lighthouse/beacon_node/beacon_chain/src/snapshot_cache.rs

521 lines
19 KiB
Rust
Raw Normal View History

use crate::BeaconSnapshot;
use itertools::process_results;
use std::cmp;
use std::time::Duration;
Advance state to next slot after importing block (#2174) ## Issue Addressed NA ## Proposed Changes Add an optimization to perform `per_slot_processing` from the *leading-edge* of block processing to the *trailing-edge*. Ultimately, this allows us to import the block at slot `n` faster because we used the tail-end of slot `n - 1` to perform `per_slot_processing`. Additionally, add a "block proposer cache" which allows us to cache the block proposer for some epoch. Since we're now doing trailing-edge `per_slot_processing`, we can prime this cache with the values for the next epoch before those blocks arrive (assuming those blocks don't have some weird forking). There were several ancillary changes required to achieve this: - Remove the `state_root` field of `BeaconSnapshot`, since there's no need to know it on a `pre_state` and in all other cases we can just read it from `block.state_root()`. - This caused some "dust" changes of `snapshot.beacon_state_root` to `snapshot.beacon_state_root()`, where the `BeaconSnapshot::beacon_state_root()` func just reads the state root from the block. - Rename `types::ShuffingId` to `AttestationShufflingId`. I originally did this because I added a `ProposerShufflingId` struct which turned out to be not so useful. I thought this new name was more descriptive so I kept it. - Address https://github.com/ethereum/eth2.0-specs/pull/2196 - Add a debug log when we get a block with an unknown parent. There was previously no logging around this case. - Add a function to `BeaconState` to compute all proposers for an epoch without re-computing the active indices for each slot. ## Additional Info - ~~Blocked on #2173~~ - ~~Blocked on #2179~~ That PR was wrapped into this PR. - There's potentially some places where we could avoid computing the proposer indices in `per_block_processing` but I haven't done this here. These would be an optimization beyond the issue at hand (improving block propagation times) and I think this PR is already doing enough. We can come back for that later. ## TODO - [x] Tidy, improve comments. - [x] ~~Try avoid computing proposer index in `per_block_processing`?~~
2021-02-15 07:17:52 +00:00
use types::{
beacon_state::CloneConfig, BeaconState, ChainSpec, Epoch, EthSpec, Hash256, SignedBeaconBlock,
Slot,
Advance state to next slot after importing block (#2174) ## Issue Addressed NA ## Proposed Changes Add an optimization to perform `per_slot_processing` from the *leading-edge* of block processing to the *trailing-edge*. Ultimately, this allows us to import the block at slot `n` faster because we used the tail-end of slot `n - 1` to perform `per_slot_processing`. Additionally, add a "block proposer cache" which allows us to cache the block proposer for some epoch. Since we're now doing trailing-edge `per_slot_processing`, we can prime this cache with the values for the next epoch before those blocks arrive (assuming those blocks don't have some weird forking). There were several ancillary changes required to achieve this: - Remove the `state_root` field of `BeaconSnapshot`, since there's no need to know it on a `pre_state` and in all other cases we can just read it from `block.state_root()`. - This caused some "dust" changes of `snapshot.beacon_state_root` to `snapshot.beacon_state_root()`, where the `BeaconSnapshot::beacon_state_root()` func just reads the state root from the block. - Rename `types::ShuffingId` to `AttestationShufflingId`. I originally did this because I added a `ProposerShufflingId` struct which turned out to be not so useful. I thought this new name was more descriptive so I kept it. - Address https://github.com/ethereum/eth2.0-specs/pull/2196 - Add a debug log when we get a block with an unknown parent. There was previously no logging around this case. - Add a function to `BeaconState` to compute all proposers for an epoch without re-computing the active indices for each slot. ## Additional Info - ~~Blocked on #2173~~ - ~~Blocked on #2179~~ That PR was wrapped into this PR. - There's potentially some places where we could avoid computing the proposer indices in `per_block_processing` but I haven't done this here. These would be an optimization beyond the issue at hand (improving block propagation times) and I think this PR is already doing enough. We can come back for that later. ## TODO - [x] Tidy, improve comments. - [x] ~~Try avoid computing proposer index in `per_block_processing`?~~
2021-02-15 07:17:52 +00:00
};
/// The default size of the cache.
pub const DEFAULT_SNAPSHOT_CACHE_SIZE: usize = 4;
/// The minimum block delay to clone the state in the cache instead of removing it.
/// This helps keep block processing fast during re-orgs from late blocks.
const MINIMUM_BLOCK_DELAY_FOR_CLONE: Duration = Duration::from_secs(6);
Advance state to next slot after importing block (#2174) ## Issue Addressed NA ## Proposed Changes Add an optimization to perform `per_slot_processing` from the *leading-edge* of block processing to the *trailing-edge*. Ultimately, this allows us to import the block at slot `n` faster because we used the tail-end of slot `n - 1` to perform `per_slot_processing`. Additionally, add a "block proposer cache" which allows us to cache the block proposer for some epoch. Since we're now doing trailing-edge `per_slot_processing`, we can prime this cache with the values for the next epoch before those blocks arrive (assuming those blocks don't have some weird forking). There were several ancillary changes required to achieve this: - Remove the `state_root` field of `BeaconSnapshot`, since there's no need to know it on a `pre_state` and in all other cases we can just read it from `block.state_root()`. - This caused some "dust" changes of `snapshot.beacon_state_root` to `snapshot.beacon_state_root()`, where the `BeaconSnapshot::beacon_state_root()` func just reads the state root from the block. - Rename `types::ShuffingId` to `AttestationShufflingId`. I originally did this because I added a `ProposerShufflingId` struct which turned out to be not so useful. I thought this new name was more descriptive so I kept it. - Address https://github.com/ethereum/eth2.0-specs/pull/2196 - Add a debug log when we get a block with an unknown parent. There was previously no logging around this case. - Add a function to `BeaconState` to compute all proposers for an epoch without re-computing the active indices for each slot. ## Additional Info - ~~Blocked on #2173~~ - ~~Blocked on #2179~~ That PR was wrapped into this PR. - There's potentially some places where we could avoid computing the proposer indices in `per_block_processing` but I haven't done this here. These would be an optimization beyond the issue at hand (improving block propagation times) and I think this PR is already doing enough. We can come back for that later. ## TODO - [x] Tidy, improve comments. - [x] ~~Try avoid computing proposer index in `per_block_processing`?~~
2021-02-15 07:17:52 +00:00
/// This snapshot is to be used for verifying a child of `self.beacon_block`.
Handle early blocks (#2155) ## Issue Addressed NA ## Problem this PR addresses There's an issue where Lighthouse is banning a lot of peers due to the following sequence of events: 1. Gossip block 0xabc arrives ~200ms early - It is propagated across the network, with respect to [`MAXIMUM_GOSSIP_CLOCK_DISPARITY`](https://github.com/ethereum/eth2.0-specs/blob/v1.0.0/specs/phase0/p2p-interface.md#why-is-there-maximum_gossip_clock_disparity-when-validating-slot-ranges-of-messages-in-gossip-subnets). - However, it is not imported to our database since the block is early. 2. Attestations for 0xabc arrive, but the block was not imported. - The peer that sent the attestation is down-voted. - Each unknown-block attestation causes a score loss of 1, the peer is banned at -100. - When the peer is on an attestation subnet there can be hundreds of attestations, so the peer is banned quickly (before the missed block can be obtained via rpc). ## Potential solutions I can think of three solutions to this: 1. Wait for attestation-queuing (#635) to arrive and solve this. - Easy - Not immediate fix. - Whilst this would work, I don't think it's a perfect solution for this particular issue, rather (3) is better. 1. Allow importing blocks with a tolerance of `MAXIMUM_GOSSIP_CLOCK_DISPARITY`. - Easy - ~~I have implemented this, for now.~~ 1. If a block is verified for gossip propagation (i.e., signature verified) and it's within `MAXIMUM_GOSSIP_CLOCK_DISPARITY`, then queue it to be processed at the start of the appropriate slot. - More difficult - Feels like the best solution, I will try to implement this. **This PR takes approach (3).** ## Changes included - Implement the `block_delay_queue`, based upon a [`DelayQueue`](https://docs.rs/tokio-util/0.6.3/tokio_util/time/delay_queue/struct.DelayQueue.html) which can store blocks until it's time to import them. - Add a new `DelayedImportBlock` variant to the `beacon_processor::WorkEvent` enum to handle this new event. - In the `BeaconProcessor`, refactor a `tokio::select!` to a struct with an explicit `Stream` implementation. I experienced some issues with `tokio::select!` in the block delay queue and I also found it hard to debug. I think this explicit implementation is nicer and functionally equivalent (apart from the fact that `tokio::select!` randomly chooses futures to poll, whereas now we're deterministic). - Add a testing framework to the `beacon_processor` module that tests this new block delay logic. I also tested a handful of other operations in the beacon processor (attns, slashings, exits) since it was super easy to copy-pasta the code from the `http_api` tester. - To implement these tests I added the concept of an optional `work_journal_tx` to the `BeaconProcessor` which will spit out a log of events. I used this in the tests to ensure that things were happening as I expect. - The tests are a little racey, but it's hard to avoid that when testing timing-based code. If we see CI failures I can revise. I haven't observed *any* failures due to races on my machine or on CI yet. - To assist with testing I allowed for directly setting the time on the `ManualSlotClock`. - I gave the `beacon_processor::Worker` a `Toolbox` for two reasons; (a) it avoids changing tons of function sigs when you want to pass a new object to the worker and (b) it seemed cute.
