laconicd-deprecated/app/ante/eth.go

642 lines
22 KiB
Go
Raw Normal View History

package ante
import (
"errors"
"math"
"math/big"
"strconv"
sdkmath "cosmossdk.io/math"
storetypes "github.com/cosmos/cosmos-sdk/store/types"
sdk "github.com/cosmos/cosmos-sdk/types"
sdkerrors "github.com/cosmos/cosmos-sdk/types/errors"
authante "github.com/cosmos/cosmos-sdk/x/auth/ante"
ethermint "github.com/evmos/ethermint/types"
evmkeeper "github.com/evmos/ethermint/x/evm/keeper"
"github.com/evmos/ethermint/x/evm/statedb"
evmtypes "github.com/evmos/ethermint/x/evm/types"
"github.com/ethereum/go-ethereum/common"
ethtypes "github.com/ethereum/go-ethereum/core/types"
)
// EthSigVerificationDecorator validates an ethereum signatures
2021-04-18 16:39:15 +00:00
type EthSigVerificationDecorator struct {
evmKeeper EVMKeeper
2021-04-18 16:39:15 +00:00
}
// NewEthSigVerificationDecorator creates a new EthSigVerificationDecorator
func NewEthSigVerificationDecorator(ek EVMKeeper) EthSigVerificationDecorator {
return EthSigVerificationDecorator{
evmKeeper: ek,
}
}
// AnteHandle validates checks that the registered chain id is the same as the one on the message, and
// that the signer address matches the one defined on the message.
// It's not skipped for RecheckTx, because it set `From` address which is critical from other ante handler to work.
// Failure in RecheckTx will prevent tx to be included into block, especially when CheckTx succeed, in which case user
// won't see the error message.
func (esvd EthSigVerificationDecorator) AnteHandle(ctx sdk.Context, tx sdk.Tx, simulate bool, next sdk.AnteHandler) (newCtx sdk.Context, err error) {
chainID := esvd.evmKeeper.ChainID()
chainCfg := esvd.evmKeeper.GetChainConfig(ctx)
ethCfg := chainCfg.EthereumConfig(chainID)
blockNum := big.NewInt(ctx.BlockHeight())
signer := ethtypes.MakeSigner(ethCfg, blockNum)
for _, msg := range tx.GetMsgs() {
msgEthTx, ok := msg.(*evmtypes.MsgEthereumTx)
if !ok {
return ctx, sdkerrors.Wrapf(sdkerrors.ErrUnknownRequest, "invalid message type %T, expected %T", msg, (*evmtypes.MsgEthereumTx)(nil))
}
allowUnprotectedTxs := esvd.evmKeeper.GetAllowUnprotectedTxs(ctx)
ethTx := msgEthTx.AsTransaction()
if !allowUnprotectedTxs && !ethTx.Protected() {
return ctx, sdkerrors.Wrapf(
sdkerrors.ErrNotSupported,
"rejected unprotected Ethereum txs. Please EIP155 sign your transaction to protect it against replay-attacks")
}
sender, err := signer.Sender(ethTx)
if err != nil {
return ctx, sdkerrors.Wrapf(
sdkerrors.ErrorInvalidSigner,
"couldn't retrieve sender address from the ethereum transaction: %s",
err.Error(),
)
}
// set up the sender to the transaction field if not already
msgEthTx.From = sender.Hex()
}
return next(ctx, tx, simulate)
2021-04-18 16:39:15 +00:00
}
// EthAccountVerificationDecorator validates an account balance checks
type EthAccountVerificationDecorator struct {
ak evmtypes.AccountKeeper
evmKeeper EVMKeeper
}
2021-04-18 16:39:15 +00:00
// NewEthAccountVerificationDecorator creates a new EthAccountVerificationDecorator
func NewEthAccountVerificationDecorator(ak evmtypes.AccountKeeper, ek EVMKeeper) EthAccountVerificationDecorator {
2021-04-18 16:39:15 +00:00
return EthAccountVerificationDecorator{
ak: ak,
evmKeeper: ek,
}
}
// AnteHandle validates checks that the sender balance is greater than the total transaction cost.
