for FixedVector<T, N>
|
||||
where
|
||||
T: cached_tree_hash::CachedTreeHash + tree_hash::TreeHash,
|
||||
{
|
||||
fn new_tree_hash_cache(
|
||||
&self,
|
||||
depth: usize,
|
||||
) -> Result<cached_tree_hash::TreeHashCache, cached_tree_hash::Error> {
|
||||
let (cache, _overlay) = cached_tree_hash::vec::new_tree_hash_cache(&self.vec, depth)?;
|
||||
|
||||
Ok(cache)
|
||||
}
|
||||
|
||||
fn tree_hash_cache_schema(&self, depth: usize) -> cached_tree_hash::BTreeSchema {
|
||||
cached_tree_hash::vec::produce_schema(&self.vec, depth)
|
||||
}
|
||||
|
||||
fn update_tree_hash_cache(
|
||||
&self,
|
||||
cache: &mut cached_tree_hash::TreeHashCache,
|
||||
) -> Result<(), cached_tree_hash::Error> {
|
||||
cached_tree_hash::vec::update_tree_hash_cache(&self.vec, cache)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
impl<T, N: Unsigned> ssz::Encode for FixedVector<T, N>
|
||||
where
|
||||
T: ssz::Encode,
|
||||
{
|
||||
fn is_ssz_fixed_len() -> bool {
|
||||
true
|
||||
}
|
||||
|
||||
fn ssz_fixed_len() -> usize {
|
||||
if <Self as ssz::Encode>::is_ssz_fixed_len() {
|
||||
T::ssz_fixed_len() * N::to_usize()
|
||||
} else {
|
||||
ssz::BYTES_PER_LENGTH_OFFSET
|
||||
}
|
||||
}
|
||||
|
||||
fn ssz_append(&self, buf: &mut Vec<u8>) {
|
||||
if T::is_ssz_fixed_len() {
|
||||
buf.reserve(T::ssz_fixed_len() * self.len());
|
||||
|
||||
for item in &self.vec {
|
||||
item.ssz_append(buf);
|
||||
}
|
||||
} else {
|
||||
let mut encoder = ssz::SszEncoder::list(buf, self.len() * ssz::BYTES_PER_LENGTH_OFFSET);
|
||||
|
||||
for item in &self.vec {
|
||||
encoder.append(item);
|
||||
}
|
||||
|
||||
encoder.finalize();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T, N: Unsigned> ssz::Decode for FixedVector<T, N>
|
||||
where
|
||||
T: ssz::Decode + Default,
|
||||
{
|
||||
fn is_ssz_fixed_len() -> bool {
|
||||
T::is_ssz_fixed_len()
|
||||
}
|
||||
|
||||
fn ssz_fixed_len() -> usize {
|
||||
if <Self as ssz::Decode>::is_ssz_fixed_len() {
|
||||
T::ssz_fixed_len() * N::to_usize()
|
||||
} else {
|
||||
ssz::BYTES_PER_LENGTH_OFFSET
|
||||
}
|
||||
}
|
||||
|
||||
fn from_ssz_bytes(bytes: &[u8]) -> Result<Self, ssz::DecodeError> {
|
||||
if bytes.is_empty() {
|
||||
Ok(FixedVector::from(vec![]))
|
||||
} else if T::is_ssz_fixed_len() {
|
||||
bytes
|
||||
.chunks(T::ssz_fixed_len())
|
||||
.map(|chunk| T::from_ssz_bytes(chunk))
|
||||
.collect::<Result<Vec<T>, _>>()
|
||||
.and_then(|vec| Ok(vec.into()))
|
||||
} else {
|
||||
ssz::decode_list_of_variable_length_items(bytes).and_then(|vec| Ok(vec.into()))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod ssz_tests {
|
||||
use super::*;
|
||||
use ssz::*;
|
||||
use typenum::*;
|
||||
|
||||
#[test]
|
||||
fn encode() {
|
||||
let vec: FixedVector<u16, U2> = vec![0; 2].into();
|
||||
assert_eq!(vec.as_ssz_bytes(), vec![0, 0, 0, 0]);
|
||||
assert_eq!(<FixedVector<u16, U2> as Encode>::ssz_fixed_len(), 4);
|
||||
}
|
||||
|
||||
fn round_trip<T: Encode + Decode + std::fmt::Debug + PartialEq>(item: T) {
|
||||
let encoded = &item.as_ssz_bytes();
|
||||
assert_eq!(T::from_ssz_bytes(&encoded), Ok(item));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn u16_len_8() {
|
||||
round_trip::<FixedVector<u16, U8>>(vec![42; 8].into());
|
||||
round_trip::<FixedVector<u16, U8>>(vec![0; 8].into());
|
||||
}
|
||||
}
|
23
eth2/utils/ssz_types/src/lib.rs
Normal file
23
eth2/utils/ssz_types/src/lib.rs
Normal file
@ -0,0 +1,23 @@
|
||||
mod bit_vector;
|
||||
mod bitfield;
|
||||
mod fixed_vector;
|
||||
mod variable_list;
|
||||
|
||||
pub use bit_vector::{BitList, BitVector};
|
||||
pub use fixed_vector::FixedVector;
|
||||
pub use typenum;
|
||||
pub use variable_list::VariableList;
|
||||
|
||||
/// Returned when a variable-length item encounters an error.