2021-02-24 03:08:52 +00:00
#[derive(Debug)]
Advance state to next slot after importing block (#2174) ## Issue Addressed NA ## Proposed Changes Add an optimization to perform `per_slot_processing` from the *leading-edge* of block processing to the *trailing-edge*. Ultimately, this allows us to import the block at slot `n` faster because we used the tail-end of slot `n - 1` to perform `per_slot_processing`. Additionally, add a "block proposer cache" which allows us to cache the block proposer for some epoch. Since we're now doing trailing-edge `per_slot_processing`, we can prime this cache with the values for the next epoch before those blocks arrive (assuming those blocks don't have some weird forking). There were several ancillary changes required to achieve this: - Remove the `state_root` field of `BeaconSnapshot`, since there's no need to know it on a `pre_state` and in all other cases we can just read it from `block.state_root()`. - This caused some "dust" changes of `snapshot.beacon_state_root` to `snapshot.beacon_state_root()`, where the `BeaconSnapshot::beacon_state_root()` func just reads the state root from the block. - Rename `types::ShuffingId` to `AttestationShufflingId`. I originally did this because I added a `ProposerShufflingId` struct which turned out to be not so useful. I thought this new name was more descriptive so I kept it. - Address https://github.com/ethereum/eth2.0-specs/pull/2196 - Add a debug log when we get a block with an unknown parent. There was previously no logging around this case. - Add a function to `BeaconState` to compute all proposers for an epoch without re-computing the active indices for each slot. ## Additional Info - ~~Blocked on #2173~~ - ~~Blocked on #2179~~ That PR was wrapped into this PR. - There's potentially some places where we could avoid computing the proposer indices in `per_block_processing` but I haven't done this here. These would be an optimization beyond the issue at hand (improving block propagation times) and I think this PR is already doing enough. We can come back for that later. ## TODO - [x] Tidy, improve comments. - [x] ~~Try avoid computing proposer index in `per_block_processing`?~~
2021-02-15 07:17:52 +00:00
pub struct PreProcessingSnapshot<T: EthSpec> {
/// This state is equivalent to the `self.beacon_block.state_root()` state that has been
/// advanced forward one slot using `per_slot_processing`. This state is "primed and ready" for
/// the application of another block.
pub pre_state: BeaconState<T>,
Optimize validator duties (#2243) ## Issue Addressed Closes #2052 ## Proposed Changes - Refactor the attester/proposer duties endpoints in the BN - Performance improvements - Fixes some potential inconsistencies with the dependent root fields. - Removes `http_api::beacon_proposer_cache` and just uses the one on the `BeaconChain` instead. - Move the code for the proposer/attester duties endpoints into separate files, for readability. - Refactor the `DutiesService` in the VC - Required to reduce the delay on broadcasting new blocks. - Gets rid of the `ValidatorDuty` shim struct that came about when we adopted the standard API. - Separate block/attestation duty tasks so that they don't block each other when one is slow. - In the VC, use `PublicKeyBytes` to represent validators instead of `PublicKey`. `PublicKey` is a legit crypto object whilst `PublicKeyBytes` is just a byte-array, it's much faster to clone/hash `PublicKeyBytes` and this change has had a significant impact on runtimes. - Unfortunately this has created lots of dust changes. - In the BN, store `PublicKeyBytes` in the `beacon_proposer_cache` and allow access to them. The HTTP API always sends `PublicKeyBytes` over the wire and the conversion from `PublicKey` -> `PublickeyBytes` is non-trivial, especially when queries have 100s/1000s of validators (like Pyrmont). - Add the `state_processing::state_advance` mod which dedups a lot of the "apply `n` skip slots to the state" code. - This also fixes a bug with some functions which were failing to include a state root as per [this comment](https://github.com/sigp/lighthouse/blob/072695284f7eff82c51f79bc921ad942fea7483a/consensus/state_processing/src/state_advance.rs#L69-L74). I couldn't find any instance of this bug that resulted in anything more severe than keying a shuffling cache by the wrong block root. - Swap the VC block service to use `mpsc` from `tokio` instead of `futures`. This is consistent with the rest of the code base. ~~This PR *reduces* the size of the codebase :tada:~~ It *used* to reduce the size of the code base before I added more comments. ## Observations on Prymont - Proposer duties times down from peaks of 450ms to consistent <1ms. - Current epoch attester duties times down from >1s peaks to a consistent 20-30ms. - Block production down from +600ms to 100-200ms. ## Additional Info - ~~Blocked on #2241~~ - ~~Blocked on #2234~~ ## TODO - [x] ~~Refactor this into some smaller PRs?~~ Leaving this as-is for now. - [x] Address `per_slot_processing` roots. - [x] Investigate slow next epoch times. Not getting added to cache on block processing? - [x] Consider [this](https://github.com/sigp/lighthouse/blob/072695284f7eff82c51f79bc921ad942fea7483a/beacon_node/store/src/hot_cold_store.rs#L811-L812) in the scenario of replacing the state roots Co-authored-by: pawan <pawandhananjay@gmail.com> Co-authored-by: Michael Sproul <michael@sigmaprime.io>
2021-03-17 05:09:57 +00:00
/// This value is only set to `Some` if the `pre_state` was *not* advanced forward.
pub beacon_state_root: Option<Hash256>,
Advance state to next slot after importing block (#2174) ## Issue Addressed NA ## Proposed Changes Add an optimization to perform `per_slot_processing` from the *leading-edge* of block processing to the *trailing-edge*. Ultimately, this allows us to import the block at slot `n` faster because we used the tail-end of slot `n - 1` to perform `per_slot_processing`. Additionally, add a "block proposer cache" which allows us to cache the block proposer for some epoch. Since we're now doing trailing-edge `per_slot_processing`, we can prime this cache with the values for the next epoch before those blocks arrive (assuming those blocks don't have some weird forking). There were several ancillary changes required to achieve this: - Remove the `state_root` field of `BeaconSnapshot`, since there's no need to know it on a `pre_state` and in all other cases we can just read it from `block.state_root()`. - This caused some "dust" changes of `snapshot.beacon_state_root` to `snapshot.beacon_state_root()`, where the `BeaconSnapshot::beacon_state_root()` func just reads the state root from the block. - Rename `types::ShuffingId` to `AttestationShufflingId`. I originally did this because I added a `ProposerShufflingId` struct which turned out to be not so useful. I thought this new name was more descriptive so I kept it. - Address https://github.com/ethereum/eth2.0-specs/pull/2196 - Add a debug log when we get a block with an unknown parent. There was previously no logging around this case. - Add a function to `BeaconState` to compute all proposers for an epoch without re-computing the active indices for each slot. ## Additional Info - ~~Blocked on #2173~~ - ~~Blocked on #2179~~ That PR was wrapped into this PR. - There's potentially some places where we could avoid computing the proposer indices in `per_block_processing` but I haven't done this here. These would be an optimization beyond the issue at hand (improving block propagation times) and I think this PR is already doing enough. We can come back for that later. ## TODO - [x] Tidy, improve comments. - [x] ~~Try avoid computing proposer index in `per_block_processing`?~~
2021-02-15 07:17:52 +00:00
pub beacon_block: SignedBeaconBlock<T>,
pub beacon_block_root: Hash256,
}
impl<T: EthSpec> From<BeaconSnapshot<T>> for PreProcessingSnapshot<T> {
fn from(snapshot: BeaconSnapshot<T>) -> Self {
Optimize validator duties (#2243) ## Issue Addressed Closes #2052 ## Proposed Changes - Refactor the attester/proposer duties endpoints in the BN - Performance improvements - Fixes some potential inconsistencies with the dependent root fields. - Removes `http_api::beacon_proposer_cache` and just uses the one on the `BeaconChain` instead. - Move the code for the proposer/attester duties endpoints into separate files, for readability. - Refactor the `DutiesService` in the VC - Required to reduce the delay on broadcasting new blocks. - Gets rid of the `ValidatorDuty` shim struct that came about when we adopted the standard API. - Separate block/attestation duty tasks so that they don't block each other when one is slow. - In the VC, use `PublicKeyBytes` to represent validators instead of `PublicKey`. `PublicKey` is a legit crypto object whilst `PublicKeyBytes` is just a byte-array, it's much faster to clone/hash `PublicKeyBytes` and this change has had a significant impact on runtimes. - Unfortunately this has created lots of dust changes. - In the BN, store `PublicKeyBytes` in the `beacon_proposer_cache` and allow access to them. The HTTP API always sends `PublicKeyBytes` over the wire and the conversion from `PublicKey` -> `PublickeyBytes` is non-trivial, especially when queries have 100s/1000s of validators (like Pyrmont). - Add the `state_processing::state_advance` mod which dedups a lot of the "apply `n` skip slots to the state" code. - This also fixes a bug with some functions which were failing to include a state root as per [this comment](https://github.com/sigp/lighthouse/blob/072695284f7eff82c51f79bc921ad942fea7483a/consensus/state_processing/src/state_advance.rs#L69-L74). I couldn't find any instance of this bug that resulted in anything more severe than keying a shuffling cache by the wrong block root. - Swap the VC block service to use `mpsc` from `tokio` instead of `futures`. This is consistent with the rest of the code base. ~~This PR *reduces* the size of the codebase :tada:~~ It *used* to reduce the size of the code base before I added more comments. ## Observations on Prymont - Proposer duties times down from peaks of 450ms to consistent <1ms. - Current epoch attester duties times down from >1s peaks to a consistent 20-30ms. - Block production down from +600ms to 100-200ms. ## Additional Info - ~~Blocked on #2241~~ - ~~Blocked on #2234~~ ## TODO - [x] ~~Refactor this into some smaller PRs?~~ Leaving this as-is for now. - [x] Address `per_slot_processing` roots. - [x] Investigate slow next epoch times. Not getting added to cache on block processing? - [x] Consider [this](https://github.com/sigp/lighthouse/blob/072695284f7eff82c51f79bc921ad942fea7483a/beacon_node/store/src/hot_cold_store.rs#L811-L812) in the scenario of replacing the state roots Co-authored-by: pawan <pawandhananjay@gmail.com> Co-authored-by: Michael Sproul <michael@sigmaprime.io>