// The account will be set to store if it doesn't exis, i.e cannot be found on store.
// This AnteHandler decorator will fail if:
// - any of the msgs is not a MsgEthereumTx
// - from address is empty
// - account balance is lower than the transaction cost
func (avd EthAccountVerificationDecorator) AnteHandle(
ctx sdk.Context,
tx sdk.Tx,
simulate bool,
next sdk.AnteHandler,
) (newCtx sdk.Context, err error) {
if !ctx.IsCheckTx() {
return next(ctx, tx, simulate)
}
2021-06-15 07:19:31 +00:00
for i, msg := range tx.GetMsgs() {
msgEthTx, ok := msg.(*evmtypes.MsgEthereumTx)
if !ok {
return ctx, sdkerrors.Wrapf(sdkerrors.ErrUnknownRequest, "invalid message type %T, expected %T", msg, (*evmtypes.MsgEthereumTx)(nil))
}
txData, err := evmtypes.UnpackTxData(msgEthTx.Data)
if err != nil {
return ctx, sdkerrors.Wrapf(err, "failed to unpack tx data any for tx %d", i)
}
// sender address should be in the tx cache from the previous AnteHandle call
from := msgEthTx.GetFrom()
if from.Empty() {
return ctx, sdkerrors.Wrap(sdkerrors.ErrInvalidAddress, "from address cannot be empty")
}
// check whether the sender address is EOA
fromAddr := common.BytesToAddress(from)
acct := avd.evmKeeper.GetAccount(ctx, fromAddr)
if acct == nil {
acc := avd.ak.NewAccountWithAddress(ctx, from)
avd.ak.SetAccount(ctx, acc)
acct = statedb.NewEmptyAccount()
} else if acct.IsContract() {
return ctx, sdkerrors.Wrapf(sdkerrors.ErrInvalidType,
"the sender is not EOA: address %s, codeHash <%s>", fromAddr, acct.CodeHash)
}
if err := evmkeeper.CheckSenderBalance(sdkmath.NewIntFromBigInt(acct.Balance), txData); err != nil {
return ctx, sdkerrors.Wrap(err, "failed to check sender balance")
}
}
return next(ctx, tx, simulate)
}
// EthGasConsumeDecorator validates enough intrinsic gas for the transaction and
// gas consumption.
type EthGasConsumeDecorator struct {
evmKeeper EVMKeeper
maxGasWanted uint64
}
// NewEthGasConsumeDecorator creates a new EthGasConsumeDecorator
func NewEthGasConsumeDecorator(
evmKeeper EVMKeeper,
maxGasWanted uint64,
) EthGasConsumeDecorator {
return EthGasConsumeDecorator{
evmKeeper,
maxGasWanted,
}
}
// AnteHandle validates that the Ethereum tx message has enough to cover intrinsic gas
// (during CheckTx only) and that the sender has enough balance to pay for the gas cost.
//
// Intrinsic gas for a transaction is the amount of gas that the transaction uses before the
// transaction is executed. The gas is a constant value plus any cost incurred by additional bytes
// of data supplied with the transaction.
//
// This AnteHandler decorator will fail if:
// - the message is not a MsgEthereumTx
// - sender account cannot be found
// - transaction's gas limit is lower than the intrinsic gas
// - user doesn't have enough balance to deduct the transaction fees (gas_limit * gas_price)
// - transaction or block gas meter runs out of gas
// - sets the gas meter limit
// - gas limit is greater than the block gas meter limit
func (egcd EthGasConsumeDecorator) AnteHandle(ctx sdk.Context, tx sdk.Tx, simulate bool, next sdk.AnteHandler) (sdk.Context, error) {
// gas consumption limit already checked during CheckTx so there's no need to
// verify it again during ReCheckTx
if ctx.IsReCheckTx() {
return next(ctx, tx, simulate)
}
chainCfg := egcd.evmKeeper.GetChainConfig(ctx)
ethCfg := chainCfg.EthereumConfig(egcd.evmKeeper.ChainID())
blockHeight := big.NewInt(ctx.BlockHeight())
homestead := ethCfg.IsHomestead(blockHeight)
istanbul := ethCfg.IsIstanbul(blockHeight)
london := ethCfg.IsLondon(blockHeight)
gasWanted := uint64(0)
var events sdk.Events
// Use the lowest priority of all the messages as the final one.
