package keeper import ( "errors" "fmt" "math/big" "os" "time" "github.com/cosmos/cosmos-sdk/telemetry" sdk "github.com/cosmos/cosmos-sdk/types" sdkerrors "github.com/cosmos/cosmos-sdk/types/errors" authtypes "github.com/cosmos/cosmos-sdk/x/auth/types" "github.com/cosmos/ethermint/x/evm/types" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core" "github.com/ethereum/go-ethereum/core/vm" "github.com/ethereum/go-ethereum/params" ) // NewEVM generates an ethereum VM from the provided Message fields and the ChainConfig. func (k *Keeper) NewEVM(msg core.Message, config *params.ChainConfig) *vm.EVM { blockCtx := vm.BlockContext{ CanTransfer: core.CanTransfer, Transfer: core.Transfer, GetHash: k.GetHashFn(), Coinbase: common.Address{}, // there's no beneficiary since we're not mining GasLimit: k.ctx.BlockGasMeter().Limit(), BlockNumber: big.NewInt(k.ctx.BlockHeight()), Time: big.NewInt(k.ctx.BlockHeader().Time.Unix()), Difficulty: big.NewInt(0), // unused. Only required in PoW context } txCtx := core.NewEVMTxContext(msg) vmConfig := k.VMConfig() return vm.NewEVM(blockCtx, txCtx, k, config, vmConfig) } // VMConfig creates an EVM configuration from the module parameters and the debug setting. // The config generated uses the default JumpTable from the EVM. func (k Keeper) VMConfig() vm.Config { params := k.GetParams(k.ctx) return vm.Config{ Debug: k.debug, Tracer: vm.NewJSONLogger(&vm.LogConfig{Debug: k.debug}, os.Stderr), // TODO: consider using the Struct Logger too NoRecursion: false, // TODO: consider disabling recursion though params ExtraEips: params.EIPs(), } } // GetHashFn implements vm.GetHashFunc for Ethermint. It handles 3 cases: // 1. The requested height matches the current height from context (and thus same epoch number) // 2. The requested height is from an previous height from the same chain epoch // 3. The requested height is from a height greater than the latest one func (k Keeper) GetHashFn() vm.GetHashFunc { return func(height uint64) common.Hash { switch { case k.ctx.BlockHeight() == int64(height): // Case 1: The requested height matches the one from the context so we can retrieve the header // hash directly from the context. // TODO: deprecate field from the keeper on next SDK release return k.headerHash case k.ctx.BlockHeight() > int64(height): // Case 2: if the chain is not the current height we need to retrieve the hash from the store for the // current chain epoch. This only applies if the current height is greater than the requested height. return k.GetHeightHash(k.ctx, height) default: // Case 3: heights greater than the current one returns an empty hash. return common.Hash{} } } } // TransitionDb runs and attempts to perform a state transition with the given transaction (i.e Message), that will // only be persisted to the underlying KVStore if the transaction does not error. // // Gas tracking // // Ethereum consumes gas according to the EVM opcodes instead of general reads and writes to store. Because of this, the // state transition needs to ignore the SDK gas consumption mechanism defined by the GasKVStore and instead consume the // amount of gas used by the VM execution. The amount of gas used is tracked by the EVM and returned in the execution // result. // // Prior to the execution, the starting tx gas meter is saved and replaced with an infinite gas meter in a new context // in order to ignore the SDK gas consumption config values (read, write, has, delete). // After the execution, the gas used from the message execution will be added to the starting gas consumed, taking into // consideration the amount of gas returned. Finally, the context is updated with the EVM gas consumed value prior to // returning. // // For relevant discussion see: https://github.com/cosmos/cosmos-sdk/discussions/9072 func (k *Keeper) TransitionDb(msg core.Message) (*types.ExecutionResult, error) { defer telemetry.ModuleMeasureSince(types.ModuleName, time.Now(), types.MetricKeyTransitionDB) cfg, found := k.GetChainConfig(k.ctx) if !found { return nil, types.ErrChainConfigNotFound } evm := k.NewEVM(msg, cfg.EthereumConfig(k.eip155ChainID)) // create an ethereum StateTransition instance and run TransitionDb result, err := k.ApplyMessage(evm, msg) if err != nil { return nil, err } return result, nil } // Gas consumption notes (write doc from this) // gas = remaining gas = limit - consumed // Gas consumption in ethereum: // 0. Buy gas -> deduct gasLimit * gasPrice from user account // 0.1 leftover gas = gas limit // 1. consume intrinsic gas // 1.1 leftover gas = leftover gas - intrinsic gas // 2. Exec vm functions by passing the gas (i.e remaining gas) // 2.1 final leftover gas returned after spending gas from the opcodes jump tables // 3. Refund amount = max(gasConsumed / 2, gas refund), where gas refund is a local variable // TODO: (@fedekunze) currently we consume the entire gas limit in the ante handler, so if a transaction fails // the amount spent will be