2021-03-17 05:09:57 +00:00
let beacon_state_root = Some(snapshot.beacon_state_root());
Advance state to next slot after importing block (#2174) ## Issue Addressed NA ## Proposed Changes Add an optimization to perform `per_slot_processing` from the *leading-edge* of block processing to the *trailing-edge*. Ultimately, this allows us to import the block at slot `n` faster because we used the tail-end of slot `n - 1` to perform `per_slot_processing`. Additionally, add a "block proposer cache" which allows us to cache the block proposer for some epoch. Since we're now doing trailing-edge `per_slot_processing`, we can prime this cache with the values for the next epoch before those blocks arrive (assuming those blocks don't have some weird forking). There were several ancillary changes required to achieve this: - Remove the `state_root` field of `BeaconSnapshot`, since there's no need to know it on a `pre_state` and in all other cases we can just read it from `block.state_root()`. - This caused some "dust" changes of `snapshot.beacon_state_root` to `snapshot.beacon_state_root()`, where the `BeaconSnapshot::beacon_state_root()` func just reads the state root from the block. - Rename `types::ShuffingId` to `AttestationShufflingId`. I originally did this because I added a `ProposerShufflingId` struct which turned out to be not so useful. I thought this new name was more descriptive so I kept it. - Address https://github.com/ethereum/eth2.0-specs/pull/2196 - Add a debug log when we get a block with an unknown parent. There was previously no logging around this case. - Add a function to `BeaconState` to compute all proposers for an epoch without re-computing the active indices for each slot. ## Additional Info - ~~Blocked on #2173~~ - ~~Blocked on #2179~~ That PR was wrapped into this PR. - There's potentially some places where we could avoid computing the proposer indices in `per_block_processing` but I haven't done this here. These would be an optimization beyond the issue at hand (improving block propagation times) and I think this PR is already doing enough. We can come back for that later. ## TODO - [x] Tidy, improve comments. - [x] ~~Try avoid computing proposer index in `per_block_processing`?~~
2021-02-15 07:17:52 +00:00
Self {
pre_state: snapshot.beacon_state,
Optimize validator duties (#2243) ## Issue Addressed Closes #2052 ## Proposed Changes - Refactor the attester/proposer duties endpoints in the BN - Performance improvements - Fixes some potential inconsistencies with the dependent root fields. - Removes `http_api::beacon_proposer_cache` and just uses the one on the `BeaconChain` instead. - Move the code for the proposer/attester duties endpoints into separate files, for readability. - Refactor the `DutiesService` in the VC - Required to reduce the delay on broadcasting new blocks. - Gets rid of the `ValidatorDuty` shim struct that came about when we adopted the standard API. - Separate block/attestation duty tasks so that they don't block each other when one is slow. - In the VC, use `PublicKeyBytes` to represent validators instead of `PublicKey`. `PublicKey` is a legit crypto object whilst `PublicKeyBytes` is just a byte-array, it's much faster to clone/hash `PublicKeyBytes` and this change has had a significant impact on runtimes. - Unfortunately this has created lots of dust changes. - In the BN, store `PublicKeyBytes` in the `beacon_proposer_cache` and allow access to them. The HTTP API always sends `PublicKeyBytes` over the wire and the conversion from `PublicKey` -> `PublickeyBytes` is non-trivial, especially when queries have 100s/1000s of validators (like Pyrmont). - Add the `state_processing::state_advance` mod which dedups a lot of the "apply `n` skip slots to the state" code. - This also fixes a bug with some functions which were failing to include a state root as per [this comment](https://github.com/sigp/lighthouse/blob/072695284f7eff82c51f79bc921ad942fea7483a/consensus/state_processing/src/state_advance.rs#L69-L74). I couldn't find any instance of this bug that resulted in anything more severe than keying a shuffling cache by the wrong block root. - Swap the VC block service to use `mpsc` from `tokio` instead of `futures`. This is consistent with the rest of the code base. ~~This PR *reduces* the size of the codebase :tada:~~ It *used* to reduce the size of the code base before I added more comments. ## Observations on Prymont - Proposer duties times down from peaks of 450ms to consistent <1ms. - Current epoch attester duties times down from >1s peaks to a consistent 20-30ms. - Block production down from +600ms to 100-200ms. ## Additional Info - ~~Blocked on #2241~~ - ~~Blocked on #2234~~ ## TODO - [x] ~~Refactor this into some smaller PRs?~~ Leaving this as-is for now. - [x] Address `per_slot_processing` roots. - [x] Investigate slow next epoch times. Not getting added to cache on block processing? - [x] Consider [this](https://github.com/sigp/lighthouse/blob/072695284f7eff82c51f79bc921ad942fea7483a/beacon_node/store/src/hot_cold_store.rs#L811-L812) in the scenario of replacing the state roots Co-authored-by: pawan <pawandhananjay@gmail.com> Co-authored-by: Michael Sproul <michael@sigmaprime.io>
2021-03-17 05:09:57 +00:00
beacon_state_root,
Advance state to next slot after importing block (#2174) ## Issue Addressed NA ## Proposed Changes Add an optimization to perform `per_slot_processing` from the *leading-edge* of block processing to the *trailing-edge*. Ultimately, this allows us to import the block at slot `n` faster because we used the tail-end of slot `n - 1` to perform `per_slot_processing`. Additionally, add a "block proposer cache" which allows us to cache the block proposer for some epoch. Since we're now doing trailing-edge `per_slot_processing`, we can prime this cache with the values for the next epoch before those blocks arrive (assuming those blocks don't have some weird forking). There were several ancillary changes required to achieve this: - Remove the `state_root` field of `BeaconSnapshot`, since there's no need to know it on a `pre_state` and in all other cases we can just read it from `block.state_root()`. - This caused some "dust" changes of `snapshot.beacon_state_root` to `snapshot.beacon_state_root()`, where the `BeaconSnapshot::beacon_state_root()` func just reads the state root from the block. - Rename `types::ShuffingId` to `AttestationShufflingId`. I originally did this because I added a `ProposerShufflingId` struct which turned out to be not so useful. I thought this new name was more descriptive so I kept it. - Address https://github.com/ethereum/eth2.0-specs/pull/2196 - Add a debug log when we get a block with an unknown parent. There was previously no logging around this case. - Add a function to `BeaconState` to compute all proposers for an epoch without re-computing the active indices for each slot. ## Additional Info - ~~Blocked on #2173~~ - ~~Blocked on #2179~~ That PR was wrapped into this PR. - There's potentially some places where we could avoid computing the proposer indices in `per_block_processing` but I haven't done this here. These would be an optimization beyond the issue at hand (improving block propagation times) and I think this PR is already doing enough. We can come back for that later. ## TODO - [x] Tidy, improve comments. - [x] ~~Try avoid computing proposer index in `per_block_processing`?~~
2021-02-15 07:17:52 +00:00
beacon_block: snapshot.beacon_block,
beacon_block_root: snapshot.beacon_block_root,
}
}
}
impl<T: EthSpec> CacheItem<T> {
pub fn new_without_pre_state(snapshot: BeaconSnapshot<T>) -> Self {
Self {
beacon_block: snapshot.beacon_block,
beacon_block_root: snapshot.beacon_block_root,
beacon_state: snapshot.beacon_state,
pre_state: None,
}
}
fn clone_to_snapshot_with(&self, clone_config: CloneConfig) -> BeaconSnapshot<T> {
BeaconSnapshot {
beacon_state: self.beacon_state.clone_with(clone_config),
beacon_block: self.beacon_block.clone(),
beacon_block_root: self.beacon_block_root,
}
}
pub fn into_pre_state(self) -> PreProcessingSnapshot<T> {
