package ante import ( "math" "math/big" errorsmod "cosmossdk.io/errors" sdkmath "cosmossdk.io/math" sdk "github.com/cosmos/cosmos-sdk/types" errortypes "github.com/cosmos/cosmos-sdk/types/errors" ethermint "github.com/evmos/ethermint/types" "github.com/evmos/ethermint/x/evm/keeper" "github.com/evmos/ethermint/x/evm/statedb" evmtypes "github.com/evmos/ethermint/x/evm/types" "github.com/ethereum/go-ethereum/common" ethtypes "github.com/ethereum/go-ethereum/core/types" ) // EthAccountVerificationDecorator validates an account balance checks type EthAccountVerificationDecorator struct { ak evmtypes.AccountKeeper evmKeeper EVMKeeper } // NewEthAccountVerificationDecorator creates a new EthAccountVerificationDecorator func NewEthAccountVerificationDecorator(ak evmtypes.AccountKeeper, ek EVMKeeper) EthAccountVerificationDecorator { return EthAccountVerificationDecorator{ ak: ak, evmKeeper: ek, } } // AnteHandle validates checks that the sender balance is greater than the total transaction cost. // The account will be set to store if it doesn't exis, i.e cannot be found on store. // This AnteHandler decorator will fail if: // - any of the msgs is not a MsgEthereumTx // - from address is empty // - account balance is lower than the transaction cost func (avd EthAccountVerificationDecorator) AnteHandle( ctx sdk.Context, tx sdk.Tx, simulate bool, next sdk.AnteHandler, ) (newCtx sdk.Context, err error) { if !ctx.IsCheckTx() { return next(ctx, tx, simulate) } for i, msg := range tx.GetMsgs() { msgEthTx, ok := msg.(*evmtypes.MsgEthereumTx) if !ok { return ctx, errorsmod.Wrapf(errortypes.ErrUnknownRequest, "invalid message type %T, expected %T", msg, (*evmtypes.MsgEthereumTx)(nil)) } txData, err := evmtypes.UnpackTxData(msgEthTx.Data) if err != nil { return ctx, errorsmod.Wrapf(err, "failed to unpack tx data any for tx %d", i) } // sender address should be in the tx cache from the previous AnteHandle call from := msgEthTx.GetFrom() if from.Empty() { return ctx, errorsmod.Wrap(errortypes.ErrInvalidAddress, "from address cannot be empty") } // check whether the sender address is EOA fromAddr := common.BytesToAddress(from) acct := avd.evmKeeper.GetAccount(ctx, fromAddr) if acct == nil { acc := avd.ak.NewAccountWithAddress(ctx, from) avd.ak.SetAccount(ctx, acc) acct = statedb.NewEmptyAccount() } else if acct.IsContract() { return ctx, errorsmod.Wrapf(errortypes.ErrInvalidType, "the sender is not EOA: address %s, codeHash <%s>", fromAddr, acct.CodeHash) } if err := keeper.CheckSenderBalance(sdkmath.NewIntFromBigInt(acct.Balance), txData); err != nil { return ctx, errorsmod.Wrap(err, "failed to check sender balance") } } return next(ctx, tx, simulate) } // EthGasConsumeDecorator validates enough intrinsic gas for the transaction and // gas consumption. type EthGasConsumeDecorator struct { evmKeeper EVMKeeper maxGasWanted uint64 } // NewEthGasConsumeDecorator creates a new EthGasConsumeDecorator func NewEthGasConsumeDecorator( evmKeeper EVMKeeper, maxGasWanted uint64, ) EthGasConsumeDecorator { return EthGasConsumeDecorator{ evmKeeper, maxGasWanted, } } // AnteHandle validates that the Ethereum tx message has enough to cover intrinsic gas // (during CheckTx only) and that the sender has enough balance to pay for the gas cost. // // Intrinsic gas for a transaction is the amount of gas that the transaction uses before the // transaction is executed. The gas is a constant value plus any cost incurred by additional bytes // of data supplied with the transaction. // // This AnteHandler decorator will fail if: // - the message is not a MsgEthereumTx // - sender account cannot be found // - transaction's gas limit is lower than the intrinsic gas // - user doesn't have enough balance to deduct the transaction fees (gas_limit * gas_price) // - transaction or block gas meter runs out of gas // - sets the gas meter limit // - gas limit is greater than the block gas meter limit func (egcd EthGasConsumeDecorator) AnteHandle(ctx sdk.Context, tx sdk.Tx, simulate bool, next sdk.AnteHandler) (sdk.Context, error) { // gas consumption limit already checked during CheckTx so there's no need to // verify it again during ReCheckTx if ctx.IsReCheckTx() { return next(ctx, tx, simulate) } chainCfg := egcd.evmKeeper.GetChainConfig(ctx) ethCfg := chainCfg.EthereumConfig(egcd.evmKeeper.ChainID()) blockHeight := big.NewInt(ctx.BlockHeight()) homestead := ethCfg.IsHomestead(blockHeight) istanbul := ethCfg.IsIstanbul(blockHeight) gasWanted := uint64(0) var events sdk.Events // Use the lowest priority of all the messages as the final one. minPriority := int64(math.MaxInt64) baseFee := egcd.evmKeeper.GetBaseFee(ctx, ethCfg) for _, msg := range tx.GetMsgs() { msgEthTx, ok := msg.(*evmtypes.MsgEthereumTx) if !ok { return ctx, errorsmod.Wrapf(errortypes.ErrUnknownRequest, "invalid message type %T, expected %T", msg, (*evmtypes.MsgEthereumTx)(nil)) } txData, err := evmtypes.UnpackTxData(msgEthTx.Data) if err != nil { return ctx, errorsmod.Wrap(err, "failed to unpack tx data") } if ctx.IsCheckTx() && egcd.maxGasWanted != 0 { // We can't trust the tx gas limit, because we'll refund the unused gas. if txData.GetGas() > egcd.maxGasWanted { gasWanted += egcd.maxGasWanted } else { gasWanted += txData.GetGas() } } else { gasWanted += txData.GetGas() } evmDenom := egcd.evmKeeper.GetEVMDenom(ctx) fees, err := keeper.VerifyFee(txData, evmDenom, baseFee, homestead, istanbul, ctx.IsCheckTx()) if err != nil { return ctx, errorsmod.Wrapf(err, "failed to verify the fees") } err = egcd.evmKeeper.DeductTxCostsFromUserBalance(ctx, fees, common.HexToAddress(msgEthTx.From)) if err != nil { return ctx, errorsmod.Wrapf(err, "failed to deduct transaction costs from user balance") } events = append(events, sdk.NewEvent( sdk.EventTypeTx, sdk.NewAttribute(sdk.AttributeKeyFee, fees.String()), ), ) priority := evmtypes.GetTxPriority(txData, baseFee) if priority < minPriority { minPriority = priority } } ctx.EventManager().EmitEvents(events) blockGasLimit := ethermint.BlockGasLimit(ctx) // return error if the tx gas is greater than the block limit (max gas) // NOTE: it's important here to use the gas wanted instead of the gas consumed // from the tx gas pool. The later only has the value so far since the // EthSetupContextDecorator so it will never exceed the block gas limit. if gasWanted > blockGasLimit { return ctx, errorsmod.Wrapf( errortypes.ErrOutOfGas, "tx gas (%d) exceeds block gas limit (%d)", gasWanted, blockGasLimit, ) } // Set tx GasMeter with a limit of GasWanted (i.e gas limit from the Ethereum tx). // The gas consumed will be then reset to the gas used by the state transition // in the EVM. // FIXME: use a custom gas configuration that doesn't add any additional gas and only // takes into account the gas consumed at the end of the EVM transaction. newCtx := ctx. WithGasMeter(ethermint.NewInfiniteGasMeterWithLimit(gasWanted)). WithPriority(minPriority) // we know that we have enough gas on the pool to cover the intrinsic gas return next(newCtx, tx, simulate) } // CanTransferDecorator checks if the sender is allowed to transfer funds according to the EVM block // context rules. type CanTransferDecorator struct { evmKeeper EVMKeeper } // NewCanTransferDecorator creates a new CanTransferDecorator instance. func NewCanTransferDecorator(evmKeeper EVMKeeper) CanTransferDecorator { return CanTransferDecorator{ evmKeeper: evmKeeper, } } // AnteHandle creates an EVM from the message and calls the BlockContext CanTransfer function to // see if the address can execute the transaction. func (ctd CanTransferDecorator) AnteHandle(ctx sdk.Context, tx sdk.Tx, simulate bool, next sdk.AnteHandler) (sdk.Context, error) { params := ctd.evmKeeper.GetParams(ctx) ethCfg := params.ChainConfig.EthereumConfig(ctd.evmKeeper.ChainID()) signer := ethtypes.MakeSigner(ethCfg, big.NewInt(ctx.BlockHeight())) for _, msg := range tx.GetMsgs() { msgEthTx, ok := msg.