Copy-paste reduced-tree code

This commit is contained in:
Paul Hauner 2019-06-14 10:47:51 -04:00
parent e6747094c8
commit 4b4c9a98df
No known key found for this signature in database
GPG Key ID: 303E4494BB28068C
2 changed files with 316 additions and 0 deletions

View File

@ -19,6 +19,7 @@
pub mod bitwise_lmd_ghost;
pub mod longest_chain;
pub mod optimized_lmd_ghost;
pub mod reduced_tree;
pub mod slow_lmd_ghost;
pub mod test_utils;

View File

@ -0,0 +1,315 @@
use std::collections::{BTreeMap, HashMap};
use std::ops::Range;
use types::Hash256;
pub const SKIP_LIST_LEN: usize = 16;
pub type Height = usize;
pub type Slot = u64;
#[derive(Default, Clone)]
pub struct Node {
pub parent_hash: Option<Hash256>,
pub children: Vec<Hash256>,
pub score: u64,
pub height: Height,
pub block_hash: Hash256,
}
impl Node {
fn does_not_have_children(&self) -> bool {
self.children.is_empty()
}
}
pub struct ReducedTree {
store: Store,
nodes: HashMap<Hash256, Node>,
root: Hash256,
slots_at_height: SortedList<Slot>,
blocks_at_height: HashMap<Height, Vec<Hash256>>,
}
impl ReducedTree {
pub fn new(root: Hash256, height: Height) -> Self {
let mut node: Node = Node::default();
node.height = 0;
let mut nodes = HashMap::new();
nodes.insert(root, Node::default());
let mut blocks_at_height = HashMap::new();
blocks_at_height.insert(height, vec![root]);
Self {
store: Store::default(),
nodes,
root,
slots_at_height: SortedList::new(),
blocks_at_height,
}
}
pub fn add_node(&mut self, hash: Hash256, block_hash: Hash256) -> Option<()> {
// TODO: resolve clone.
let mut prev_in_tree = self
.find_prev_in_tree(hash, 0..self.slots_at_height.len())?
.clone();
let mut node = Node {
block_hash,
parent_hash: Some(prev_in_tree.block_hash),
..Node::default()
};
if prev_in_tree.does_not_have_children() {
node.parent_hash = Some(prev_in_tree.block_hash);
prev_in_tree.children.push(hash);
} else {
for child_hash in prev_in_tree.children {
let ancestor_hash = self.find_least_common_ancestor(hash, child_hash)?;
if ancestor_hash != prev_in_tree.block_hash {
let child = self.nodes.get_mut(&child_hash)?;
let common_ancestor = Node {
block_hash: ancestor_hash,
parent_hash: Some(prev_in_tree.block_hash),
..Node::default()
};
child.parent_hash = Some(common_ancestor.block_hash);
node.parent_hash = Some(common_ancestor.block_hash);
self.nodes
.insert(common_ancestor.block_hash, common_ancestor);
}
}
}
self.nodes.insert(hash, node);
Some(())
}
fn find_prev_in_tree(&mut self, hash: Hash256, range: Range<Height>) -> Option<&mut Node> {
if range.len() == 0 || range.end > self.slots_at_height.len() {
None
} else {
let mid_height = range.len() / 2;
let mid_slot = self.slot_at_height(mid_height)?;
let mid_ancestor = self.find_ancestor_at_slot(hash, mid_slot)?;
if self.exists_above_height(hash, mid_height)? {
if self.exists_between_heights(hash, mid_height..mid_height + 1)? {
self.nodes.get_mut(&mid_ancestor)
} else {
self.find_prev_in_tree(hash, mid_height..range.end)
}
} else {
self.find_prev_in_tree(hash, range.start..mid_height)
}
}
}
fn exists_above_height(&self, hash: Hash256, height: Height) -> Option<bool> {
let ancestor_at_height = self.find_ancestor_at_height(hash, height)?;
let blocks_at_height = self.blocks_at_height.get(&height)?;
Some(blocks_at_height.contains(&ancestor_at_height))
}
fn exists_between_heights(&self, hash: Hash256, range: Range<Height>) -> Option<bool> {
let low_blocks = self.blocks_at_height.get(&range.start)?;
let high_blocks = self.blocks_at_height.get(&range.end)?;
let low_ancestor = self.find_ancestor_at_height(hash, range.start)?;
let high_ancestor = self.find_ancestor_at_height(hash, range.end)?;
Some(low_blocks.contains(&low_ancestor) && !high_blocks.contains(&high_ancestor))
}
fn find_ancestor_at_height(&self, child: Hash256, height: Height) -> Option<Hash256> {
self.find_ancestor_at_slot(child, self.slot_at_height(height)?)
}
fn find_ancestor_at_slot(&self, child: Hash256, slot: Slot) -> Option<Hash256> {
get_ancestor_hash_at_slot(slot, child, &self.store)
}
fn find_least_common_ancestor(&self, a: Hash256, b: Hash256) -> Option<Hash256> {
find_least_common_ancestor(a, b, &self.store)
}
fn slot_at_height(&self, height: Height) -> Option<Slot> {
