laconicd/x/evm/keeper/state_transition.go
2021-09-02 17:47:39 +00:00

409 lines
16 KiB
Go

package keeper
import (
"math/big"
"time"
"github.com/palantir/stacktrace"
tmtypes "github.com/tendermint/tendermint/types"
"github.com/cosmos/cosmos-sdk/telemetry"
sdk "github.com/cosmos/cosmos-sdk/types"
sdkerrors "github.com/cosmos/cosmos-sdk/types/errors"
authtypes "github.com/cosmos/cosmos-sdk/x/auth/types"
stakingtypes "github.com/cosmos/cosmos-sdk/x/staking/types"
ethermint "github.com/tharsis/ethermint/types"
"github.com/tharsis/ethermint/x/evm/types"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core"
ethtypes "github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/core/vm"
"github.com/ethereum/go-ethereum/params"
)
// NewEVM generates a go-ethereum VM from the provided Message fields and the chain parameters
// (ChainConfig and module Params). It additionally sets the validator operator address as the
// coinbase address to make it available for the COINBASE opcode, even though there is no
// beneficiary of the coinbase transaction (since we're not mining).
func (k *Keeper) NewEVM(
msg core.Message,
config *params.ChainConfig,
params types.Params,
coinbase common.Address,
tracer vm.Tracer,
) *vm.EVM {
blockCtx := vm.BlockContext{
CanTransfer: core.CanTransfer,
Transfer: core.Transfer,
GetHash: k.GetHashFn(),
Coinbase: coinbase,
GasLimit: ethermint.BlockGasLimit(k.Ctx()),
BlockNumber: big.NewInt(k.Ctx().BlockHeight()),
Time: big.NewInt(k.Ctx().BlockHeader().Time.Unix()),
Difficulty: big.NewInt(0), // unused. Only required in PoW context
}
txCtx := core.NewEVMTxContext(msg)
vmConfig := k.VMConfig(msg, params, tracer)
return vm.NewEVM(blockCtx, txCtx, k, config, vmConfig)
}
// VMConfig creates an EVM configuration from the debug setting and the extra EIPs enabled on the
// module parameters. The config generated uses the default JumpTable from the EVM.
func (k Keeper) VMConfig(msg core.Message, params types.Params, tracer vm.Tracer) vm.Config {
return vm.Config{
Debug: k.debug,
Tracer: tracer,
NoRecursion: false, // TODO: consider disabling recursion though params
ExtraEips: params.EIPs(),
}
}
// GetHashFn implements vm.GetHashFunc for Ethermint. It handles 3 cases:
// 1. The requested height matches the current height from context (and thus same epoch number)
// 2. The requested height is from an previous height from the same chain epoch
// 3. The requested height is from a height greater than the latest one
func (k Keeper) GetHashFn() vm.GetHashFunc {
return func(height uint64) common.Hash {
h := int64(height)
ctx := k.Ctx()
switch {
case ctx.BlockHeight() == h:
// Case 1: The requested height matches the one from the context so we can retrieve the header
// hash directly from the context.
// Note: The headerHash is only set at begin block, it will be nil in case of a query context
headerHash := ctx.HeaderHash()
if len(headerHash) != 0 {
return common.BytesToHash(headerHash)
}
// only recompute the hash if not set (eg: checkTxState)
contextBlockHeader := ctx.BlockHeader()
header, err := tmtypes.HeaderFromProto(&contextBlockHeader)
if err != nil {
k.Logger(ctx).Error("failed to cast tendermint header from proto", "error", err)
return common.Hash{}
}
headerHash = header.Hash()
return common.BytesToHash(headerHash)
case ctx.BlockHeight() > h:
// Case 2: if the chain is not the current height we need to retrieve the hash from the store for the
// current chain epoch. This only applies if the current height is greater than the requested height.
histInfo, found := k.stakingKeeper.GetHistoricalInfo(ctx, h)
if !found {
k.Logger(ctx).Debug("historical info not found", "height", h)
return common.Hash{}
}
header, err := tmtypes.HeaderFromProto(&histInfo.Header)
if err != nil {
k.Logger(ctx).Error("failed to cast tendermint header from proto", "error", err)
return common.Hash{}
}
return common.BytesToHash(header.Hash())
default:
// Case 3: heights greater than the current one returns an empty hash.
return common.Hash{}
}
}
}
// ApplyTransaction runs and attempts to perform a state transition with the given transaction (i.e Message), that will
// only be persisted (committed) to the underlying KVStore if the transaction does not fail.
