lighthouse/validator_client/src/key_cache.rs

349 lines
11 KiB
Rust
Raw Normal View History

use account_utils::write_file_via_temporary;
use bls::{Keypair, PublicKey};
use eth2_keystore::json_keystore::{
Aes128Ctr, ChecksumModule, Cipher, CipherModule, Crypto, EmptyMap, EmptyString, KdfModule,
Sha256Checksum,
};
use eth2_keystore::{
decrypt, default_kdf, encrypt, keypair_from_secret, Error as KeystoreError, PlainText, Uuid,
ZeroizeHash, IV_SIZE, SALT_SIZE,
};
use rand::prelude::*;
use serde::{Deserialize, Serialize};
use std::collections::HashMap;
use std::fs::OpenOptions;
use std::io;
use std::path::{Path, PathBuf};
/// The file name for the serialized `KeyCache` struct.
pub const CACHE_FILENAME: &str = "validator_key_cache.json";
/// The file name for the temporary `KeyCache`.
pub const TEMP_CACHE_FILENAME: &str = ".validator_key_cache.json.tmp";
#[derive(Debug, Copy, Clone, PartialEq)]
pub enum State {
NotDecrypted,
DecryptedAndSaved,
DecryptedWithUnsavedUpdates,
}
fn not_decrypted() -> State {
State::NotDecrypted
}
#[derive(Clone, Serialize, Deserialize)]
pub struct KeyCache {
crypto: Crypto,
uuids: Vec<Uuid>,
#[serde(skip)]
pairs: HashMap<Uuid, Keypair>, //maps public keystore uuids to their corresponding Keypair
#[serde(skip)]
passwords: Vec<PlainText>,
#[serde(skip)]
#[serde(default = "not_decrypted")]
state: State,
}
type SerializedKeyMap = HashMap<Uuid, ZeroizeHash>;
impl KeyCache {
pub fn new() -> Self {
KeyCache {
uuids: Vec::new(),
crypto: Self::init_crypto(),
pairs: HashMap::new(),
passwords: Vec::new(),
state: State::DecryptedWithUnsavedUpdates,
}
}
pub fn init_crypto() -> Crypto {
let salt = rand::thread_rng().gen::<[u8; SALT_SIZE]>();
let iv = rand::thread_rng().gen::<[u8; IV_SIZE]>().to_vec().into();
let kdf = default_kdf(salt.to_vec());
let cipher = Cipher::Aes128Ctr(Aes128Ctr { iv });
Crypto {
kdf: KdfModule {
function: kdf.function(),
params: kdf,
message: EmptyString,
},
checksum: ChecksumModule {
function: Sha256Checksum::function(),
params: EmptyMap,
message: Vec::new().into(),
},
cipher: CipherModule {
function: cipher.function(),
params: cipher,
message: Vec::new().into(),
},
}
}
pub fn cache_file_path<P: AsRef<Path>>(validators_dir: P) -> PathBuf {
validators_dir.as_ref().join(CACHE_FILENAME)
}
/// Open an existing file or create a new, empty one if it does not exist.
pub fn open_or_create<P: AsRef<Path>>(validators_dir: P) -> Result<Self, Error> {
let cache_path = Self::cache_file_path(validators_dir.as_ref());
if !cache_path.exists() {
Ok(Self::new())
} else {
Self::open(validators_dir)
}
}
/// Open an existing file, returning an error if the file does not exist.