Optimize validator duties (#2243) ## Issue Addressed Closes #2052 ## Proposed Changes - Refactor the attester/proposer duties endpoints in the BN - Performance improvements - Fixes some potential inconsistencies with the dependent root fields. - Removes `http_api::beacon_proposer_cache` and just uses the one on the `BeaconChain` instead. - Move the code for the proposer/attester duties endpoints into separate files, for readability. - Refactor the `DutiesService` in the VC - Required to reduce the delay on broadcasting new blocks. - Gets rid of the `ValidatorDuty` shim struct that came about when we adopted the standard API. - Separate block/attestation duty tasks so that they don't block each other when one is slow. - In the VC, use `PublicKeyBytes` to represent validators instead of `PublicKey`. `PublicKey` is a legit crypto object whilst `PublicKeyBytes` is just a byte-array, it's much faster to clone/hash `PublicKeyBytes` and this change has had a significant impact on runtimes. - Unfortunately this has created lots of dust changes. - In the BN, store `PublicKeyBytes` in the `beacon_proposer_cache` and allow access to them. The HTTP API always sends `PublicKeyBytes` over the wire and the conversion from `PublicKey` -> `PublickeyBytes` is non-trivial, especially when queries have 100s/1000s of validators (like Pyrmont). - Add the `state_processing::state_advance` mod which dedups a lot of the "apply `n` skip slots to the state" code. - This also fixes a bug with some functions which were failing to include a state root as per [this comment](https://github.com/sigp/lighthouse/blob/072695284f7eff82c51f79bc921ad942fea7483a/consensus/state_processing/src/state_advance.rs#L69-L74). I couldn't find any instance of this bug that resulted in anything more severe than keying a shuffling cache by the wrong block root. - Swap the VC block service to use `mpsc` from `tokio` instead of `futures`. This is consistent with the rest of the code base. ~~This PR *reduces* the size of the codebase :tada:~~ It *used* to reduce the size of the code base before I added more comments. ## Observations on Prymont - Proposer duties times down from peaks of 450ms to consistent <1ms. - Current epoch attester duties times down from >1s peaks to a consistent 20-30ms. - Block production down from +600ms to 100-200ms. ## Additional Info - ~~Blocked on #2241~~ - ~~Blocked on #2234~~ ## TODO - [x] ~~Refactor this into some smaller PRs?~~ Leaving this as-is for now. - [x] Address `per_slot_processing` roots. - [x] Investigate slow next epoch times. Not getting added to cache on block processing? - [x] Consider [this](https://github.com/sigp/lighthouse/blob/072695284f7eff82c51f79bc921ad942fea7483a/beacon_node/store/src/hot_cold_store.rs#L811-L812) in the scenario of replacing the state roots Co-authored-by: pawan <pawandhananjay@gmail.com> Co-authored-by: Michael Sproul <michael@sigmaprime.io>
2021-03-17 05:09:57 +00:00
// Do not include the beacon state root if the state has been advanced.
let beacon_state_root =
Some(self.beacon_block.state_root()).filter(|_| self.pre_state.is_none());
Advance state to next slot after importing block (#2174) ## Issue Addressed NA ## Proposed Changes Add an optimization to perform `per_slot_processing` from the *leading-edge* of block processing to the *trailing-edge*. Ultimately, this allows us to import the block at slot `n` faster because we used the tail-end of slot `n - 1` to perform `per_slot_processing`. Additionally, add a "block proposer cache" which allows us to cache the block proposer for some epoch. Since we're now doing trailing-edge `per_slot_processing`, we can prime this cache with the values for the next epoch before those blocks arrive (assuming those blocks don't have some weird forking). There were several ancillary changes required to achieve this: - Remove the `state_root` field of `BeaconSnapshot`, since there's no need to know it on a `pre_state` and in all other cases we can just read it from `block.state_root()`. - This caused some "dust" changes of `snapshot.beacon_state_root` to `snapshot.beacon_state_root()`, where the `BeaconSnapshot::beacon_state_root()` func just reads the state root from the block. - Rename `types::ShuffingId` to `AttestationShufflingId`. I originally did this because I added a `ProposerShufflingId` struct which turned out to be not so useful. I thought this new name was more descriptive so I kept it. - Address https://github.com/ethereum/eth2.0-specs/pull/2196 - Add a debug log when we get a block with an unknown parent. There was previously no logging around this case. - Add a function to `BeaconState` to compute all proposers for an epoch without re-computing the active indices for each slot. ## Additional Info - ~~Blocked on #2173~~ - ~~Blocked on #2179~~ That PR was wrapped into this PR. - There's potentially some places where we could avoid computing the proposer indices in `per_block_processing` but I haven't done this here. These would be an optimization beyond the issue at hand (improving block propagation times) and I think this PR is already doing enough. We can come back for that later. ## TODO - [x] Tidy, improve comments. - [x] ~~Try avoid computing proposer index in `per_block_processing`?~~
2021-02-15 07:17:52 +00:00
PreProcessingSnapshot {
beacon_block: self.beacon_block,
beacon_block_root: self.beacon_block_root,
pre_state: self.pre_state.unwrap_or(self.beacon_state),
Optimize validator duties (#2243) ## Issue Addressed Closes #2052 ## Proposed Changes - Refactor the attester/proposer duties endpoints in the BN - Performance improvements - Fixes some potential inconsistencies with the dependent root fields. - Removes `http_api::beacon_proposer_cache` and just uses the one on the `BeaconChain` instead. - Move the code for the proposer/attester duties endpoints into separate files, for readability. - Refactor the `DutiesService` in the VC - Required to reduce the delay on broadcasting new blocks. - Gets rid of the `ValidatorDuty` shim struct that came about when we adopted the standard API. - Separate block/attestation duty tasks so that they don't block each other when one is slow. - In the VC, use `PublicKeyBytes` to represent validators instead of `PublicKey`. `PublicKey` is a legit crypto object whilst `PublicKeyBytes` is just a byte-array, it's much faster to clone/hash `PublicKeyBytes` and this change has had a significant impact on runtimes. - Unfortunately this has created lots of dust changes. - In the BN, store `PublicKeyBytes` in the `beacon_proposer_cache` and allow access to them. The HTTP API always sends `PublicKeyBytes` over the wire and the conversion from `PublicKey` -> `PublickeyBytes` is non-trivial, especially when queries have 100s/1000s of validators (like Pyrmont). - Add the `state_processing::state_advance` mod which dedups a lot of the "apply `n` skip slots to the state" code. - This also fixes a bug with some functions which were failing to include a state root as per [this comment](https://github.com/sigp/lighthouse/blob/072695284f7eff82c51f79bc921ad942fea7483a/consensus/state_processing/src/state_advance.rs#L69-L74). I couldn't find any instance of this bug that resulted in anything more severe than keying a shuffling cache by the wrong block root. - Swap the VC block service to use `mpsc` from `tokio` instead of `futures`. This is consistent with the rest of the code base. ~~This PR *reduces* the size of the codebase :tada:~~ It *used* to reduce the size of the code base before I added more comments. ## Observations on Prymont - Proposer duties times down from peaks of 450ms to consistent <1ms. - Current epoch attester duties times down from >1s peaks to a consistent 20-30ms. - Block production down from +600ms to 100-200ms. ## Additional Info - ~~Blocked on #2241~~ - ~~Blocked on #2234~~ ## TODO - [x] ~~Refactor this into some smaller PRs?~~ Leaving this as-is for now. - [x] Address `per_slot_processing` roots. - [x] Investigate slow next epoch times. Not getting added to cache on block processing? - [x] Consider [this](https://github.com/sigp/lighthouse/blob/072695284f7eff82c51f79bc921ad942fea7483a/beacon_node/store/src/hot_cold_store.rs#L811-L812) in the scenario of replacing the state roots Co-authored-by: pawan <pawandhananjay@gmail.com> Co-authored-by: Michael Sproul <michael@sigmaprime.io>
2021-03-17 05:09:57 +00:00
beacon_state_root,
Advance state to next slot after importing block (#2174) ## Issue Addressed NA ## Proposed Changes Add an optimization to perform `per_slot_processing` from the *leading-edge* of block processing to the *trailing-edge*. Ultimately, this allows us to import the block at slot `n` faster because we used the tail-end of slot `n - 1` to perform `per_slot_processing`. Additionally, add a "block proposer cache" which allows us to cache the block proposer for some epoch. Since we're now doing trailing-edge `per_slot_processing`, we can prime this cache with the values for the next epoch before those blocks arrive (assuming those blocks don't have some weird forking). There were several ancillary changes required to achieve this: - Remove the `state_root` field of `BeaconSnapshot`, since there's no need to know it on a `pre_state` and in all other cases we can just read it from `block.state_root()`. - This caused some "dust" changes of `snapshot.beacon_state_root` to `snapshot.beacon_state_root()`, where the `BeaconSnapshot::beacon_state_root()` func just reads the state root from the block. - Rename `types::ShuffingId` to `AttestationShufflingId`. I originally did this because I added a `ProposerShufflingId` struct which turned out to be not so useful. I thought this new name was more descriptive so I kept it. - Address https://github.com/ethereum/eth2.0-specs/pull/2196 - Add a debug log when we get a block with an unknown parent. There was previously no logging around this case. - Add a function to `BeaconState` to compute all proposers for an epoch without re-computing the active indices for each slot. ## Additional Info - ~~Blocked on #2173~~ - ~~Blocked on #2179~~ That PR was wrapped into this PR. - There's potentially some places where we could avoid computing the proposer indices in `per_block_processing` but I haven't done this here. These would be an optimization beyond the issue at hand (improving block propagation times) and I think this PR is already doing enough. We can come back for that later. ## TODO - [x] Tidy, improve comments. - [x] ~~Try avoid computing proposer index in `per_block_processing`?~~
2021-02-15 07:17:52 +00:00
}
}
pub fn clone_as_pre_state(&self) -> PreProcessingSnapshot<T> {
// Do not include the beacon state root if the state has been advanced.