|
||||
#[derive(PartialEq, Debug)]
|
||||
pub enum VariableSizedError {
|
||||
/// The operation would cause the maximum length to be exceeded.
|
||||
ExceedsMaxLength { len: usize, max_len: usize },
|
||||
}
|
||||
|
||||
/// Returned when a fixed-length item encounters an error.
|
||||
#[derive(PartialEq, Debug)]
|
||||
pub enum FixedSizedError {
|
||||
/// The operation would create an item of an invalid size.
|
||||
InvalidLength { len: usize, fixed_len: usize },
|
||||
}
|
321
eth2/utils/ssz_types/src/variable_list.rs
Normal file
321
eth2/utils/ssz_types/src/variable_list.rs
Normal file
@ -0,0 +1,321 @@
|
||||
use crate::VariableSizedError as Error;
|
||||
use serde_derive::{Deserialize, Serialize};
|
||||
use std::marker::PhantomData;
|
||||
use std::ops::{Deref, Index, IndexMut};
|
||||
use std::slice::SliceIndex;
|
||||
use typenum::Unsigned;
|
||||
|
||||
pub use typenum;
|
||||
|
||||
/// Emulates a SSZ `List`.
|
||||
///
|
||||
/// An ordered, heap-allocated, variable-length, homogeneous collection of `T`, with no more than
|
||||
/// `N` values.
|
||||
///
|
||||
/// This struct is backed by a Rust `Vec` but constrained such that it must be instantiated with a
|
||||
/// fixed number of elements and you may not add or remove elements, only modify.
|
||||
///
|
||||
/// The length of this struct is fixed at the type-level using
|
||||
/// [typenum](https://crates.io/crates/typenum).
|
||||
///
|
||||
/// ## Example
|
||||
///
|
||||
/// ```
|
||||
/// use ssz_types::{VariableList, typenum};
|
||||
///
|
||||
/// let base: Vec<u64> = vec![1, 2, 3, 4];
|
||||
///
|
||||
/// // Create a `VariableList` from a `Vec` that has the expected length.
|
||||
/// let exact: VariableList<_, typenum::U4> = VariableList::from(base.clone());
|
||||
/// assert_eq!(&exact[..], &[1, 2, 3, 4]);
|
||||
///
|
||||
/// // Create a `VariableList` from a `Vec` that is too long and the `Vec` is truncated.
|
||||
/// let short: VariableList<_, typenum::U3> = VariableList::from(base.clone());
|
||||
/// assert_eq!(&short[..], &[1, 2, 3]);
|
||||
///
|
||||
/// // Create a `VariableList` from a `Vec` that is shorter than the maximum.
|
||||
/// let mut long: VariableList<_, typenum::U5> = VariableList::from(base);
|
||||
/// assert_eq!(&long[..], &[1, 2, 3, 4]);
|
||||
///
|
||||
/// // Push a value to if it does not exceed the maximum
|
||||
/// long.push(5).unwrap();
|
||||
/// assert_eq!(&long[..], &[1, 2, 3, 4, 5]);
|
||||
///
|
||||
/// // Push a value to if it _does_ exceed the maximum.
|
||||
/// assert!(long.push(6).is_err());
|
||||
/// ```
|
||||
#[derive(Debug, PartialEq, Clone, Serialize, Deserialize)]
|
||||
#[serde(transparent)]
|
||||
pub struct VariableList<T, N> {
|
||||
vec: Vec<T>,
|
||||
_phantom: PhantomData<N>,
|
||||
}
|
||||
|
||||
impl<T, N: Unsigned> VariableList<T, N> {
|
||||
/// Returns `Some` if the given `vec` equals the fixed length of `Self`. Otherwise returns
|
||||
/// `None`.
|
||||
pub fn new(vec: Vec<T>) -> Result<Self, Error> {
|
||||
if vec.len() <= N::to_usize() {
|
||||
Ok(Self {
|
||||
vec,
|
||||
_phantom: PhantomData,
|
||||
})
|
||||
} else {
|
||||
Err(Error::ExceedsMaxLength {
|
||||
len: vec.len(),
|
||||
max_len: Self::max_len(),
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the number of values presently in `self`.