self.slots_at_height.nth(height).cloned()
}
}
fn get_ancestor_hash_at_slot(slot: Slot, start: Hash256, store: &Store) -> Option<Hash256> {
let mut block = store.get(&start)?;
loop {
if slot >= block.slot {
break None;
} else {
let delta = block.slot - slot;
if delta >= 1 << SKIP_LIST_LEN as u64 {
block = store.get(&block.ancestor_skip_list[SKIP_LIST_LEN - 1])?;
} else if delta.is_power_of_two() {
break Some(block.ancestor_skip_list[delta.trailing_zeros() as usize]);
} else {
let i = delta.next_power_of_two().trailing_zeros().saturating_sub(1);
block = store.get(&block.ancestor_skip_list[i as usize])?;
}
}
}
}
fn find_least_common_ancestor(a_root: Hash256, b_root: Hash256, store: &Store) -> Option<Hash256> {
let mut a = store.get(&a_root)?;
let mut b = store.get(&b_root)?;
if a.slot > b.slot {
a = store.get(&get_ancestor_hash_at_slot(b.slot, a_root, store)?)?;
} else if b.slot > a.slot {
b = store.get(&get_ancestor_hash_at_slot(a.slot, b_root, store)?)?;
}
loop {
if a.ancestor_skip_list[0] == b.ancestor_skip_list[0] {
break Some(a.ancestor_skip_list[0]);
} else if a.slot == 0 || b.slot == 0 {
break None;
} else {
a = store.get(&a.ancestor_skip_list[0])?;
b = store.get(&b.ancestor_skip_list[0])?;
}
}
}
#[derive(Default, Clone, Debug)]
pub struct Block {
pub slot: Slot,
ancestor_skip_list: [Hash256; SKIP_LIST_LEN],
}
pub type Store = HashMap<Hash256, Block>;
pub struct SortedList<K>(BTreeMap<K, ()>);
impl<K: Ord> SortedList<K> {
pub fn new() -> Self {
SortedList(BTreeMap::new())
}
pub fn insert(&mut self, key: K) {
self.0.insert(key, ());
}
pub fn len(&self) -> usize {
self.0.len()
}
pub fn nth(&self, n: usize) -> Option<&K> {
self.0.iter().nth(n).and_then(|(k, _v)| Some(k))
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn new() {
let genesis_root = Hash256::random();
let genesis_slot = 0;
let _t = Tree::new(genesis_root, genesis_slot);
}
/// Creates a new "hash" from the `u64`.
///
/// Does not _actually_ perform a hash, just generates bytes that are some serialization of the
/// the `u64`.
fn get_hash(i: u64) -> Hash256 {
Hash256::from_low_u64_le(i)
}
fn hash_to_u64(hash: Hash256) -> u64 {
hash.to_low_u64_le()
}
fn store_chain(store: &mut Store, roots: &[Hash256], slots: &[Slot]) {
for i in 0..roots.len() {
let mut block = Block::default();
block.slot = slots[i];
// Build the skip list.
for j in 0..SKIP_LIST_LEN {
let skip = 2_usize.pow(j as u32);
block.ancestor_skip_list[j as usize] = roots[i.saturating_sub(skip)];
}
store.insert(roots[i as usize], block);
}
}
#[test]
fn common_ancestor() {
let common_chain_len = (2_u64 << SKIP_LIST_LEN) - 3;
let forked_blocks = 2_u64 << SKIP_LIST_LEN;
let common_roots: Vec<Hash256> = (0..common_chain_len).map(get_hash).collect();
let common_slots: Vec<Slot> = (0..common_chain_len).collect();
let mut fork_a_roots = common_roots.clone();
fork_a_roots.append(
&mut (common_chain_len..common_chain_len + forked_blocks)
.map(get_hash)
.collect(),
);
let mut fork_a_slots = common_slots.clone();
fork_a_slots.append(&mut (common_chain_len..common_chain_len + forked_blocks).collect());
let mut fork_b_roots = common_roots.clone();
fork_b_roots.append(
&mut (common_chain_len..common_chain_len + forked_blocks)
.map(|i| get_hash(i * 10))
.collect(),
);
let mut fork_b_slots = common_slots.clone();
fork_b_slots.append(&mut (common_chain_len..common_chain_len + forked_blocks).collect());
let fork_a_head = *fork_a_roots.iter().last().unwrap();
let fork_b_head = *fork_b_roots.iter().last().unwrap();
let mut store = Store::default();
store_chain(&mut store, &fork_a_roots, &fork_a_slots);
store_chain(&mut store, &fork_b_roots, &fork_b_slots);
assert_eq!(
find_least_common_ancestor(fork_a_head, fork_b_head, &store)
.and_then(|i| Some(hash_to_u64(i))),
Some(hash_to_u64(*common_roots.iter().last().unwrap()))
);
}
#[test]
fn get_at_slot() {
let n = 2_u64.pow(SKIP_LIST_LEN as u32) * 2;
let mut store = Store::default();
let roots: Vec<Hash256> = (0..n).map(get_hash).collect();
let slots: Vec<Slot> = (0..n).collect();
store_chain(&mut store, &roots, &slots);
for i in 0..n - 1 {
let key = roots.last().unwrap();
assert_eq!(
get_ancestor_hash_at_slot(i as u64, *key, &store),
Some(get_hash(i as u64))
);
}
}
}