let beacon_state_root =
Some(self.beacon_block.state_root()).filter(|_| self.pre_state.is_none());
PreProcessingSnapshot {
beacon_block: self.beacon_block.clone(),
beacon_block_root: self.beacon_block_root,
pre_state: self
.pre_state
.as_ref()
.map_or_else(|| self.beacon_state.clone(), |pre_state| pre_state.clone()),
beacon_state_root,
}
}
Advance state to next slot after importing block (#2174) ## Issue Addressed NA ## Proposed Changes Add an optimization to perform `per_slot_processing` from the *leading-edge* of block processing to the *trailing-edge*. Ultimately, this allows us to import the block at slot `n` faster because we used the tail-end of slot `n - 1` to perform `per_slot_processing`. Additionally, add a "block proposer cache" which allows us to cache the block proposer for some epoch. Since we're now doing trailing-edge `per_slot_processing`, we can prime this cache with the values for the next epoch before those blocks arrive (assuming those blocks don't have some weird forking). There were several ancillary changes required to achieve this: - Remove the `state_root` field of `BeaconSnapshot`, since there's no need to know it on a `pre_state` and in all other cases we can just read it from `block.state_root()`. - This caused some "dust" changes of `snapshot.beacon_state_root` to `snapshot.beacon_state_root()`, where the `BeaconSnapshot::beacon_state_root()` func just reads the state root from the block. - Rename `types::ShuffingId` to `AttestationShufflingId`. I originally did this because I added a `ProposerShufflingId` struct which turned out to be not so useful. I thought this new name was more descriptive so I kept it. - Address https://github.com/ethereum/eth2.0-specs/pull/2196 - Add a debug log when we get a block with an unknown parent. There was previously no logging around this case. - Add a function to `BeaconState` to compute all proposers for an epoch without re-computing the active indices for each slot. ## Additional Info - ~~Blocked on #2173~~ - ~~Blocked on #2179~~ That PR was wrapped into this PR. - There's potentially some places where we could avoid computing the proposer indices in `per_block_processing` but I haven't done this here. These would be an optimization beyond the issue at hand (improving block propagation times) and I think this PR is already doing enough. We can come back for that later. ## TODO - [x] Tidy, improve comments. - [x] ~~Try avoid computing proposer index in `per_block_processing`?~~
2021-02-15 07:17:52 +00:00
}
/// The information required for block production.
pub struct BlockProductionPreState<T: EthSpec> {
/// This state may or may not have been advanced forward a single slot.
///
/// See the documentation in the `crate::state_advance_timer` module for more information.
pub pre_state: BeaconState<T>,
/// This value will only be `Some` if `self.pre_state` was **not** advanced forward a single
/// slot.
///
/// This value can be used to avoid tree-hashing the state during the first call to
/// `per_slot_processing`.
pub state_root: Option<Hash256>,
Advance state to next slot after importing block (#2174) ## Issue Addressed NA ## Proposed Changes Add an optimization to perform `per_slot_processing` from the *leading-edge* of block processing to the *trailing-edge*. Ultimately, this allows us to import the block at slot `n` faster because we used the tail-end of slot `n - 1` to perform `per_slot_processing`. Additionally, add a "block proposer cache" which allows us to cache the block proposer for some epoch. Since we're now doing trailing-edge `per_slot_processing`, we can prime this cache with the values for the next epoch before those blocks arrive (assuming those blocks don't have some weird forking). There were several ancillary changes required to achieve this: - Remove the `state_root` field of `BeaconSnapshot`, since there's no need to know it on a `pre_state` and in all other cases we can just read it from `block.state_root()`. - This caused some "dust" changes of `snapshot.beacon_state_root` to `snapshot.beacon_state_root()`, where the `BeaconSnapshot::beacon_state_root()` func just reads the state root from the block. - Rename `types::ShuffingId` to `AttestationShufflingId`. I originally did this because I added a `ProposerShufflingId` struct which turned out to be not so useful. I thought this new name was more descriptive so I kept it. - Address https://github.com/ethereum/eth2.0-specs/pull/2196 - Add a debug log when we get a block with an unknown parent. There was previously no logging around this case. - Add a function to `BeaconState` to compute all proposers for an epoch without re-computing the active indices for each slot. ## Additional Info - ~~Blocked on #2173~~ - ~~Blocked on #2179~~ That PR was wrapped into this PR. - There's potentially some places where we could avoid computing the proposer indices in `per_block_processing` but I haven't done this here. These would be an optimization beyond the issue at hand (improving block propagation times) and I think this PR is already doing enough. We can come back for that later. ## TODO - [x] Tidy, improve comments. - [x] ~~Try avoid computing proposer index in `per_block_processing`?~~
2021-02-15 07:17:52 +00:00
}
pub enum StateAdvance<T: EthSpec> {
/// The cache does not contain the supplied block root.
BlockNotFound,
/// The cache contains the supplied block root but the state has already been advanced.
AlreadyAdvanced,
/// The cache contains the supplied block root and the state has not yet been advanced.
State {
state: Box<BeaconState<T>>,
state_root: Hash256,
block_slot: Slot,
},
}
/// The item stored in the `SnapshotCache`.
pub struct CacheItem<T: EthSpec> {
beacon_block: SignedBeaconBlock<T>,
beacon_block_root: Hash256,
/// This state is equivalent to `self.beacon_block.state_root()`.
beacon_state: BeaconState<T>,
/// This state is equivalent to `self.beacon_state` that has had `per_slot_processing` applied
/// to it. This state assists in optimizing block processing.
pre_state: Option<BeaconState<T>>,
}
impl<T: EthSpec> Into<BeaconSnapshot<T>> for CacheItem<T> {
fn into(self) -> BeaconSnapshot<T> {
BeaconSnapshot {
beacon_state: self.beacon_state,
beacon_block: self.beacon_block,
beacon_block_root: self.beacon_block_root,
}
}
}
/// Provides a cache of `BeaconSnapshot` that is intended primarily for block processing.
///
/// ## Cache Queuing
///
/// The cache has a non-standard queue mechanism (specifically, it is not LRU).
///
/// The cache has a max number of elements (`max_len`). Until `max_len` is achieved, all snapshots
/// are simply added to the queue. Once `max_len` is achieved, adding a new snapshot will cause an
/// existing snapshot to be ejected. The ejected snapshot will:
///
/// - Never be the `head_block_root`.
/// - Be the snapshot with the lowest `state.slot` (ties broken arbitrarily).
pub struct SnapshotCache<T: EthSpec> {
max_len: usize,
head_block_root: Hash256,
Advance state to next slot after importing block (#2174) ## Issue Addressed NA ## Proposed Changes Add an optimization to perform `per_slot_processing` from the *leading-edge* of block processing to the *trailing-edge*. Ultimately, this allows us to import the block at slot `n` faster because we used the tail-end of slot `n - 1` to perform `per_slot_processing`. Additionally, add a "block proposer cache" which allows us to cache the block proposer for some epoch. Since we're now doing trailing-edge `per_slot_processing`, we can prime this cache with the values for the next epoch before those blocks arrive (assuming those blocks don't have some weird forking). There were several ancillary changes required to achieve this: - Remove the `state_root` field of `BeaconSnapshot`, since there's no need to know it on a `pre_state` and in all other cases we can just read it from `block.state_root()`. - This caused some "dust" changes of `snapshot.beacon_state_root` to `snapshot.beacon_state_root()`, where the `BeaconSnapshot::beacon_state_root()` func just reads the state root from the block. - Rename `types::ShuffingId` to `AttestationShufflingId`. I originally did this because I added a `ProposerShufflingId` struct which turned out to be not so useful. I thought this new name was more descriptive so I kept it. - Address https://github.com/ethereum/eth2.0-specs/pull/2196 - Add a debug log when we get a block with an unknown parent. There was previously no logging around this case. - Add a function to `BeaconState` to compute all proposers for an epoch without re-computing the active indices for each slot. ## Additional Info - ~~Blocked on #2173~~ - ~~Blocked on #2179~~ That PR was wrapped into this PR. - There's potentially some places where we could avoid computing the proposer indices in `per_block_processing` but I haven't done this here. These would be an optimization beyond the issue at hand (improving block propagation times) and I think this PR is already doing enough. We can come back for that later. ## TODO - [x] Tidy, improve comments. - [x] ~~Try avoid computing proposer index in `per_block_processing`?~~
2021-02-15 07:17:52 +00:00
snapshots: Vec<CacheItem<T>>,
}
impl<T: EthSpec> SnapshotCache<T> {
/// Instantiate a new cache which contains the `head` snapshot.