//
// Gas tracking
//
// Ethereum consumes gas according to the EVM opcodes instead of general reads and writes to store. Because of this, the
// state transition needs to ignore the SDK gas consumption mechanism defined by the GasKVStore and instead consume the
// amount of gas used by the VM execution. The amount of gas used is tracked by the EVM and returned in the execution
// result.
//
// Prior to the execution, the starting tx gas meter is saved and replaced with an infinite gas meter in a new context
// in order to ignore the SDK gas consumption config values (read, write, has, delete).
// After the execution, the gas used from the message execution will be added to the starting gas consumed, taking into
// consideration the amount of gas returned. Finally, the context is updated with the EVM gas consumed value prior to
// returning.
//
// For relevant discussion see: https://github.com/cosmos/cosmos-sdk/discussions/9072
func (k *Keeper) ApplyTransaction(tx *ethtypes.Transaction) (*types.MsgEthereumTxResponse, error) {
defer telemetry.ModuleMeasureSince(types.ModuleName, time.Now(), types.MetricKeyTransitionDB)
ctx := k.Ctx()
params := k.GetParams(ctx)
// return error if contract creation or call are disabled through governance
if !params.EnableCreate && tx.To() == nil {
return nil, stacktrace.Propagate(types.ErrCreateDisabled, "failed to create new contract")
} else if !params.EnableCall && tx.To() != nil {
return nil, stacktrace.Propagate(types.ErrCallDisabled, "failed to call contract")
}
ethCfg := params.ChainConfig.EthereumConfig(k.eip155ChainID)
// get the latest signer according to the chain rules from the config
signer := ethtypes.MakeSigner(ethCfg, big.NewInt(ctx.BlockHeight()))
msg, err := tx.AsMessage(signer)
if err != nil {
return nil, stacktrace.Propagate(err, "failed to return ethereum transaction as core message")
}
// get the coinbase address from the block proposer
coinbase, err := k.GetCoinbaseAddress(ctx)
if err != nil {
return nil, stacktrace.Propagate(err, "failed to obtain coinbase address")
}
// create an ethereum EVM instance and run the message
tracer := types.NewTracer(k.tracer, msg, ethCfg, ctx.BlockHeight(), k.debug)
evm := k.NewEVM(msg, ethCfg, params, coinbase, tracer)
txHash := tx.Hash()
// set the transaction hash and index to the impermanent (transient) block state so that it's also
// available on the StateDB functions (eg: AddLog)
k.SetTxHashTransient(txHash)
k.IncreaseTxIndexTransient()
if !k.ctxStack.IsEmpty() {
panic("context stack shouldn't be dirty before apply message")
}
var revision int
if k.hooks != nil {
// snapshot to contain the tx processing and post processing in same scope
revision = k.Snapshot()
}
// pass false to execute in real mode, which do actual gas refunding
res, err := k.ApplyMessage(evm, msg, ethCfg, false)
if err != nil {
return nil, stacktrace.Propagate(err, "failed to apply ethereum core message")
}
res.Hash = txHash.Hex()
logs := k.GetTxLogs(txHash)
if !res.Failed() {
// Only call hooks if tx executed successfully.
if err = k.PostTxProcessing(txHash, logs); err != nil {
// If hooks return error, revert the whole tx.
k.RevertToSnapshot(revision)
res.VmError = types.ErrPostTxProcessing.Error()
k.Logger(ctx).Error("tx post processing failed", "error", err)
}
}
if len(logs) > 0 {
res.Logs = types.NewLogsFromEth(logs)
// Update transient block bloom filter
bloom := k.GetBlockBloomTransient()
bloom.Or(bloom, big.NewInt(0).SetBytes(ethtypes.LogsBloom(logs)))
k.SetBlockBloomTransient(bloom)
}
// Since we've implemented `RevertToSnapshot` api, so for the vm error cases,
// the state is reverted, so it's ok to call the commit here anyway.
k.CommitCachedContexts()
// update the gas used after refund
k.resetGasMeterAndConsumeGas(res.GasUsed)
return res, nil
}
// ApplyMessage computes the new state by applying the given message against the existing state.
