package keeper import ( "errors" "math/big" "os" "time" "github.com/palantir/stacktrace" tmtypes "github.com/tendermint/tendermint/types" "github.com/cosmos/cosmos-sdk/telemetry" sdk "github.com/cosmos/cosmos-sdk/types" sdkerrors "github.com/cosmos/cosmos-sdk/types/errors" authtypes "github.com/cosmos/cosmos-sdk/x/auth/types" ethermint "github.com/tharsis/ethermint/types" "github.com/tharsis/ethermint/x/evm/types" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core" ethtypes "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/core/vm" "github.com/ethereum/go-ethereum/params" ) // NewEVM generates an ethereum VM from the provided Message fields and the ChainConfig. func (k *Keeper) NewEVM(msg core.Message, config *params.ChainConfig) *vm.EVM { blockCtx := vm.BlockContext{ CanTransfer: core.CanTransfer, Transfer: core.Transfer, GetHash: k.GetHashFn(), Coinbase: common.Address{}, // there's no beneficiary since we're not mining GasLimit: ethermint.BlockGasLimit(k.ctx), BlockNumber: big.NewInt(k.ctx.BlockHeight()), Time: big.NewInt(k.ctx.BlockHeader().Time.Unix()), Difficulty: big.NewInt(0), // unused. Only required in PoW context } txCtx := core.NewEVMTxContext(msg) vmConfig := k.VMConfig() return vm.NewEVM(blockCtx, txCtx, k, config, vmConfig) } // VMConfig creates an EVM configuration from the module parameters and the debug setting. // The config generated uses the default JumpTable from the EVM. func (k Keeper) VMConfig() vm.Config { params := k.GetParams(k.ctx) return vm.Config{ Debug: k.debug, Tracer: vm.NewJSONLogger(&vm.LogConfig{Debug: k.debug}, os.Stderr), // TODO: consider using the Struct Logger too NoRecursion: false, // TODO: consider disabling recursion though params ExtraEips: params.EIPs(), } } // GetHashFn implements vm.GetHashFunc for Ethermint. It handles 3 cases: // 1. The requested height matches the current height from context (and thus same epoch number) // 2. The requested height is from an previous height from the same chain epoch // 3. The requested height is from a height greater than the latest one func (k Keeper) GetHashFn() vm.GetHashFunc { return func(height uint64) common.Hash { h := int64(height) switch { case k.ctx.BlockHeight() == h: // Case 1: The requested height matches the one from the context so we can retrieve the header // hash directly from the context. return common.BytesToHash(k.ctx.HeaderHash()) case k.ctx.BlockHeight() > h: // Case 2: if the chain is not the current height we need to retrieve the hash from the store for the // current chain epoch. This only applies if the current height is greater than the requested height. histInfo, found := k.stakingKeeper.GetHistoricalInfo(k.ctx, h) if !found { k.Logger(k.ctx).Debug("historical info not found", "height", h) return common.Hash{} } header, err := tmtypes.HeaderFromProto(&histInfo.Header) if err != nil { k.Logger(k.ctx).Error("failed to cast tendermint header from proto", "error", err) return common.Hash{} } return common.BytesToHash(header.Hash()) default: // Case 3: heights greater than the current one returns an empty hash. return common.Hash{} } } } // ApplyTransaction runs and attempts to perform a state transition with the given transaction (i.e Message), that will // only be persisted to the underlying KVStore if the transaction does not error. // // Gas tracking // // Ethereum consumes gas according to the EVM opcodes instead of general reads and writes to store. Because of this, the // state transition needs to ignore the SDK gas consumption mechanism defined by the GasKVStore and instead consume the // amount of gas used by the VM execution. The amount of gas used is tracked by the EVM and returned in the execution // result. // // Prior to the execution, the starting tx gas meter is saved and replaced with an infinite gas meter in a new context // in order to ignore the SDK gas consumption config values (read, write, has, delete). // After the execution, the gas used from the message execution will be added to the starting gas consumed, taking into // consideration the amount of gas returned. Finally, the context is updated with the EVM gas consumed value prior to // returning. // // For relevant discussion see: https://github.com/cosmos/cosmos-sdk/discussions/9072 func (k *Keeper) ApplyTransaction(tx *ethtypes.Transaction) (*types.MsgEthereumTxResponse, error) { defer telemetry.ModuleMeasureSince(types.ModuleName, time.Now(), types.MetricKeyTransitionDB) gasMeter := k.ctx.GasMeter() // tx gas meter // ignore gas consumption