///
/// Setting `max_len = 0` is equivalent to setting `max_len = 1`.
pub fn new(max_len: usize, head: BeaconSnapshot<T>) -> Self {
Self {
max_len: cmp::max(max_len, 1),
head_block_root: head.beacon_block_root,
Advance state to next slot after importing block (#2174) ## Issue Addressed NA ## Proposed Changes Add an optimization to perform `per_slot_processing` from the *leading-edge* of block processing to the *trailing-edge*. Ultimately, this allows us to import the block at slot `n` faster because we used the tail-end of slot `n - 1` to perform `per_slot_processing`. Additionally, add a "block proposer cache" which allows us to cache the block proposer for some epoch. Since we're now doing trailing-edge `per_slot_processing`, we can prime this cache with the values for the next epoch before those blocks arrive (assuming those blocks don't have some weird forking). There were several ancillary changes required to achieve this: - Remove the `state_root` field of `BeaconSnapshot`, since there's no need to know it on a `pre_state` and in all other cases we can just read it from `block.state_root()`. - This caused some "dust" changes of `snapshot.beacon_state_root` to `snapshot.beacon_state_root()`, where the `BeaconSnapshot::beacon_state_root()` func just reads the state root from the block. - Rename `types::ShuffingId` to `AttestationShufflingId`. I originally did this because I added a `ProposerShufflingId` struct which turned out to be not so useful. I thought this new name was more descriptive so I kept it. - Address https://github.com/ethereum/eth2.0-specs/pull/2196 - Add a debug log when we get a block with an unknown parent. There was previously no logging around this case. - Add a function to `BeaconState` to compute all proposers for an epoch without re-computing the active indices for each slot. ## Additional Info - ~~Blocked on #2173~~ - ~~Blocked on #2179~~ That PR was wrapped into this PR. - There's potentially some places where we could avoid computing the proposer indices in `per_block_processing` but I haven't done this here. These would be an optimization beyond the issue at hand (improving block propagation times) and I think this PR is already doing enough. We can come back for that later. ## TODO - [x] Tidy, improve comments. - [x] ~~Try avoid computing proposer index in `per_block_processing`?~~
2021-02-15 07:17:52 +00:00
snapshots: vec![CacheItem::new_without_pre_state(head)],
}
}
/// The block roots of all snapshots contained in `self`.
pub fn beacon_block_roots(&self) -> Vec<Hash256> {
self.snapshots.iter().map(|s| s.beacon_block_root).collect()
}
/// The number of snapshots contained in `self`.
pub fn len(&self) -> usize {
self.snapshots.len()
}
/// Insert a snapshot, potentially removing an existing snapshot if `self` is at capacity (see
/// struct-level documentation for more info).
pub fn insert(
&mut self,
snapshot: BeaconSnapshot<T>,
pre_state: Option<BeaconState<T>>,
spec: &ChainSpec,
) {
let parent_root = snapshot.beacon_block.message().parent_root();
Advance state to next slot after importing block (#2174) ## Issue Addressed NA ## Proposed Changes Add an optimization to perform `per_slot_processing` from the *leading-edge* of block processing to the *trailing-edge*. Ultimately, this allows us to import the block at slot `n` faster because we used the tail-end of slot `n - 1` to perform `per_slot_processing`. Additionally, add a "block proposer cache" which allows us to cache the block proposer for some epoch. Since we're now doing trailing-edge `per_slot_processing`, we can prime this cache with the values for the next epoch before those blocks arrive (assuming those blocks don't have some weird forking). There were several ancillary changes required to achieve this: - Remove the `state_root` field of `BeaconSnapshot`, since there's no need to know it on a `pre_state` and in all other cases we can just read it from `block.state_root()`. - This caused some "dust" changes of `snapshot.beacon_state_root` to `snapshot.beacon_state_root()`, where the `BeaconSnapshot::beacon_state_root()` func just reads the state root from the block. - Rename `types::ShuffingId` to `AttestationShufflingId`. I originally did this because I added a `ProposerShufflingId` struct which turned out to be not so useful. I thought this new name was more descriptive so I kept it. - Address https://github.com/ethereum/eth2.0-specs/pull/2196 - Add a debug log when we get a block with an unknown parent. There was previously no logging around this case. - Add a function to `BeaconState` to compute all proposers for an epoch without re-computing the active indices for each slot. ## Additional Info - ~~Blocked on #2173~~ - ~~Blocked on #2179~~ That PR was wrapped into this PR. - There's potentially some places where we could avoid computing the proposer indices in `per_block_processing` but I haven't done this here. These would be an optimization beyond the issue at hand (improving block propagation times) and I think this PR is already doing enough. We can come back for that later. ## TODO - [x] Tidy, improve comments. - [x] ~~Try avoid computing proposer index in `per_block_processing`?~~
2021-02-15 07:17:52 +00:00
let item = CacheItem {
beacon_block: snapshot.beacon_block,
beacon_block_root: snapshot.beacon_block_root,
beacon_state: snapshot.beacon_state,
pre_state,
};
// Remove the grandparent of the block that was just inserted.
//
// Assuming it's unlikely to see re-orgs deeper than one block, this method helps keep the
// cache small by removing any states that already have more than one descendant.
//
// Remove the grandparent first to free up room in the cache.
let grandparent_result =
process_results(item.beacon_state.rev_iter_block_roots(spec), |iter| {
iter.map(|(_slot, root)| root)
.find(|root| *root != item.beacon_block_root && *root != parent_root)
});
if let Ok(Some(grandparent_root)) = grandparent_result {
let head_block_root = self.head_block_root;
self.snapshots.retain(|snapshot| {
let root = snapshot.beacon_block_root;
root == head_block_root || root != grandparent_root
});
}
if self.snapshots.len() < self.max_len {
Advance state to next slot after importing block (#2174) ## Issue Addressed NA ## Proposed Changes Add an optimization to perform `per_slot_processing` from the *leading-edge* of block processing to the *trailing-edge*. Ultimately, this allows us to import the block at slot `n` faster because we used the tail-end of slot `n - 1` to perform `per_slot_processing`. Additionally, add a "block proposer cache" which allows us to cache the block proposer for some epoch. Since we're now doing trailing-edge `per_slot_processing`, we can prime this cache with the values for the next epoch before those blocks arrive (assuming those blocks don't have some weird forking). There were several ancillary changes required to achieve this: - Remove the `state_root` field of `BeaconSnapshot`, since there's no need to know it on a `pre_state` and in all other cases we can just read it from `block.state_root()`. - This caused some "dust" changes of `snapshot.beacon_state_root` to `snapshot.beacon_state_root()`, where the `BeaconSnapshot::beacon_state_root()` func just reads the state root from the block. - Rename `types::ShuffingId` to `AttestationShufflingId`. I originally did this because I added a `ProposerShufflingId` struct which turned out to be not so useful. I thought this new name was more descriptive so I kept it. - Address https://github.com/ethereum/eth2.0-specs/pull/2196 - Add a debug log when we get a block with an unknown parent. There was previously no logging around this case. - Add a function to `BeaconState` to compute all proposers for an epoch without re-computing the active indices for each slot. ## Additional Info - ~~Blocked on #2173~~ - ~~Blocked on #2179~~ That PR was wrapped into this PR. - There's potentially some places where we could avoid computing the proposer indices in `per_block_processing` but I haven't done this here. These would be an optimization beyond the issue at hand (improving block propagation times) and I think this PR is already doing enough. We can come back for that later. ## TODO - [x] Tidy, improve comments. - [x] ~~Try avoid computing proposer index in `per_block_processing`?~~
2021-02-15 07:17:52 +00:00
self.snapshots.push(item);
} else {
let insert_at = self
.snapshots
.iter()
.enumerate()
.filter_map(|(i, snapshot)| {
if snapshot.beacon_block_root != self.head_block_root {
Some((i, snapshot.beacon_state.slot()))
} else {
None
}
})
.min_by_key(|(_i, slot)| *slot)
.map(|(i, _slot)| i);
if let Some(i) = insert_at {
Advance state to next slot after importing block (#2174) ## Issue Addressed NA ## Proposed Changes Add an optimization to perform `per_slot_processing` from the *leading-edge* of block processing to the *trailing-edge*. Ultimately, this allows us to import the block at slot `n` faster because we used the tail-end of slot `n - 1` to perform `per_slot_processing`. Additionally, add a "block proposer cache" which allows us to cache the block proposer for some epoch. Since we're now doing trailing-edge `per_slot_processing`, we can prime this cache with the values for the next epoch before those blocks arrive (assuming those blocks don't have some weird forking). There were several ancillary changes required to achieve this: - Remove the `state_root` field of `BeaconSnapshot`, since there's no need to know it on a `pre_state` and in all other cases we can just read it from `block.state_root()`. - This caused some "dust" changes of `snapshot.beacon_state_root` to `snapshot.beacon_state_root()`, where the `BeaconSnapshot::beacon_state_root()` func just reads the state root from the block. - Rename `types::ShuffingId` to `AttestationShufflingId`. I originally did this because I added a `ProposerShufflingId` struct which turned out to be not so useful. I thought this new name was more descriptive so I kept it. - Address https://github.com/ethereum/eth2.0-specs/pull/2196 - Add a debug log when we get a block with an unknown parent. There was previously no logging around this case. - Add a function to `BeaconState` to compute all proposers for an epoch without re-computing the active indices for each slot. ## Additional Info - ~~Blocked on #2173~~ - ~~Blocked on #2179~~ That PR was wrapped into this PR. - There's potentially some places where we could avoid computing the proposer indices in `per_block_processing` but I haven't done this here. These would be an optimization beyond the issue at hand (improving block propagation times) and I think this PR is already doing enough. We can come back for that later. ## TODO - [x] Tidy, improve comments. - [x] ~~Try avoid computing proposer index in `per_block_processing`?~~
2021-02-15 07:17:52 +00:00
self.snapshots[i] = item;
}
}
}
/// If available, returns a `CacheItem` that should be used for importing/processing a block.