pub fn open<P: AsRef<Path>>(validators_dir: P) -> Result<Self, Error> {
let cache_path = validators_dir.as_ref().join(CACHE_FILENAME);
let file = OpenOptions::new()
.read(true)
.create_new(false)
.open(&cache_path)
.map_err(Error::UnableToOpenFile)?;
serde_json::from_reader(file).map_err(Error::UnableToParseFile)
}
fn encrypt(&mut self) -> Result<(), Error> {
self.crypto = Self::init_crypto();
let secret_map: SerializedKeyMap = self
.pairs
.iter()
.map(|(k, v)| (*k, v.sk.serialize()))
.collect();
let raw = PlainText::from(
bincode::serialize(&secret_map).map_err(Error::UnableToSerializeKeyMap)?,
);
let (cipher_text, checksum) = encrypt(
raw.as_ref(),
Self::password(&self.passwords).as_ref(),
&self.crypto.kdf.params,
&self.crypto.cipher.params,
)
.map_err(Error::UnableToEncrypt)?;
self.crypto.cipher.message = cipher_text.into();
self.crypto.checksum.message = checksum.to_vec().into();
Ok(())
}
/// Stores `Self` encrypted in json format.
///
/// Will create a new file if it does not exist or over-write any existing file.
/// Returns false iff there are no unsaved changes
pub fn save<P: AsRef<Path>>(&mut self, validators_dir: P) -> Result<bool, Error> {
if self.is_modified() {
self.encrypt()?;
let cache_path = validators_dir.as_ref().join(CACHE_FILENAME);
let temp_path = validators_dir.as_ref().join(TEMP_CACHE_FILENAME);
let bytes = serde_json::to_vec(self).map_err(Error::UnableToEncodeFile)?;
write_file_via_temporary(&cache_path, &temp_path, &bytes)
.map_err(Error::UnableToCreateFile)?;
self.state = State::DecryptedAndSaved;
Ok(true)
} else {
Ok(false)
}
}
pub fn is_modified(&self) -> bool {
self.state == State::DecryptedWithUnsavedUpdates
}
pub fn uuids(&self) -> &Vec<Uuid> {
&self.uuids
}
fn password(passwords: &[PlainText]) -> PlainText {
PlainText::from(passwords.iter().fold(Vec::new(), |mut v, p| {
v.extend(p.as_ref());
v
}))
}
pub fn decrypt(
&mut self,
passwords: Vec<PlainText>,
public_keys: Vec<PublicKey>,
) -> Result<&HashMap<Uuid, Keypair>, Error> {
match self.state {
State::NotDecrypted => {
let password = Self::password(&passwords);
let text =
decrypt(password.as_ref(), &self.crypto).map_err(Error::UnableToDecrypt)?;
let key_map: SerializedKeyMap =
bincode::deserialize(text.as_bytes()).map_err(Error::UnableToParseKeyMap)?;
self.passwords = passwords;
self.pairs = HashMap::new();
if public_keys.len() != self.uuids.len() {
return Err(Error::PublicKeyMismatch);
}
for (uuid, public_key) in self.uuids.iter().zip(public_keys.iter()) {
if let Some(secret) = key_map.get(uuid) {
let key_pair = keypair_from_secret(secret.as_ref())
.map_err(Error::UnableToParseKeyPair)?;
if &key_pair.pk != public_key {
return Err(Error::PublicKeyMismatch);
}
self.pairs.insert(*uuid, key_pair);
} else {
return Err(Error::MissingUuidKey);
}
}
self.state = State::DecryptedAndSaved;
Ok(&self.pairs)
}
_ => Err(Error::AlreadyDecrypted),
}
}
pub fn remove(&mut self, uuid: &Uuid) {
//do nothing in not decrypted state
if let State::NotDecrypted = self.state {
return;
}
self.pairs.remove(uuid);
if let Some(pos) = self.uuids.iter().position(|uuid2| uuid2 == uuid) {
self.uuids.remove(pos);
self.passwords.remove(pos);
}
self.state = State::DecryptedWithUnsavedUpdates;
}
pub fn add(&mut self, keypair: Keypair, uuid: &Uuid, password: PlainText) {
//do nothing in not decrypted state
if let State::NotDecrypted = self.state {
return;
}
self.pairs.insert(*uuid, keypair);
self.uuids.push(*uuid);
self.passwords.push(password);
self.state = State::DecryptedWithUnsavedUpdates;
}
pub fn get(&self, uuid: &Uuid) -> Option<Keypair> {
self.pairs.get(uuid).cloned()
}
}
#[derive(Debug)]
pub enum Error {
/// The cache file could not be opened.