costs infCtx := k.ctx.WithGasMeter(sdk.NewInfiniteGasMeter()) cfg, found := k.GetChainConfig(infCtx) if !found { return nil, stacktrace.Propagate(types.ErrChainConfigNotFound, "configuration not found") } ethCfg := cfg.EthereumConfig(k.eip155ChainID) // get the latest signer according to the chain rules from the config signer := ethtypes.MakeSigner(ethCfg, big.NewInt(k.ctx.BlockHeight())) msg, err := tx.AsMessage(signer) if err != nil { return nil, stacktrace.Propagate(err, "failed to return ethereum transaction as core message") } evm := k.NewEVM(msg, ethCfg) k.IncreaseTxIndexTransient() // set the original gas meter to apply the message and perform the state transition k.WithContext(k.ctx.WithGasMeter(gasMeter)) // create an ethereum StateTransition instance and run TransitionDb res, err := k.ApplyMessage(evm, msg, ethCfg) if err != nil { return nil, stacktrace.Propagate(err, "failed to apply ethereum core message") } // NOTE: we set up the transaction hash from tendermint as it is the format expected by the application: // Remove once hashing is fixed on Tendermint. See https://github.com/tendermint/tendermint/issues/6539 txHash := common.BytesToHash(tmtypes.Tx(k.ctx.TxBytes()).Hash()) res.Hash = txHash.Hex() logs := k.GetTxLogs(txHash) res.Logs = types.NewLogsFromEth(logs) // update block bloom filter bloom := k.GetBlockBloomTransient() bloom.Or(bloom, big.NewInt(0).SetBytes(ethtypes.LogsBloom(logs))) k.SetBlockBloomTransient(bloom) return res, nil } // Gas consumption notes (write doc from this) // gas = remaining gas = limit - consumed // Gas consumption in ethereum: // 0. Buy gas -> deduct gasLimit * gasPrice from user account // 0.1 leftover gas = gas limit // 1. consume intrinsic gas // 1.1 leftover gas = leftover gas - intrinsic gas // 2. Exec vm functions by passing the gas (i.e remaining gas) // 2.1 final leftover gas returned after spending gas from the opcodes jump tables // 3. Refund amount = max(gasConsumed / 2, gas refund), where gas refund is a local variable // TODO: (@fedekunze) currently we consume the entire gas limit in the ante handler, so if a transaction fails // the amount spent will be grater than the gas spent in an Ethereum tx (i.e here the leftover gas won't be refunded). // ApplyMessage computes the new state by applying the given message against the existing state. // If the message fails, the VM execution error with the reason will be returned to the client // and the transaction won't be committed to the store. // // Reverted state // // The transaction is never "reverted" since there is no snapshot + rollback performed on the StateDB. // Only successful transactions are written to the store during DeliverTx mode. // // Prechecks and Preprocessing // // All relevant state transition prechecks for the MsgEthereumTx are performed on the AnteHandler, // prior to running the transaction against the state. The prechecks run are the following: // // 1. the nonce of the message caller is correct // 2. caller has enough balance to cover transaction fee(gaslimit * gasprice) // 3. the amount of gas required is available in the block // 4. the purchased gas is enough to cover intrinsic usage // 5. there is no overflow when calculating intrinsic gas // 6. caller has enough balance to cover asset transfer for **topmost** call // // The preprocessing steps performed by the AnteHandler are: // // 1. set up the initial access list (iff fork > Berlin) func (k *Keeper) ApplyMessage(evm *vm.EVM, msg core.Message, cfg *params.ChainConfig) (*types.MsgEthereumTxResponse, error) { var ( ret []byte // return bytes from evm execution vmErr error // vm errors do not effect consensus and are therefore not assigned to err ) sender := vm.AccountRef(msg.From()) contractCreation := msg.To() == nil // transaction gas meter (tracks limit and usage) gasConsumed := k.ctx.GasMeter().GasConsumed() leftoverGas := k.ctx.GasMeter().Limit() - k.ctx.GasMeter().GasConsumedToLimit() // NOTE: Since CRUD operations on the SDK store consume gas we need to set up an infinite gas meter so that we only consume // the gas used by the Ethereum message execution. // Not setting the infinite gas meter here would mean that we are incurring in additional gas costs k.WithContext(k.ctx.WithGasMeter(sdk.NewInfiniteGasMeter())) // NOTE: gas limit is the GasLimit defied in the message minus the Intrinsic Gas that has already been // consumed on the AnteHandler. // ensure gas is consistent during CheckTx if k.ctx.IsCheckTx() { if err := k.CheckGasConsumption(msg, cfg, gasConsumed, contractCreation); err != nil { return nil, stacktrace.Propagate(err, "gas consumption check failed during CheckTx") } } if contractCreation { ret, _, leftoverGas, vmErr = evm.Create(sender, msg.Data(), leftoverGas, msg.Value()) } else { ret, leftoverGas, vmErr = evm.Call(sender, *msg.To(), msg.Data(), leftoverGas, msg.Value()) } // refund gas prior to handling the vm error in order to set the updated gas meter if err := k.RefundGas(msg, leftoverGas); err != nil { return nil, stacktrace.Propagate(err, "failed to refund gas leftover gas to sender %s", msg.From()) } if vmErr != nil { if errors.Is(vmErr, vm.ErrExecutionReverted) { // unpack the return data bytes from the err if the execution has been "reverted" on the VM return nil, stacktrace.Propagate(types.NewExecErrorWithReson(ret), "transaction reverted") } // wrap the VM error return nil, stacktrace.Propagate(sdkerrors.Wrap(types.ErrVMExecution, vmErr.Error()), "vm execution failed") } return &types.MsgEthereumTxResponse{ Ret: ret, Reverted: false, }, nil } // CheckGasConsumption verifies that the amount of gas consumed so far matches the intrinsic gas value. func (k *Keeper) CheckGasConsumption(msg core.Message, cfg *params.ChainConfig, gasConsumed uint64, isContractCreation bool) error { height := big.NewInt(k.ctx.BlockHeight()) homestead := cfg.IsHomestead(height) istanbul := cfg.IsIstanbul(height) intrinsicGas, err := core.IntrinsicGas(msg.Data(), msg.AccessList(), isContractCreation, homestead, istanbul) if err != nil { // should have already been checked on Ante Handler return stacktrace.Propagate(err, "intrinsic gas failed") } if intrinsicGas != gasConsumed { return sdkerrors.Wrapf(types.ErrInconsistentGas, "expected gas consumption to be %d (intrinsic gas only), got %d", intrinsicGas, gasConsumed) } return nil } // RefundGas transfers the leftover gas to the sender of the message, caped to half of the total gas // consumed in the transaction. Additionally, the function sets the total gas consumed to the value // returned by the EVM execution, thus ignoring the previous intrinsic gas inconsumed during in the // AnteHandler. func (k *Keeper) RefundGas(msg core.Message, leftoverGas uint64) error { if leftoverGas > msg.Gas() { return stacktrace.Propagate( sdkerrors.Wrapf(types.ErrInconsistentGas, "leftover gas cannot be greater than gas limit (%d > %d)", leftoverGas, msg.Gas()), "failed to update gas consumed after refund of leftover gas", ) } gasConsumed := msg.Gas() - leftoverGas // Apply refund counter, capped to half of the used gas. refund := gasConsumed / 2 availableRefund := k.GetRefund() if refund > availableRefund { refund = availableRefund } leftoverGas += refund if leftoverGas > msg.Gas() { return stacktrace.Propagate( sdkerrors.Wrapf(types.ErrInconsistentGas, "leftover gas cannot be greater than gas limit (%d > %d)", leftoverGas, msg.Gas()), "failed to update gas consumed after refund of %d gas", refund, ) } gasConsumed = msg.Gas() - leftoverGas // Return EVM tokens for remaining gas, exchanged at the original rate. remaining := new(big.Int).Mul(new(big.Int).SetUint64(leftoverGas), msg.GasPrice()) // ignore gas consumption infCtx := k.ctx.WithGasMeter(sdk.NewInfiniteGasMeter()) switch remaining.Sign() { case -1: // negative refund errors return sdkerrors.Wrapf(types.ErrInvalidRefund, "refunded amount value cannot be negative %d", remaining.Int64()) case 1: // positive amount refund params := k.GetParams(infCtx) refundedCoins := sdk.Coins{sdk.NewCoin(params.EvmDenom, sdk.NewIntFromBigInt(remaining))} // refund to sender from the fee collector module account, which is the escrow account in charge of collecting tx fees err := k.bankKeeper.SendCoinsFromModuleToAccount(infCtx, authtypes.FeeCollectorName, msg.From().Bytes(), refundedCoins) if err != nil { err = sdkerrors.Wrapf(sdkerrors.ErrInsufficientFunds, "fee collector account failed to refund fees: %s", err.Error()) return stacktrace.Propagate(err, "failed to refund %d leftover gas (%s)", leftoverGas, refundedCoins.String()) } default: // no refund, consume gas and update the tx gas meter } // set the gas consumed into the context with the new gas meter. This gas meter will have the // original gas limit defined in the msg and will consume the gas now that the amount has been // refunded gasMeter := sdk.NewGasMeter(msg.Gas()) // NOTE: gas consumed will always be less than the limit gasMeter.ConsumeGas(gasConsumed, "update gas consumption after refund") k.WithContext(k.ctx.WithGasMeter(gasMeter)) return nil }