(*evmtypes.MsgEthereumTx) if !ok { return ctx, errorsmod.Wrapf(errortypes.ErrUnknownRequest, "invalid message type %T, expected %T", msg, (*evmtypes.MsgEthereumTx)(nil)) } baseFee := ctd.evmKeeper.GetBaseFee(ctx, ethCfg) coreMsg, err := msgEthTx.AsMessage(signer, baseFee) if err != nil { return ctx, errorsmod.Wrapf( err, "failed to create an ethereum core.Message from signer %T", signer, ) } if evmtypes.IsLondon(ethCfg, ctx.BlockHeight()) { if baseFee == nil { return ctx, errorsmod.Wrap( evmtypes.ErrInvalidBaseFee, "base fee is supported but evm block context value is nil", ) } if coreMsg.GasFeeCap().Cmp(baseFee) < 0 { return ctx, errorsmod.Wrapf( errortypes.ErrInsufficientFee, "max fee per gas less than block base fee (%s < %s)", coreMsg.GasFeeCap(), baseFee, ) } } // NOTE: pass in an empty coinbase address and nil tracer as we don't need them for the check below cfg := &evmtypes.EVMConfig{ ChainConfig: ethCfg, Params: params, CoinBase: common.Address{}, BaseFee: baseFee, } stateDB := statedb.New(ctx, ctd.evmKeeper, statedb.NewEmptyTxConfig(common.BytesToHash(ctx.HeaderHash().Bytes()))) evm := ctd.evmKeeper.NewEVM(ctx, coreMsg, cfg, evmtypes.NewNoOpTracer(), stateDB) // check that caller has enough balance to cover asset transfer for **topmost** call // NOTE: here the gas consumed is from the context with the infinite gas meter if coreMsg.Value().Sign() > 0 && !evm.Context().CanTransfer(stateDB, coreMsg.From(), coreMsg.Value()) { return ctx, errorsmod.Wrapf( errortypes.ErrInsufficientFunds, "failed to transfer %s from address %s using the EVM block context transfer function", coreMsg.Value(), coreMsg.From(), ) } } return next(ctx, tx, simulate) } // EthIncrementSenderSequenceDecorator increments the sequence of the signers. type EthIncrementSenderSequenceDecorator struct { ak evmtypes.AccountKeeper } // NewEthIncrementSenderSequenceDecorator creates a new EthIncrementSenderSequenceDecorator. func NewEthIncrementSenderSequenceDecorator(ak evmtypes.AccountKeeper) EthIncrementSenderSequenceDecorator { return EthIncrementSenderSequenceDecorator{ ak: ak, } } // AnteHandle handles incrementing the sequence of the signer (i.e sender). If the transaction is a // contract creation, the nonce will be incremented during the transaction execution and not within // this AnteHandler decorator. func (issd EthIncrementSenderSequenceDecorator) AnteHandle(ctx sdk.Context, tx sdk.Tx, simulate bool, next sdk.AnteHandler) (sdk.Context, error) { for _, msg := range tx.GetMsgs() { msgEthTx, ok := msg.(*evmtypes.MsgEthereumTx) if !ok { return ctx, errorsmod.Wrapf(errortypes.ErrUnknownRequest, "invalid message type %T, expected %T", msg, (*evmtypes.MsgEthereumTx)(nil)) } txData, err := evmtypes.UnpackTxData(msgEthTx.Data) if err != nil { return ctx, errorsmod.Wrap(err, "failed to unpack tx data") } // increase sequence of sender acc := issd.ak.GetAccount(ctx, msgEthTx.GetFrom()) if acc == nil { return ctx, errorsmod.Wrapf( errortypes.ErrUnknownAddress, "account %s is nil", common.BytesToAddress(msgEthTx.GetFrom().Bytes()), ) } nonce := acc.GetSequence() // we merged the nonce verification to nonce increment, so when tx includes multiple messages // with same sender, they'll be accepted. if txData.GetNonce() != nonce { return ctx, errorsmod.Wrapf( errortypes.ErrInvalidSequence, "invalid nonce; got %d, expected %d", txData.GetNonce(), nonce, ) } if err := acc.SetSequence(nonce + 1); err != nil { return ctx, errorsmod.Wrapf(err, "failed to set sequence to %d", acc.GetSequence()+1) } issd.ak.SetAccount(ctx, acc) } return next(ctx, tx, simulate) }