|
||||
pub fn len(&self) -> usize {
|
||||
self.vec.len()
|
||||
}
|
||||
|
||||
/// True if `self` does not contain any values.
|
||||
pub fn is_empty(&self) -> bool {
|
||||
self.len() == 0
|
||||
}
|
||||
|
||||
/// Returns the type-level maximum length.
|
||||
pub fn max_len() -> usize {
|
||||
N::to_usize()
|
||||
}
|
||||
|
||||
/// Appends `value` to the back of `self`.
|
||||
///
|
||||
/// Returns `Err(())` when appending `value` would exceed the maximum length.
|
||||
pub fn push(&mut self, value: T) -> Result<(), Error> {
|
||||
if self.vec.len() < Self::max_len() {
|
||||
Ok(self.vec.push(value))
|
||||
} else {
|
||||
Err(Error::ExceedsMaxLength {
|
||||
len: self.vec.len() + 1,
|
||||
max_len: Self::max_len(),
|
||||
})
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Default, N: Unsigned> From<Vec<T>> for VariableList<T, N> {
|
||||
fn from(mut vec: Vec<T>) -> Self {
|
||||
vec.truncate(N::to_usize());
|
||||
|
||||
Self {
|
||||
vec,
|
||||
_phantom: PhantomData,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T, N: Unsigned> Into<Vec<T>> for VariableList<T, N> {
|
||||
fn into(self) -> Vec<T> {
|
||||
self.vec
|
||||
}
|
||||
}
|
||||
|
||||
impl<T, N: Unsigned> Default for VariableList<T, N> {
|
||||
fn default() -> Self {
|
||||
Self {
|
||||
vec: Vec::default(),
|
||||
_phantom: PhantomData,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T, N: Unsigned, I: SliceIndex<[T]>> Index<I> for VariableList<T, N> {
|
||||
type Output = I::Output;
|
||||
|
||||
#[inline]
|
||||
fn index(&self, index: I) -> &Self::Output {
|
||||
Index::index(&self.vec, index)
|
||||
}
|
||||
}
|
||||
|
||||
impl<T, N: Unsigned, I: SliceIndex<[T]>> IndexMut<I> for VariableList<T, N> {
|
||||
#[inline]
|
||||
fn index_mut(&mut self, index: I) -> &mut Self::Output {
|
||||
IndexMut::index_mut(&mut self.vec, index)
|
||||
}
|
||||
}
|
||||
|
||||
impl<T, N: Unsigned> Deref for VariableList<T, N> {
|
||||
type Target = [T];
|
||||
|
||||
fn deref(&self) -> &[T] {
|
||||
&self.vec[..]
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod test {
|
||||
use super::*;
|
||||
use typenum::*;
|
||||
|
||||
#[test]
|
||||
fn new() {
|
||||
let vec = vec![42; 5];
|
||||
let fixed: Result<VariableList<u64, U4>, _> = VariableList::new(vec.clone());
|
||||
assert!(fixed.is_err());
|
||||
|
||||
let vec = vec![42; 3];
|
||||
let fixed: Result<VariableList<u64, U4>, _> = VariableList::new(vec.clone());
|
||||
assert!(fixed.is_ok());
|
||||
|
||||
let vec = vec![42; 4];
|
||||
let fixed: Result<VariableList<u64, U4>, _> = VariableList::new(vec.clone());
|
||||
assert!(fixed.is_ok());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn indexing() {
|
||||
let vec = vec![1, 2];
|
||||
|
||||
let mut fixed: VariableList<u64, U8192> = vec.clone().into();
|
||||
|
||||
assert_eq!(fixed[0], 1);
|
||||
assert_eq!(&fixed[0..1], &vec[0..1]);
|
||||
assert_eq!((&fixed[..]).len(), 2);
|
||||
|
||||
fixed[1] = 3;
|
||||
assert_eq!(fixed[1], 3);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn length() {
|
||||
let vec = vec![42; 5];
|
||||
let fixed: VariableList<u64, U4> = VariableList::from(vec.clone());
|
||||
assert_eq!(&fixed[..], &vec[0..4]);
|
||||
|
||||
let vec = vec![42; 3];
|
||||
let fixed: VariableList<u64, U4> = VariableList::from(vec.clone());
|
||||
assert_eq!(&fixed[0..3], &vec[..]);
|
||||
assert_eq!(&fixed[..], &vec![42, 42, 42][..]);
|
||||
|
||||
let vec = vec![];
|
||||
let fixed: VariableList<u64, U4> = VariableList::from(vec.clone());
|
||||
assert_eq!(&fixed[..], &vec![][..]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn deref() {
|
||||
let vec = vec![0, 2, 4, 6];
|
||||
let fixed: VariableList<u64, U4> = VariableList::from(vec);
|
||||
|
||||
assert_eq!(fixed.get(0), Some(&0));
|
||||
assert_eq!(fixed.get(3), Some(&6));
|
||||
assert_eq!(fixed.get(4), None);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
impl<T, N: Unsigned> tree_hash::TreeHash for VariableList<T, N>
|
||||
where
|
||||
T: tree_hash::TreeHash,
|
||||
{
|
||||
fn tree_hash_type() -> tree_hash::TreeHashType {
|
||||
tree_hash::TreeHashType::Vector
|
||||
}
|
||||
|
||||
fn tree_hash_packed_encoding(&self) -> Vec<u8> {
|
||||
unreachable!("Vector should never be packed.")