/// The method will remove the block from `self`, carrying across any caches that may or may not
/// be built.
///
/// In the event the block being processed was observed late, clone the cache instead of
/// moving it. This allows us to process the next block quickly in the case of a re-org.
/// Additionally, if the slot was skipped, clone the cache. This ensures blocks that are
/// later than 1 slot still have access to the cache and can be processed quickly.
pub fn get_state_for_block_processing(
&mut self,
block_root: Hash256,
block_slot: Slot,
block_delay: Option<Duration>,
spec: &ChainSpec,
) -> Option<(PreProcessingSnapshot<T>, bool)> {
self.snapshots
.iter()
.position(|snapshot| snapshot.beacon_block_root == block_root)
.map(|i| {
if let Some(cache) = self.snapshots.get(i) {
if block_slot > cache.beacon_block.slot() + 1 {
return (cache.clone_as_pre_state(), true);
}
if let Some(delay) = block_delay {
if delay >= MINIMUM_BLOCK_DELAY_FOR_CLONE
&& delay <= Duration::from_secs(spec.seconds_per_slot) * 4
{
return (cache.clone_as_pre_state(), true);
}
}
}
(self.snapshots.remove(i).into_pre_state(), false)
})
}
/// If available, obtains a clone of a `BeaconState` that should be used for block production.
/// The clone will use `CloneConfig:all()`, ensuring any tree-hash cache is cloned too.
///
/// ## Note
///
/// This method clones the `BeaconState` (instead of removing it) since we assume that any block
/// we produce will soon be pushed to the `BeaconChain` for importing/processing. Keeping a copy
/// of that `BeaconState` in `self` will greatly help with import times.
pub fn get_state_for_block_production(
&self,
block_root: Hash256,
) -> Option<BlockProductionPreState<T>> {
self.snapshots
.iter()
.find(|snapshot| snapshot.beacon_block_root == block_root)
.map(|snapshot| {
if let Some(pre_state) = &snapshot.pre_state {
BlockProductionPreState {
pre_state: pre_state.clone_with(CloneConfig::all()),
state_root: None,
}
} else {
BlockProductionPreState {
pre_state: snapshot.beacon_state.clone_with(CloneConfig::all()),
state_root: Some(snapshot.beacon_block.state_root()),
}
}
})
}
Optimise tree hash caching for block production (#2106) ## Proposed Changes `@potuz` on the Eth R&D Discord observed that Lighthouse blocks on Pyrmont were always arriving at other nodes after at least 1 second. Part of this could be due to processing and slow propagation, but metrics also revealed that the Lighthouse nodes were usually taking 400-600ms to even just produce a block before broadcasting it. I tracked the slowness down to the lack of a pre-built tree hash cache (THC) on the states being used for block production. This was due to using the head state for block production, which lacks a THC in order to keep fork choice fast (cloning a THC takes at least 30ms for 100k validators). This PR modifies block production to clone a state from the snapshot cache rather than the head, which speeds things up by 200-400ms by avoiding the tree hash cache rebuild. In practice this seems to have cut block production time down to 300ms or less. Ideally we could _remove_ the snapshot from the cache (and save the 30ms), but it is required for when we re-process the block after signing it with the validator client. ## Alternatives I experimented with 2 alternatives to this approach, before deciding on it: * Alternative 1: ensure the `head` has a tree hash cache. This is too slow, as it imposes a +30ms hit on fork choice, which currently takes ~5ms (with occasional spikes). * Alternative 2: use `Arc<BeaconSnapshot>` in the snapshot cache and share snapshots between the cache and the `head`. This made fork choice blazing fast (1ms), and block production the same as in this PR, but had a negative impact on block processing which I don't think is worth it. It ended up being necessary to clone the full state from the snapshot cache during block production, imposing the +30ms penalty there _as well_ as in block production. In contract, the approach in this PR should only impact block production, and it improves it! Yay for pareto improvements :tada: ## Additional Info This commit (ac59dfa) is currently running on all the Lighthouse Pyrmont nodes, and I've added a dashboard to the Pyrmont grafana instance with the metrics. In future work we should optimise the attestation packing, which consumes around 30-60ms and is now a substantial contributor to the total.
2020-12-21 06:29:39 +00:00
/// If there is a snapshot with `block_root`, clone it and return the clone.
pub fn get_cloned(
&self,
block_root: Hash256,
clone_config: CloneConfig,
) -> Option<BeaconSnapshot<T>> {
self.snapshots
.iter()
.find(|snapshot| snapshot.beacon_block_root == block_root)
Advance state to next slot after importing block (#2174) ## Issue Addressed NA ## Proposed Changes Add an optimization to perform `per_slot_processing` from the *leading-edge* of block processing to the *trailing-edge*. Ultimately, this allows us to import the block at slot `n` faster because we used the tail-end of slot `n - 1` to perform `per_slot_processing`. Additionally, add a "block proposer cache" which allows us to cache the block proposer for some epoch. Since we're now doing trailing-edge `per_slot_processing`, we can prime this cache with the values for the next epoch before those blocks arrive (assuming those blocks don't have some weird forking). There were several ancillary changes required to achieve this: - Remove the `state_root` field of `BeaconSnapshot`, since there's no need to know it on a `pre_state` and in all other cases we can just read it from `block.state_root()`. - This caused some "dust" changes of `snapshot.beacon_state_root` to `snapshot.beacon_state_root()`, where the `BeaconSnapshot::beacon_state_root()` func just reads the state root from the block. - Rename `types::ShuffingId` to `AttestationShufflingId`. I originally did this because I added a `ProposerShufflingId` struct which turned out to be not so useful. I thought this new name was more descriptive so I kept it. - Address https://github.com/ethereum/eth2.0-specs/pull/2196 - Add a debug log when we get a block with an unknown parent. There was previously no logging around this case. - Add a function to `BeaconState` to compute all proposers for an epoch without re-computing the active indices for each slot. ## Additional Info - ~~Blocked on #2173~~ - ~~Blocked on #2179~~ That PR was wrapped into this PR. - There's potentially some places where we could avoid computing the proposer indices in `per_block_processing` but I haven't done this here. These would be an optimization beyond the issue at hand (improving block propagation times) and I think this PR is already doing enough. We can come back for that later. ## TODO - [x] Tidy, improve comments. - [x] ~~Try avoid computing proposer index in `per_block_processing`?~~
2021-02-15 07:17:52 +00:00
.map(|snapshot| snapshot.clone_to_snapshot_with(clone_config))
}
pub fn get_for_state_advance(&mut self, block_root: Hash256) -> StateAdvance<T> {
if let Some(snapshot) = self
.snapshots
.iter_mut()
.find(|snapshot| snapshot.beacon_block_root == block_root)
{
if snapshot.pre_state.is_some() {
StateAdvance::AlreadyAdvanced
} else {
let cloned = snapshot
.beacon_state
.clone_with(CloneConfig::committee_caches_only());
StateAdvance::State {
state: Box::new(std::mem::replace(&mut snapshot.beacon_state, cloned)),
state_root: snapshot.beacon_block.state_root(),
block_slot: snapshot.beacon_block.slot(),
}
}
} else {
StateAdvance::BlockNotFound
}
}
pub fn update_pre_state(&mut self, block_root: Hash256, state: BeaconState<T>) -> Option<()> {
self.snapshots
.iter_mut()
.find(|snapshot| snapshot.beacon_block_root == block_root)
.map(|snapshot| {
snapshot.pre_state = Some(state);
})
}
/// Removes all snapshots from the queue that are less than or equal to the finalized epoch.
pub fn prune(&mut self, finalized_epoch: Epoch) {
self.snapshots.retain(|snapshot| {
snapshot.beacon_state.slot() > finalized_epoch.start_slot(T::slots_per_epoch())
})
}
/// Inform the cache that the head of the beacon chain has changed.