grater than the gas spent in an Ethereum tx (i.e here the leftover gas won't be refunded). func (k *Keeper) ApplyMessage(evm *vm.EVM, msg core.Message) (*types.ExecutionResult, error) { var ( ret []byte // return bytes from evm execution contract common.Address contractAddr string vmErr, err error // vm errors do not effect consensus and are therefore not assigned to err ) sender := vm.AccountRef(msg.From()) contractCreation := msg.To() == nil // transaction gas meter (tracks limit and usage) gasConsumed := k.ctx.GasMeter().GasConsumed() leftoverGas := k.ctx.GasMeter().Limit() - k.ctx.GasMeter().GasConsumedToLimit() // NOTE: Since CRUD operations on the SDK store consume gasm we need to set up an infinite gas meter so that we only consume // the gas used by the Ethereum message execution. // Not setting the infinite gas meter here would mean that we are incurring in additional gas costs k.WithContext(k.ctx.WithGasMeter(sdk.NewInfiniteGasMeter())) // NOTE: gas limit is the GasLimit defied in the message minus the Intrinsic Gas that has already been // consumed on the AnteHandler. // ensure gas is consistent during CheckTx if k.ctx.IsCheckTx() { if err := k.checkGasConsumption(msg, gasConsumed, contractCreation); err != nil { return nil, err } } if contractCreation { ret, contract, leftoverGas, vmErr = evm.Create(sender, msg.Data(), leftoverGas, msg.Value()) contractAddr = contract.Hex() } else { ret, leftoverGas, vmErr = evm.Call(sender, *msg.To(), msg.Data(), leftoverGas, msg.Value()) } // refund gas prior to handling the vm error in order to set the updated gas meter gasConsumed, leftoverGas, err = k.refundGas(msg, leftoverGas) if err != nil { return nil, err } if vmErr != nil { if errors.Is(vmErr, vm.ErrExecutionReverted) { // unpack the return data bytes from the err if the execution has been reverted on the VM return nil, types.NewExecErrorWithReson(ret) } // wrap the VM error return nil, sdkerrors.Wrap(types.ErrVMExecution, vmErr.Error()) } return &types.ExecutionResult{ Response: &types.MsgEthereumTxResponse{ ContractAddress: contractAddr, Ret: ret, }, GasInfo: types.GasInfo{ GasLimit: k.ctx.GasMeter().Limit(), GasConsumed: gasConsumed, GasRefunded: leftoverGas, }, }, nil } // checkGasConsumption verifies that the amount of gas consumed so far matches the intrinsic gas value. func (k *Keeper) checkGasConsumption(msg core.Message, gasConsumed uint64, isContractCreation bool) error { cfg, _ := k.GetChainConfig(k.ctx) ethCfg := cfg.EthereumConfig(k.eip155ChainID) height := big.NewInt(k.ctx.BlockHeight()) homestead := ethCfg.IsHomestead(height) istanbul := ethCfg.IsIstanbul(height) intrinsicGas, err := core.IntrinsicGas(msg.Data(), msg.AccessList(), isContractCreation, homestead, istanbul) if err != nil { // should have already been checked on Ante Handler return err } if intrinsicGas != gasConsumed { return fmt.Errorf("inconsistent gas. Expected gas consumption to be %d (intrinsic gas only), got %d", intrinsicGas, gasConsumed) } return nil } // refundGas transfers the leftover gas to the sender of the message, caped to half of the total gas // consumed in the transaction. Additionally, the function sets the total gas consumed to the value // returned by the EVM execution, thus ignoring the previous intrinsic gas inconsumed during in the // AnteHandler. func (k *Keeper) refundGas(msg core.Message, leftoverGas uint64) (consumed, leftover uint64, err error) { gasConsumed := msg.Gas() - leftoverGas // Apply refund counter, capped to half of the used gas. refund := gasConsumed / 2 if refund > k.GetRefund() { refund = k.GetRefund() } leftoverGas += refund gasConsumed = msg.Gas() - leftoverGas // Return EVM tokens for remaining gas, exchanged at the original rate. remaining := new(big.Int).Mul(new(big.Int).SetUint64(leftoverGas), msg.GasPrice()) switch remaining.Sign() { case -1: // negative refund errors return 0, 0, fmt.Errorf("refunded amount value cannot be negative %d", remaining.Int64()) case 1: // positive amount refund params := k.GetParams(k.ctx) refundedCoins := sdk.Coins{sdk.NewCoin(params.EvmDenom, sdk.NewIntFromBigInt(remaining))} // refund to sender from the fee collector module account, which is the escrow account in charge of collecting tx fees if err := k.bankKeeper.SendCoinsFromModuleToAccount(k.ctx, authtypes.FeeCollectorName, msg.From().Bytes(), refundedCoins); err != nil { return 0, 0, sdkerrors.Wrapf(sdkerrors.ErrInsufficientFunds, "fee collector account failed to refund fees: %s", err.Error()) } default: // no refund, consume gas and update the tx gas meter } // set the gas consumed into the context with the new gas meter. This gas meter will have the // original gas limit defined in the msg and will consume the gas now that the amount has been // refunded gasMeter := sdk.NewGasMeter(msg.Gas()) gasMeter.ConsumeGas(gasConsumed, "update gas consumption after refund") k.WithContext(k.ctx.WithGasMeter(gasMeter)) return gasConsumed, leftoverGas, nil }