// If the message fails, the VM execution error with the reason will be returned to the client
// and the transaction won't be committed to the store.
//
// Reverted state
//
// The transaction is never "reverted" since there is no snapshot + rollback performed on the StateDB.
// Only successful transactions are written to the store during DeliverTx mode.
//
// Prechecks and Preprocessing
//
// All relevant state transition prechecks for the MsgEthereumTx are performed on the AnteHandler,
// prior to running the transaction against the state. The prechecks run are the following:
//
// 1. the nonce of the message caller is correct
// 2. caller has enough balance to cover transaction fee(gaslimit * gasprice)
// 3. the amount of gas required is available in the block
// 4. the purchased gas is enough to cover intrinsic usage
// 5. there is no overflow when calculating intrinsic gas
// 6. caller has enough balance to cover asset transfer for **topmost** call
//
// The preprocessing steps performed by the AnteHandler are:
//
// 1. set up the initial access list (iff fork > Berlin)
//
// Query mode
//
// The gRPC query endpoint from 'eth_call' calls this method in query mode, and since the query handler don't call AnteHandler,
// so we don't do real gas refund in that case.
func (k *Keeper) ApplyMessage(evm *vm.EVM, msg core.Message, cfg *params.ChainConfig, query bool) (*types.MsgEthereumTxResponse, error) {
var (
ret []byte // return bytes from evm execution
vmErr error // vm errors do not effect consensus and are therefore not assigned to err
)
sender := vm.AccountRef(msg.From())
contractCreation := msg.To() == nil
intrinsicGas, err := k.GetEthIntrinsicGas(msg, cfg, contractCreation)
if err != nil {
// should have already been checked on Ante Handler
return nil, stacktrace.Propagate(err, "intrinsic gas failed")
}
// Should check again even if it is checked on Ante Handler, because eth_call don't go through Ante Handler.
if msg.Gas() < intrinsicGas {
// eth_estimateGas will check for this exact error
return nil, stacktrace.Propagate(core.ErrIntrinsicGas, "apply message")
}
leftoverGas := msg.Gas() - intrinsicGas
// access list preparaion is moved from ante handler to here, because it's needed when `ApplyMessage` is called
// under contexts where ante handlers are not run, for example `eth_call` and `eth_estimateGas`.
if rules := cfg.Rules(big.NewInt(k.Ctx().BlockHeight())); rules.IsBerlin {
k.PrepareAccessList(msg.From(), msg.To(), vm.ActivePrecompiles(rules), msg.AccessList())
}
if contractCreation {
ret, _, leftoverGas, vmErr = evm.Create(sender, msg.Data(), leftoverGas, msg.Value())
} else {
ret, leftoverGas, vmErr = evm.Call(sender, *msg.To(), msg.Data(), leftoverGas, msg.Value())
}
refundQuotient := uint64(2)
if query {
// gRPC query handlers don't go through the AnteHandler to deduct the gas fee from the sender or have access historical state.
// We don't refund gas to the sender.
// For more info, see: https://github.com/tharsis/ethermint/issues/229 and https://github.com/cosmos/cosmos-sdk/issues/9636
gasConsumed := msg.Gas() - leftoverGas
leftoverGas += k.GasToRefund(gasConsumed, refundQuotient)
} else {
// refund gas prior to handling the vm error in order to match the Ethereum gas consumption instead of the default SDK one.
leftoverGas, err = k.RefundGas(msg, leftoverGas, refundQuotient)
if err != nil {
return nil, stacktrace.Propagate(err, "failed to refund gas leftover gas to sender %s", msg.From())
}
}
// EVM execution error needs to be available for the JSON-RPC client
var vmError string
if vmErr != nil {
vmError = vmErr.Error()
}
gasUsed := msg.Gas() - leftoverGas
return &types.MsgEthereumTxResponse{
GasUsed: gasUsed,
VmError: vmError,
Ret: ret,
}, nil
}
// GetEthIntrinsicGas returns the intrinsic gas cost for the transaction
func (k *Keeper) GetEthIntrinsicGas(msg core.Message, cfg *params.ChainConfig, isContractCreation bool) (uint64, error) {
height := big.NewInt(k.Ctx().BlockHeight())
homestead := cfg.IsHomestead(height)
istanbul := cfg.IsIstanbul(height)
return core.IntrinsicGas(msg.Data(), msg.AccessList(), isContractCreation, homestead, istanbul)
}
// GasToRefund calculates the amount of gas the state machine should refund to the sender. It is
// capped by the refund quotient value.