minPriority := int64(math.MaxInt64)
for _, msg := range tx.GetMsgs() {
msgEthTx, ok := msg.(*evmtypes.MsgEthereumTx)
if !ok {
return ctx, sdkerrors.Wrapf(sdkerrors.ErrUnknownRequest, "invalid message type %T, expected %T", msg, (*evmtypes.MsgEthereumTx)(nil))
}
txData, err := evmtypes.UnpackTxData(msgEthTx.Data)
if err != nil {
return ctx, sdkerrors.Wrap(err, "failed to unpack tx data")
}
2022-07-28 19:14:46 +00:00
if ctx.IsCheckTx() && egcd.maxGasWanted != 0 {
// We can't trust the tx gas limit, because we'll refund the unused gas.
if txData.GetGas() > egcd.maxGasWanted {
gasWanted += egcd.maxGasWanted
} else {
gasWanted += txData.GetGas()
}
} else {
gasWanted += txData.GetGas()
}
evmDenom := egcd.evmKeeper.GetEVMDenom(ctx)
fees, priority, err := egcd.evmKeeper.DeductTxCostsFromUserBalance(
ctx,
*msgEthTx,
txData,
evmDenom,
homestead,
istanbul,
london,
)
if err != nil {
return ctx, sdkerrors.Wrapf(err, "failed to deduct transaction costs from user balance")
}
events = append(events,
sdk.NewEvent(
sdk.EventTypeTx,
sdk.NewAttribute(sdk.AttributeKeyFee, fees.String()),
),
)
if priority < minPriority {
minPriority = priority
}
}
ctx.EventManager().EmitEvents(events)
blockGasLimit := ethermint.BlockGasLimit(ctx)
// return error if the tx gas is greater than the block limit (max gas)
// NOTE: it's important here to use the gas wanted instead of the gas consumed
// from the tx gas pool. The later only has the value so far since the
// EthSetupContextDecorator so it will never exceed the block gas limit.
if gasWanted > blockGasLimit {
return ctx, sdkerrors.Wrapf(
sdkerrors.ErrOutOfGas,
"tx gas (%d) exceeds block gas limit (%d)",
gasWanted,
blockGasLimit,
)
}
// Set tx GasMeter with a limit of GasWanted (i.e gas limit from the Ethereum tx).
// The gas consumed will be then reset to the gas used by the state transition
// in the EVM.
// FIXME: use a custom gas configuration that doesn't add any additional gas and only
// takes into account the gas consumed at the end of the EVM transaction.
newCtx := ctx.
WithGasMeter(ethermint.NewInfiniteGasMeterWithLimit(gasWanted)).
WithPriority(minPriority)
// we know that we have enough gas on the pool to cover the intrinsic gas
return next(newCtx, tx, simulate)
}
// CanTransferDecorator checks if the sender is allowed to transfer funds according to the EVM block
// context rules.
type CanTransferDecorator struct {
evmKeeper EVMKeeper
}
// NewCanTransferDecorator creates a new CanTransferDecorator instance.
func NewCanTransferDecorator(evmKeeper EVMKeeper) CanTransferDecorator {
return CanTransferDecorator{
evmKeeper: evmKeeper,
}
}
// AnteHandle creates an EVM from the message and calls the BlockContext CanTransfer function to
// see if the address can execute the transaction.