|
||||
}
|
||||
|
||||
fn tree_hash_packing_factor() -> usize {
|
||||
unreachable!("Vector should never be packed.")
|
||||
}
|
||||
|
||||
fn tree_hash_root(&self) -> Vec<u8> {
|
||||
tree_hash::impls::vec_tree_hash_root(&self.vec)
|
||||
}
|
||||
}
|
||||
|
||||
impl<T, N: Unsigned> cached_tree_hash::CachedTreeHash for VariableList<T, N>
|
||||
where
|
||||
T: cached_tree_hash::CachedTreeHash + tree_hash::TreeHash,
|
||||
{
|
||||
fn new_tree_hash_cache(
|
||||
&self,
|
||||
depth: usize,
|
||||
) -> Result<cached_tree_hash::TreeHashCache, cached_tree_hash::Error> {
|
||||
let (cache, _overlay) = cached_tree_hash::vec::new_tree_hash_cache(&self.vec, depth)?;
|
||||
|
||||
Ok(cache)
|
||||
}
|
||||
|
||||
fn tree_hash_cache_schema(&self, depth: usize) -> cached_tree_hash::BTreeSchema {
|
||||
cached_tree_hash::vec::produce_schema(&self.vec, depth)
|
||||
}
|
||||
|
||||
fn update_tree_hash_cache(
|
||||
&self,
|
||||
cache: &mut cached_tree_hash::TreeHashCache,
|
||||
) -> Result<(), cached_tree_hash::Error> {
|
||||
cached_tree_hash::vec::update_tree_hash_cache(&self.vec, cache)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
impl<T, N: Unsigned> ssz::Encode for VariableList<T, N>
|
||||
where
|
||||
T: ssz::Encode,
|
||||
{
|
||||
fn is_ssz_fixed_len() -> bool {
|
||||
<Vec<T>>::is_ssz_fixed_len()
|
||||
}
|
||||
|
||||
fn ssz_fixed_len() -> usize {
|
||||
<Vec<T>>::ssz_fixed_len()
|
||||
}
|
||||
|
||||
fn ssz_append(&self, buf: &mut Vec<u8>) {
|
||||
self.vec.ssz_append(buf)
|
||||
}
|
||||
}
|
||||
|
||||
impl<T, N: Unsigned> ssz::Decode for VariableList<T, N>
|
||||
where
|
||||
T: ssz::Decode + Default,
|
||||
{
|
||||
fn is_ssz_fixed_len() -> bool {
|
||||
<Vec<T>>::is_ssz_fixed_len()
|
||||
}
|
||||
|
||||
fn ssz_fixed_len() -> usize {
|
||||
<Vec<T>>::ssz_fixed_len()
|
||||
}
|
||||
|
||||
fn from_ssz_bytes(bytes: &[u8]) -> Result<Self, ssz::DecodeError> {
|
||||
let vec = <Vec<T>>::from_ssz_bytes(bytes)?;
|
||||
|
||||
Self::new(vec).map_err(|e| ssz::DecodeError::BytesInvalid(format!("VariableList {:?}", e)))
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use ssz::*;
|
||||
use typenum::*;
|
||||
|
||||
#[test]
|
||||
fn encode() {
|
||||
let vec: VariableList<u16, U2> = vec![0; 2].into();
|
||||
assert_eq!(vec.as_ssz_bytes(), vec![0, 0, 0, 0]);
|
||||
assert_eq!(<VariableList<u16, U2> as Encode>::ssz_fixed_len(), 4);
|
||||
}
|
||||
|
||||
fn round_trip<T: Encode + Decode + std::fmt::Debug + PartialEq>(item: T) {
|
||||
let encoded = &item.as_ssz_bytes();
|
||||
assert_eq!(T::from_ssz_bytes(&encoded), Ok(item));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn u16_len_8() {
|
||||
round_trip::<VariableList<u16, U8>>(vec![42; 8].into());
|
||||
round_trip::<VariableList<u16, U8>>(vec![0; 8].into());
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user