UnableToOpenFile(io::Error),
/// The cache file could not be parsed as JSON.
UnableToParseFile(serde_json::Error),
/// The cache file could not be serialized as YAML.
UnableToEncodeFile(serde_json::Error),
/// The cache file or its temporary could not be written to the filesystem.
UnableToWriteFile(io::Error),
UnableToCreateFile(filesystem::Error),
/// Couldn't decrypt the cache file
UnableToDecrypt(KeystoreError),
UnableToEncrypt(KeystoreError),
/// Couldn't decode the decrypted hashmap
UnableToParseKeyMap(bincode::Error),
UnableToParseKeyPair(KeystoreError),
UnableToSerializeKeyMap(bincode::Error),
PublicKeyMismatch,
MissingUuidKey,
/// Cache file is already decrypted
AlreadyDecrypted,
}
#[cfg(test)]
mod tests {
use super::*;
use eth2_keystore::json_keystore::{HexBytes, Kdf};
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct KeyCacheTest {
pub params: Kdf,
//pub checksum: ChecksumModule,
//pub cipher: CipherModule,
uuids: Vec<Uuid>,
}
#[tokio::test]
async fn test_serialization() {
let mut key_cache = KeyCache::new();
let key_pair = Keypair::random();
let uuid = Uuid::from_u128(1);
let password = PlainText::from(vec![1, 2, 3, 4, 5, 6]);
key_cache.add(key_pair, &uuid, password);
key_cache.crypto.cipher.message = HexBytes::from(vec![7, 8, 9]);
key_cache.crypto.checksum.message = HexBytes::from(vec![10, 11, 12]);
let binary = serde_json::to_vec(&key_cache).unwrap();
let clone: KeyCache = serde_json::from_slice(binary.as_ref()).unwrap();
assert_eq!(clone.crypto, key_cache.crypto);
assert_eq!(clone.uuids, key_cache.uuids);
}
#[tokio::test]
async fn test_encryption() {
let mut key_cache = KeyCache::new();
let keypairs = vec![Keypair::random(), Keypair::random()];
let uuids = vec![Uuid::from_u128(1), Uuid::from_u128(2)];
let passwords = vec![
PlainText::from(vec![1, 2, 3, 4, 5, 6]),
PlainText::from(vec![7, 8, 9, 10, 11, 12]),
];
for ((keypair, uuid), password) in keypairs.iter().zip(uuids.iter()).zip(passwords.iter()) {
key_cache.add(keypair.clone(), uuid, password.clone());
}
key_cache.encrypt().unwrap();
key_cache.state = State::DecryptedAndSaved;
assert_eq!(&key_cache.uuids, &uuids);
let mut new_clone = KeyCache {
crypto: key_cache.crypto.clone(),
uuids: key_cache.uuids.clone(),
pairs: Default::default(),
passwords: vec![],
state: State::NotDecrypted,
};
new_clone
.decrypt(passwords, keypairs.iter().map(|p| p.pk.clone()).collect())
.unwrap();
let passwords_to_plain = |cache: &KeyCache| -> Vec<Vec<u8>> {
cache
.passwords
.iter()
.map(|x| x.as_bytes().to_vec())
.collect()
};
assert_eq!(key_cache.crypto, new_clone.crypto);
assert_eq!(
passwords_to_plain(&key_cache),
passwords_to_plain(&new_clone)
);
assert_eq!(key_cache.uuids, new_clone.uuids);
assert_eq!(key_cache.state, new_clone.state);
assert_eq!(key_cache.pairs.len(), new_clone.pairs.len());
for (key, value) in key_cache.pairs {
assert!(new_clone.pairs.contains_key(&key));
assert_eq!(
format!("{:?}", value),
format!("{:?}", new_clone.pairs[&key])
);
}
}
}