113 lines
3.9 KiB
Python
113 lines
3.9 KiB
Python
import sys
|
|
import requests
|
|
import pandas as pd
|
|
import json
|
|
import re
|
|
import argparse
|
|
import urllib.parse
|
|
from bech32 import bech32_decode
|
|
|
|
def get_csv_download_url(google_sheet_url):
|
|
"""
|
|
Convert a full Google Sheets URL to a CSV export URL using the `gid` in the query string.
|
|
"""
|
|
# Extract the sheet ID
|
|
match = re.search(r'/d/([a-zA-Z0-9-_]+)', google_sheet_url)
|
|
if not match:
|
|
raise ValueError('Invalid Google Sheets URL')
|
|
sheet_id = match.group(1)
|
|
|
|
# Extract gid from query params
|
|
gid_match = re.search(r'[?&]gid=([0-9]+)', google_sheet_url)
|
|
if not gid_match:
|
|
raise ValueError('Missing gid in Google Sheets URL')
|
|
gid = gid_match.group(1)
|
|
|
|
# Build export URL
|
|
return f'https://docs.google.com/spreadsheets/d/{sheet_id}/export?format=csv&gid={gid}'
|
|
|
|
def download_csv(url, output_path):
|
|
"""
|
|
Download the CSV file from the given URL.
|
|
"""
|
|
response = requests.get(url)
|
|
if response.status_code != 200:
|
|
raise Exception(f'Failed to download file: {response.status_code}')
|
|
with open(output_path, 'wb') as f:
|
|
f.write(response.content)
|
|
|
|
def convert_csv_to_json(csv_path, json_path):
|
|
"""
|
|
Read the CSV file, extract columns, and save as JSON.
|
|
"""
|
|
df = pd.read_csv(csv_path)
|
|
required_columns = [
|
|
'Placeholder',
|
|
'Laconic Address',
|
|
'Total LPS Allocation',
|
|
'Lock (months)',
|
|
'Vest (months)'
|
|
]
|
|
for col in required_columns:
|
|
if col not in df.columns:
|
|
raise Exception(f'Missing required column: {col}')
|
|
|
|
result = {}
|
|
for _, row in df.iterrows():
|
|
placeholder = str(row['Placeholder']) if not pd.isna(row['Placeholder']) else ''
|
|
laconic_address = str(row['Laconic Address']) if not pd.isna(row['Laconic Address']) else ''
|
|
key = placeholder if placeholder and placeholder.lower() != 'nan' else laconic_address
|
|
|
|
if not key or key.lower() == 'nan':
|
|
continue
|
|
|
|
if key == laconic_address:
|
|
hrp, data = bech32_decode(laconic_address)
|
|
if hrp is None or data is None or not hrp.startswith("laconic"):
|
|
print(f"Skipping invalid Laconic address: {laconic_address}")
|
|
continue
|
|
|
|
def to_number(val):
|
|
if pd.isna(val) or str(val).strip() == '':
|
|
return None
|
|
try:
|
|
return float(val)
|
|
except (ValueError, TypeError):
|
|
return None
|
|
|
|
entry = {
|
|
'total_lps_allocation': to_number(row['Total LPS Allocation']),
|
|
'lock_months': row['Lock (months)'] if not pd.isna(row['Lock (months)']) else None,
|
|
'vest_months': row['Vest (months)'] if not pd.isna(row['Vest (months)']) else None,
|
|
'laconic_address': row['Laconic Address'] if not pd.isna(row['Laconic Address']) else None
|
|
}
|
|
|
|
result[key] = entry
|
|
|
|
with open(json_path, 'w') as f:
|
|
json.dump(result, f, indent=2)
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(description='Generate LPS distribution JSON from CSV or Google Sheet')
|
|
parser.add_argument('--input', '-i', required=True, help='Input: Google Sheet URL or local CSV file path')
|
|
parser.add_argument('--output', '-o', default='distribution.json', help='Output JSON file path (default: distribution.json)')
|
|
parser.add_argument('--sheet', '-s', default='Genesis Allocation', help='Sheet name to read (default: Genesis Allocation)')
|
|
|
|
args = parser.parse_args()
|
|
|
|
if args.input.startswith('https://'):
|
|
csv_url = get_csv_download_url(args.input)
|
|
csv_path = 'sheet.csv'
|
|
print(f'Downloading CSV file from: {csv_url}')
|
|
download_csv(csv_url, csv_path)
|
|
else:
|
|
csv_path = args.input
|
|
print(f'Using CSV file at path: {csv_path}')
|
|
|
|
print('Converting CSV to JSON...')
|
|
convert_csv_to_json(csv_path, args.output)
|
|
print(f'JSON saved to {args.output}')
|
|
|
|
if __name__ == '__main__':
|
|
main()
|