///
/// The snapshot that matches this `head_block_root` will never be ejected from the cache
/// during `Self::insert`.
pub fn update_head(&mut self, head_block_root: Hash256) {
self.head_block_root = head_block_root
}
}
#[cfg(test)]
mod test {
use super::*;
use crate::test_utils::{BeaconChainHarness, EphemeralHarnessType};
use types::{
test_utils::generate_deterministic_keypair, BeaconBlock, Epoch, MainnetEthSpec,
SignedBeaconBlock, Slot,
};
fn get_harness() -> BeaconChainHarness<EphemeralHarnessType<MainnetEthSpec>> {
let harness = BeaconChainHarness::builder(MainnetEthSpec)
.default_spec()
.deterministic_keypairs(1)
.fresh_ephemeral_store()
.build();
harness.advance_slot();
harness
}
const CACHE_SIZE: usize = 4;
fn get_snapshot(i: u64) -> BeaconSnapshot<MainnetEthSpec> {
let spec = MainnetEthSpec::default_spec();
let beacon_state = get_harness().chain.head_beacon_state().unwrap();
let signed_beacon_block = SignedBeaconBlock::from_block(
BeaconBlock::empty(&spec),
generate_deterministic_keypair(0)
.sk
.sign(Hash256::from_low_u64_be(42)),
);
BeaconSnapshot {
beacon_state,
beacon_block: signed_beacon_block,
beacon_block_root: Hash256::from_low_u64_be(i),
}
}
#[test]
fn insert_get_prune_update() {
let spec = MainnetEthSpec::default_spec();
let mut cache = SnapshotCache::new(CACHE_SIZE, get_snapshot(0));
// Insert a bunch of entries in the cache. It should look like this:
//
// Index Root
// 0 0 <--head
// 1 1
// 2 2
// 3 3
for i in 1..CACHE_SIZE as u64 {
let mut snapshot = get_snapshot(i);
// Each snapshot should be one slot into an epoch, with each snapshot one epoch apart.
*snapshot.beacon_state.slot_mut() =
Slot::from(i * MainnetEthSpec::slots_per_epoch() + 1);
cache.insert(snapshot, None, &spec);
assert_eq!(
cache.snapshots.len(),
i as usize + 1,
"cache length should be as expected"
);
assert_eq!(cache.head_block_root, Hash256::from_low_u64_be(0));
}
// Insert a new value in the cache. Afterwards it should look like:
//
// Index Root
// 0 0 <--head
// 1 42
// 2 2
// 3 3
assert_eq!(cache.snapshots.len(), CACHE_SIZE);
cache.insert(get_snapshot(42), None, &spec);
assert_eq!(cache.snapshots.len(), CACHE_SIZE);
assert!(
cache
.get_state_for_block_processing(
Hash256::from_low_u64_be(1),
Slot::new(0),
None,
&spec
)
.is_none(),
"the snapshot with the lowest slot should have been removed during the insert function"
);
Optimise tree hash caching for block production (#2106) ## Proposed Changes `@potuz` on the Eth R&D Discord observed that Lighthouse blocks on Pyrmont were always arriving at other nodes after at least 1 second. Part of this could be due to processing and slow propagation, but metrics also revealed that the Lighthouse nodes were usually taking 400-600ms to even just produce a block before broadcasting it. I tracked the slowness down to the lack of a pre-built tree hash cache (THC) on the states being used for block production. This was due to using the head state for block production, which lacks a THC in order to keep fork choice fast (cloning a THC takes at least 30ms for 100k validators). This PR modifies block production to clone a state from the snapshot cache rather than the head, which speeds things up by 200-400ms by avoiding the tree hash cache rebuild. In practice this seems to have cut block production time down to 300ms or less. Ideally we could _remove_ the snapshot from the cache (and save the 30ms), but it is required for when we re-process the block after signing it with the validator client. ## Alternatives I experimented with 2 alternatives to this approach, before deciding on it: * Alternative 1: ensure the `head` has a tree hash cache. This is too slow, as it imposes a +30ms hit on fork choice, which currently takes ~5ms (with occasional spikes). * Alternative 2: use `Arc<BeaconSnapshot>` in the snapshot cache and share snapshots between the cache and the `head`. This made fork choice blazing fast (1ms), and block production the same as in this PR, but had a negative impact on block processing which I don't think is worth it. It ended up being necessary to clone the full state from the snapshot cache during block production, imposing the +30ms penalty there _as well_ as in block production. In contract, the approach in this PR should only impact block production, and it improves it! Yay for pareto improvements :tada: ## Additional Info This commit (ac59dfa) is currently running on all the Lighthouse Pyrmont nodes, and I've added a dashboard to the Pyrmont grafana instance with the metrics. In future work we should optimise the attestation packing, which consumes around 30-60ms and is now a substantial contributor to the total.
2020-12-21 06:29:39 +00:00
assert!(cache
.get_cloned(Hash256::from_low_u64_be(1), CloneConfig::none())
.is_none());
assert_eq!(
cache
Optimise tree hash caching for block production (#2106) ## Proposed Changes `@potuz` on the Eth R&D Discord observed that Lighthouse blocks on Pyrmont were always arriving at other nodes after at least 1 second. Part of this could be due to processing and slow propagation, but metrics also revealed that the Lighthouse nodes were usually taking 400-600ms to even just produce a block before broadcasting it. I tracked the slowness down to the lack of a pre-built tree hash cache (THC) on the states being used for block production. This was due to using the head state for block production, which lacks a THC in order to keep fork choice fast (cloning a THC takes at least 30ms for 100k validators). This PR modifies block production to clone a state from the snapshot cache rather than the head, which speeds things up by 200-400ms by avoiding the tree hash cache rebuild. In practice this seems to have cut block production time down to 300ms or less. Ideally we could _remove_ the snapshot from the cache (and save the 30ms), but it is required for when we re-process the block after signing it with the validator client. ## Alternatives I experimented with 2 alternatives to this approach, before deciding on it: * Alternative 1: ensure the `head` has a tree hash cache. This is too slow, as it imposes a +30ms hit on fork choice, which currently takes ~5ms (with occasional spikes). * Alternative 2: use `Arc<BeaconSnapshot>` in the snapshot cache and share snapshots between the cache and the `head`. This made fork choice blazing fast (1ms), and block production the same as in this PR, but had a negative impact on block processing which I don't think is worth it. It ended up being necessary to clone the full state from the snapshot cache during block production, imposing the +30ms penalty there _as well_ as in block production. In contract, the approach in this PR should only impact block production, and it improves it! Yay for pareto improvements :tada: ## Additional Info This commit (ac59dfa) is currently running on all the Lighthouse Pyrmont nodes, and I've added a dashboard to the Pyrmont grafana instance with the metrics. In future work we should optimise the attestation packing, which consumes around 30-60ms and is now a substantial contributor to the total.
2020-12-21 06:29:39 +00:00
.get_cloned(Hash256::from_low_u64_be(0), CloneConfig::none())
.expect("the head should still be in the cache")
.beacon_block_root,
Hash256::from_low_u64_be(0),
"get_cloned should get the correct snapshot"
);
assert_eq!(
cache
.get_state_for_block_processing(
Hash256::from_low_u64_be(0),
Slot::new(0),
None,
&spec
)
.expect("the head should still be in the cache")
.0
.beacon_block_root,
Hash256::from_low_u64_be(0),
"get_state_for_block_processing should get the correct snapshot"
);
assert_eq!(
cache.snapshots.len(),
CACHE_SIZE - 1,
"get_state_for_block_processing should shorten the cache"
);
// Prune the cache. Afterwards it should look like:
//
// Index Root
// 0 2
// 1 3
cache.prune(Epoch::new(2));
assert_eq!(cache.snapshots.len(), 2);
cache.update_head(Hash256::from_low_u64_be(2));
// Over-fill the cache so it needs to eject some old values on insert.
for i in 0..CACHE_SIZE as u64 {
cache.insert(get_snapshot(u64::max_value() - i), None, &spec);
}
// Ensure that the new head value was not removed from the cache.
assert_eq!(
cache
.get_state_for_block_processing(
Hash256::from_low_u64_be(2),
Slot::new(0),
None,
&spec
)
.expect("the new head should still be in the cache")
.0
.beacon_block_root,
Hash256::from_low_u64_be(2),
"get_state_for_block_processing should get the correct snapshot"
);
}
}