func (ctd CanTransferDecorator) AnteHandle(ctx sdk.Context, tx sdk.Tx, simulate bool, next sdk.AnteHandler) (sdk.Context, error) {
params := ctd.evmKeeper.GetParams(ctx)
ethCfg := params.ChainConfig.EthereumConfig(ctd.evmKeeper.ChainID())
signer := ethtypes.MakeSigner(ethCfg, big.NewInt(ctx.BlockHeight()))
for _, msg := range tx.GetMsgs() {
msgEthTx, ok := msg.(*evmtypes.MsgEthereumTx)
if !ok {
return ctx, sdkerrors.Wrapf(sdkerrors.ErrUnknownRequest, "invalid message type %T, expected %T", msg, (*evmtypes.MsgEthereumTx)(nil))
}
baseFee := ctd.evmKeeper.GetBaseFee(ctx, ethCfg)
coreMsg, err := msgEthTx.AsMessage(signer, baseFee)
if err != nil {
return ctx, sdkerrors.Wrapf(
2021-06-15 07:19:31 +00:00
err,
"failed to create an ethereum core.Message from signer %T", signer,
)
}
if evmtypes.IsLondon(ethCfg, ctx.BlockHeight()) {
if baseFee == nil {
return ctx, sdkerrors.Wrap(
evmtypes.ErrInvalidBaseFee,
"base fee is supported but evm block context value is nil",
)
}
if coreMsg.GasFeeCap().Cmp(baseFee) < 0 {
return ctx, sdkerrors.Wrapf(
sdkerrors.ErrInsufficientFee,
"max fee per gas less than block base fee (%s < %s)",
coreMsg.GasFeeCap(), baseFee,
)
}
}
// NOTE: pass in an empty coinbase address and nil tracer as we don't need them for the check below
cfg := &evmtypes.EVMConfig{
ChainConfig: ethCfg,
Params: params,
CoinBase: common.Address{},
BaseFee: baseFee,
}
stateDB := statedb.New(ctx, ctd.evmKeeper, statedb.NewEmptyTxConfig(common.BytesToHash(ctx.HeaderHash().Bytes())))
evm := ctd.evmKeeper.NewEVM(ctx, coreMsg, cfg, evmtypes.NewNoOpTracer(), stateDB)
// check that caller has enough balance to cover asset transfer for **topmost** call
// NOTE: here the gas consumed is from the context with the infinite gas meter
if coreMsg.Value().Sign() > 0 && !evm.Context().CanTransfer(stateDB, coreMsg.From(), coreMsg.Value()) {
return ctx, sdkerrors.Wrapf(
sdkerrors.ErrInsufficientFunds,
"failed to transfer %s from address %s using the EVM block context transfer function",
coreMsg.Value(),
coreMsg.From(),
2021-06-15 07:19:31 +00:00
)
}
}
return next(ctx, tx, simulate)
}
// EthIncrementSenderSequenceDecorator increments the sequence of the signers.
2021-04-18 16:39:15 +00:00
type EthIncrementSenderSequenceDecorator struct {
ak evmtypes.AccountKeeper
}
2021-04-18 16:39:15 +00:00
// NewEthIncrementSenderSequenceDecorator creates a new EthIncrementSenderSequenceDecorator.
func NewEthIncrementSenderSequenceDecorator(ak evmtypes.AccountKeeper) EthIncrementSenderSequenceDecorator {
2021-04-18 16:39:15 +00:00
return EthIncrementSenderSequenceDecorator{
ak: ak,
}
}
// AnteHandle handles incrementing the sequence of the signer (i.e sender). If the transaction is a
// contract creation, the nonce will be incremented during the transaction execution and not within
// this AnteHandler decorator.
2021-04-18 16:39:15 +00:00
func (issd EthIncrementSenderSequenceDecorator) AnteHandle(ctx sdk.Context, tx sdk.Tx, simulate bool, next sdk.AnteHandler) (sdk.Context, error) {
for _, msg := range tx.GetMsgs() {
msgEthTx, ok := msg.(*evmtypes.MsgEthereumTx)
if !ok {
return ctx, sdkerrors.Wrapf(sdkerrors.ErrUnknownRequest, "invalid message type %T, expected %T", msg, (*evmtypes.MsgEthereumTx)(nil))
}
txData, err := evmtypes.UnpackTxData(msgEthTx.Data)
if err != nil {
return ctx, sdkerrors.Wrap(err, "failed to unpack tx data")
}
// increase sequence of sender
acc := issd.ak.GetAccount(ctx, msgEthTx.GetFrom())
if acc == nil {
return ctx, sdkerrors.Wrapf(
sdkerrors.ErrUnknownAddress,
"account %s is nil", common.BytesToAddress(msgEthTx.GetFrom().Bytes()),
)
}
nonce := acc.GetSequence()
// we merged the nonce verification to nonce increment, so when tx includes multiple messages
// with same sender, they'll be accepted.