func (k *Keeper) GasToRefund(gasConsumed, refundQuotient uint64) uint64 {
// Apply refund counter
refund := gasConsumed / refundQuotient
availableRefund := k.GetRefund()
if refund > availableRefund {
return availableRefund
}
return refund
}
// RefundGas transfers the leftover gas to the sender of the message, caped to half of the total gas
// consumed in the transaction. Additionally, the function sets the total gas consumed to the value
// returned by the EVM execution, thus ignoring the previous intrinsic gas consumed during in the
// AnteHandler.
func (k *Keeper) RefundGas(msg core.Message, leftoverGas, refundQuotient uint64) (uint64, error) {
// safety check: leftover gas after execution should never exceed the gas limit defined on the message
if leftoverGas > msg.Gas() {
return leftoverGas, stacktrace.Propagate(
sdkerrors.Wrapf(types.ErrInconsistentGas, "leftover gas cannot be greater than gas limit (%d > %d)", leftoverGas, msg.Gas()),
"failed to update gas consumed after refund of leftover gas",
)
}
gasConsumed := msg.Gas() - leftoverGas
// calculate available gas to refund and add it to the leftover gas amount
refund := k.GasToRefund(gasConsumed, refundQuotient)
leftoverGas += refund
// safety check: leftover gas after refund should never exceed the gas limit defined on the message
if leftoverGas > msg.Gas() {
return leftoverGas, stacktrace.Propagate(
sdkerrors.Wrapf(types.ErrInconsistentGas, "leftover gas cannot be greater than gas limit (%d > %d)", leftoverGas, msg.Gas()),
"failed to update gas consumed after refund of %d gas", refund,
)
}
// Return EVM tokens for remaining gas, exchanged at the original rate.
remaining := new(big.Int).Mul(new(big.Int).SetUint64(leftoverGas), msg.GasPrice())
switch remaining.Sign() {
case -1:
// negative refund errors
return leftoverGas, sdkerrors.Wrapf(types.ErrInvalidRefund, "refunded amount value cannot be negative %d", remaining.Int64())
case 1:
// positive amount refund
params := k.GetParams(k.Ctx())
refundedCoins := sdk.Coins{sdk.NewCoin(params.EvmDenom, sdk.NewIntFromBigInt(remaining))}
// refund to sender from the fee collector module account, which is the escrow account in charge of collecting tx fees
err := k.bankKeeper.SendCoinsFromModuleToAccount(k.Ctx(), authtypes.FeeCollectorName, msg.From().Bytes(), refundedCoins)
if err != nil {
err = sdkerrors.Wrapf(sdkerrors.ErrInsufficientFunds, "fee collector account failed to refund fees: %s", err.Error())
return leftoverGas, stacktrace.Propagate(err, "failed to refund %d leftover gas (%s)", leftoverGas, refundedCoins.String())
}
default:
// no refund, consume gas and update the tx gas meter
}
return leftoverGas, nil
}
// resetGasMeterAndConsumeGas reset first the gas meter consumed value to zero and set it back to the new value
// 'gasUsed'
func (k *Keeper) resetGasMeterAndConsumeGas(gasUsed uint64) {
// reset the gas count
ctx := k.Ctx()
ctx.GasMeter().RefundGas(ctx.GasMeter().GasConsumed(), "reset the gas count")
ctx.GasMeter().ConsumeGas(gasUsed, "apply evm transaction")
}
// GetCoinbaseAddress returns the block proposer's validator operator address.
func (k Keeper) GetCoinbaseAddress(ctx sdk.Context) (common.Address, error) {
consAddr := sdk.ConsAddress(ctx.BlockHeader().ProposerAddress)
validator, found := k.stakingKeeper.GetValidatorByConsAddr(ctx, consAddr)
if !found {
return common.Address{}, stacktrace.Propagate(
sdkerrors.Wrap(stakingtypes.ErrNoValidatorFound, consAddr.String()),
"failed to retrieve validator from block proposer address",
)
}
coinbase := common.BytesToAddress(validator.GetOperator())
return coinbase, nil
}