if txData.GetNonce() != nonce {
return ctx, sdkerrors.Wrapf(
sdkerrors.ErrInvalidSequence,
"invalid nonce; got %d, expected %d", txData.GetNonce(), nonce,
)
}
if err := acc.SetSequence(nonce + 1); err != nil {
return ctx, sdkerrors.Wrapf(err, "failed to set sequence to %d", acc.GetSequence()+1)
}
issd.ak.SetAccount(ctx, acc)
}
return next(ctx, tx, simulate)
}
// EthValidateBasicDecorator is adapted from ValidateBasicDecorator from cosmos-sdk, it ignores ErrNoSignatures
type EthValidateBasicDecorator struct {
evmKeeper EVMKeeper
}
// NewEthValidateBasicDecorator creates a new EthValidateBasicDecorator
func NewEthValidateBasicDecorator(ek EVMKeeper) EthValidateBasicDecorator {
return EthValidateBasicDecorator{
evmKeeper: ek,
}
}
// AnteHandle handles basic validation of tx
func (vbd EthValidateBasicDecorator) AnteHandle(ctx sdk.Context, tx sdk.Tx, simulate bool, next sdk.AnteHandler) (sdk.Context, error) {
// no need to validate basic on recheck tx, call next antehandler
if ctx.IsReCheckTx() {
return next(ctx, tx, simulate)
}
err := tx.ValidateBasic()
// ErrNoSignatures is fine with eth tx
if err != nil && !errors.Is(err, sdkerrors.ErrNoSignatures) {
return ctx, sdkerrors.Wrap(err, "tx basic validation failed")
}
// For eth type cosmos tx, some fields should be veified as zero values,
// since we will only verify the signature against the hash of the MsgEthereumTx.Data
wrapperTx, ok := tx.(protoTxProvider)
if !ok {
return ctx, sdkerrors.Wrapf(sdkerrors.ErrUnknownRequest, "invalid tx type %T, didn't implement interface protoTxProvider", tx)
}
protoTx := wrapperTx.GetProtoTx()
body := protoTx.Body
if body.Memo != "" || body.TimeoutHeight != uint64(0) || len(body.NonCriticalExtensionOptions) > 0 {
return ctx, sdkerrors.Wrap(sdkerrors.ErrInvalidRequest,
"for eth tx body Memo TimeoutHeight NonCriticalExtensionOptions should be empty")
}
if len(body.ExtensionOptions) != 1 {
return ctx, sdkerrors.Wrap(sdkerrors.ErrInvalidRequest, "for eth tx length of ExtensionOptions should be 1")
}
txFee := sdk.Coins{}
txGasLimit := uint64(0)
chainCfg := vbd.evmKeeper.GetChainConfig(ctx)
chainID := vbd.evmKeeper.ChainID()
ethCfg := chainCfg.EthereumConfig(chainID)
baseFee := vbd.evmKeeper.GetBaseFee(ctx, ethCfg)
enableCreate := vbd.evmKeeper.GetEnableCreate(ctx)
enableCall := vbd.evmKeeper.GetEnableCall(ctx)
evmDenom := vbd.evmKeeper.GetEVMDenom(ctx)
for _, msg := range protoTx.GetMsgs() {
msgEthTx, ok := msg.(*evmtypes.MsgEthereumTx)
if !ok {
return ctx, sdkerrors.Wrapf(sdkerrors.ErrUnknownRequest, "invalid message type %T, expected %T", msg, (*evmtypes.MsgEthereumTx)(nil))
}
// Validate `From` field
if msgEthTx.From != "" {
return ctx, sdkerrors.Wrapf(sdkerrors.ErrInvalidRequest, "invalid From %s, expect empty string", msgEthTx.From)
}
txGasLimit += msgEthTx.GetGas()
txData, err := evmtypes.UnpackTxData(msgEthTx.Data)
if err != nil {
return ctx, sdkerrors.Wrap(err, "failed to unpack MsgEthereumTx Data")
}
// return error if contract creation or call are disabled through governance
if !enableCreate && txData.GetTo() == nil {
return ctx, sdkerrors.Wrap(evmtypes.ErrCreateDisabled, "failed to create new contract")
} else if !enableCall && txData.GetTo() != nil {
return ctx, sdkerrors.Wrap(evmtypes.ErrCallDisabled, "failed to call contract")
}
if baseFee == nil && txData.TxType() == ethtypes.DynamicFeeTxType {
return ctx, sdkerrors.Wrap(ethtypes.ErrTxTypeNotSupported, "dynamic fee tx not supported")
}
txFee = txFee.Add(sdk.NewCoin(evmDenom, sdkmath.NewIntFromBigInt(txData.Fee())))
}
authInfo := protoTx.AuthInfo
if len(authInfo.SignerInfos) > 0 {
return ctx, sdkerrors.Wrap(sdkerrors.ErrInvalidRequest, "for eth tx AuthInfo SignerInfos should be empty")
}
if authInfo.Fee.Payer != "" || authInfo.Fee.Granter != "" {
return ctx, sdkerrors.Wrap(sdkerrors.ErrInvalidRequest, "for eth tx AuthInfo Fee payer and granter should be empty")
}
if !authInfo.Fee.Amount.IsEqual(txFee) {
return ctx, sdkerrors.Wrapf(sdkerrors.ErrInvalidRequest, "invalid AuthInfo Fee Amount (%s != %s)", authInfo.Fee.Amount, txFee)
}
if authInfo.Fee.GasLimit != txGasLimit {
return ctx, sdkerrors.Wrapf(sdkerrors.ErrInvalidRequest, "invalid AuthInfo Fee GasLimit (%d != %d)", authInfo.Fee.GasLimit, txGasLimit)
}
sigs := protoTx.Signatures
if len(sigs) > 0 {
return ctx, sdkerrors.Wrap(sdkerrors.ErrInvalidRequest, "for eth tx Signatures should be empty")
}
return next(ctx, tx, simulate)
}
// EthSetupContextDecorator is adapted from SetUpContextDecorator from cosmos-sdk, it ignores gas consumption
// by setting the gas meter to infinite
type EthSetupContextDecorator struct {
evmKeeper EVMKeeper
}
func NewEthSetUpContextDecorator(evmKeeper EVMKeeper) EthSetupContextDecorator {
return EthSetupContextDecorator{
evmKeeper: evmKeeper,
}
}
func (esc EthSetupContextDecorator) AnteHandle(ctx sdk.Context, tx sdk.Tx, simulate bool, next sdk.AnteHandler) (newCtx sdk.Context, err error) {
// all transactions must implement GasTx
_, ok := tx.(authante.GasTx)
if !ok {
return newCtx, sdkerrors.Wrap(sdkerrors.ErrTxDecode, "Tx must be GasTx")
}
// We need to setup an empty gas config so that the gas is consistent with Ethereum.
newCtx = ctx.WithGasMeter(sdk.NewInfiniteGasMeter()).
WithKVGasConfig(storetypes.GasConfig{}).
WithTransientKVGasConfig(storetypes.GasConfig{})
// Reset transient gas used to prepare the execution of current cosmos tx.
// Transient gas-used is necessary to sum the gas-used of cosmos tx, when it contains multiple eth msgs.
esc.evmKeeper.ResetTransientGasUsed(ctx)
return next(newCtx, tx, simulate)
}
// EthMempoolFeeDecorator will check if the transaction's effective fee is at least as large
// as the local validator's minimum gasFee (defined in validator config).
// If fee is too low, decorator returns error and tx is rejected from mempool.
// Note this only applies when ctx.CheckTx = true
// If fee is high enough or not CheckTx, then call next AnteHandler
// CONTRACT: Tx must implement FeeTx to use MempoolFeeDecorator
type EthMempoolFeeDecorator struct {
evmKeeper EVMKeeper
}
func NewEthMempoolFeeDecorator(ek EVMKeeper) EthMempoolFeeDecorator {
return EthMempoolFeeDecorator{
evmKeeper: ek,
}
}
// AnteHandle ensures that the provided fees meet a minimum threshold for the validator.
// This check only for local mempool purposes, and thus it is only run on (Re)CheckTx.
// The logic is also skipped if the London hard fork and EIP-1559 are enabled.
func (mfd EthMempoolFeeDecorator) AnteHandle(ctx sdk.Context, tx sdk.Tx, simulate bool, next sdk.AnteHandler) (newCtx sdk.Context, err error) {
if !ctx.IsCheckTx() || simulate {
return next(ctx, tx, simulate)
}
chainCfg := mfd.evmKeeper.GetChainConfig(ctx)
ethCfg := chainCfg.EthereumConfig(mfd.evmKeeper.ChainID())
baseFee := mfd.evmKeeper.GetBaseFee(ctx, ethCfg)
// skip check as the London hard fork and EIP-1559 are enabled
if baseFee != nil {
return next(ctx, tx, simulate)
}
evmDenom := mfd.evmKeeper.GetEVMDenom(ctx)
minGasPrice := ctx.MinGasPrices().AmountOf(evmDenom)
for _, msg := range tx.GetMsgs() {
ethMsg, ok := msg.(*evmtypes.MsgEthereumTx)
if !ok {
return ctx, sdkerrors.Wrapf(sdkerrors.ErrUnknownRequest, "invalid message type %T, expected %T", msg, (*evmtypes.MsgEthereumTx)(nil))
}
fee := sdk.NewDecFromBigInt(ethMsg.GetFee())
gasLimit := sdk.NewDecFromBigInt(new(big.Int).SetUint64(ethMsg.GetGas()))
requiredFee := minGasPrice.Mul(gasLimit)
if fee.LT(requiredFee) {
return ctx, sdkerrors.Wrapf(
sdkerrors.ErrInsufficientFee,
"insufficient fees; got: %s required: %s",
fee, requiredFee,
)
}
}
return next(ctx, tx, simulate)
}
// EthEmitEventDecorator emit events in ante handler in case of tx execution failed (out of block gas limit).
type EthEmitEventDecorator struct {
evmKeeper EVMKeeper
}
// NewEthEmitEventDecorator creates a new EthEmitEventDecorator
func NewEthEmitEventDecorator(evmKeeper EVMKeeper) EthEmitEventDecorator {
return EthEmitEventDecorator{evmKeeper}
}
// AnteHandle emits some basic events for the eth messages
func (eeed EthEmitEventDecorator) AnteHandle(ctx sdk.Context, tx sdk.Tx, simulate bool, next sdk.AnteHandler) (newCtx sdk.Context, err error) {
// After eth tx passed ante handler, the fee is deducted and nonce increased, it shouldn't be ignored by json-rpc,
// we need to emit some basic events at the very end of ante handler to be indexed by tendermint.
txIndex := eeed.evmKeeper.GetTxIndexTransient(ctx)
for i, msg := range tx.GetMsgs() {
msgEthTx, ok := msg.(*evmtypes.MsgEthereumTx)
if !ok {
return ctx, sdkerrors.Wrapf(sdkerrors.ErrUnknownRequest, "invalid message type %T, expected %T", msg, (*evmtypes.MsgEthereumTx)(nil))
}
// emit ethereum tx hash as event, should be indexed by tm tx indexer for query purpose.
// it's emitted in ante handler so we can query failed transaction (out of block gas limit).
ctx.EventManager().EmitEvent(sdk.NewEvent(
evmtypes.EventTypeEthereumTx,
sdk.NewAttribute(evmtypes.AttributeKeyEthereumTxHash, msgEthTx.Hash),
sdk.NewAttribute(evmtypes.AttributeKeyTxIndex, strconv.FormatUint(txIndex+uint64(i), 10)),
))
}
return next(ctx, tx, simulate)
}