Geth 1.13 (Deneb/Cancun) update #5

Merged
roysc merged 14 commits from update-geth-1.13 into v5 2024-05-29 10:00:13 +00:00
12 changed files with 3146 additions and 0 deletions
Showing only changes of commit 8daf0f6f02 - Show all commits

View File

@ -0,0 +1,479 @@
// Copyright 2020 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package trie
import (
"bytes"
"errors"
"sync"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/metrics"
)
var (
stPool = sync.Pool{New: func() any { return new(stNode) }}
_ = types.TrieHasher((*StackTrie)(nil))
)
// StackTrieOptions contains the configured options for manipulating the stackTrie.
type StackTrieOptions struct {
Writer func(path []byte, hash common.Hash, blob []byte) // The function to commit the dirty nodes
Cleaner func(path []byte) // The function to clean up dangling nodes
SkipLeftBoundary bool // Flag whether the nodes on the left boundary are skipped for committing
SkipRightBoundary bool // Flag whether the nodes on the right boundary are skipped for committing
boundaryGauge metrics.Gauge // Gauge to track how many boundary nodes are met
}
// NewStackTrieOptions initializes an empty options for stackTrie.
func NewStackTrieOptions() *StackTrieOptions { return &StackTrieOptions{} }
// WithWriter configures trie node writer within the options.
func (o *StackTrieOptions) WithWriter(writer func(path []byte, hash common.Hash, blob []byte)) *StackTrieOptions {
o.Writer = writer
return o
}
// WithCleaner configures the cleaner in the option for removing dangling nodes.
func (o *StackTrieOptions) WithCleaner(cleaner func(path []byte)) *StackTrieOptions {
o.Cleaner = cleaner
return o
}
// WithSkipBoundary configures whether the left and right boundary nodes are
// filtered for committing, along with a gauge metrics to track how many
// boundary nodes are met.
func (o *StackTrieOptions) WithSkipBoundary(skipLeft, skipRight bool, gauge metrics.Gauge) *StackTrieOptions {
o.SkipLeftBoundary = skipLeft
o.SkipRightBoundary = skipRight
o.boundaryGauge = gauge
return o
}
// StackTrie is a trie implementation that expects keys to be inserted
// in order. Once it determines that a subtree will no longer be inserted
// into, it will hash it and free up the memory it uses.
type StackTrie struct {
options *StackTrieOptions
root *stNode
h *hasher
first []byte // The (hex-encoded without terminator) key of first inserted entry, tracked as left boundary.
last []byte // The (hex-encoded without terminator) key of last inserted entry, tracked as right boundary.
}
// NewStackTrie allocates and initializes an empty trie.
func NewStackTrie(options *StackTrieOptions) *StackTrie {
if options == nil {
options = NewStackTrieOptions()
}
return &StackTrie{
options: options,
root: stPool.Get().(*stNode),
h: newHasher(false),
}
}
// Update inserts a (key, value) pair into the stack trie.
func (t *StackTrie) Update(key, value []byte) error {
if len(value) == 0 {
return errors.New("trying to insert empty (deletion)")
}
k := keybytesToHex(key)
k = k[:len(k)-1] // chop the termination flag
if bytes.Compare(t.last, k) >= 0 {
return errors.New("non-ascending key order")
}
// track the first and last inserted entries.
if t.first == nil {
t.first = append([]byte{}, k...)
}
if t.last == nil {
t.last = append([]byte{}, k...) // allocate key slice
} else {
t.last = append(t.last[:0], k...) // reuse key slice
}
t.insert(t.root, k, value, nil)
return nil
}
// MustUpdate is a wrapper of Update and will omit any encountered error but
// just print out an error message.
func (t *StackTrie) MustUpdate(key, value []byte) {
if err := t.Update(key, value); err != nil {
log.Error("Unhandled trie error in StackTrie.Update", "err", err)
}
}
// Reset resets the stack trie object to empty state.
func (t *StackTrie) Reset() {
t.options = NewStackTrieOptions()
t.root = stPool.Get().(*stNode)
t.first = nil
t.last = nil
}
// stNode represents a node within a StackTrie
type stNode struct {
typ uint8 // node type (as in branch, ext, leaf)
key []byte // key chunk covered by this (leaf|ext) node
val []byte // value contained by this node if it's a leaf
children [16]*stNode // list of children (for branch and exts)
}
// newLeaf constructs a leaf node with provided node key and value. The key
// will be deep-copied in the function and safe to modify afterwards, but
// value is not.
func newLeaf(key, val []byte) *stNode {
st := stPool.Get().(*stNode)
st.typ = leafNode
st.key = append(st.key, key...)
st.val = val
return st
}
// newExt constructs an extension node with provided node key and child. The
// key will be deep-copied in the function and safe to modify afterwards.
func newExt(key []byte, child *stNode) *stNode {
st := stPool.Get().(*stNode)
st.typ = extNode
st.key = append(st.key, key...)
st.children[0] = child
return st
}
// List all values that stNode#nodeType can hold
const (
emptyNode = iota
branchNode
extNode
leafNode
hashedNode
)
func (n *stNode) reset() *stNode {
n.key = n.key[:0]
n.val = nil
for i := range n.children {
n.children[i] = nil
}
n.typ = emptyNode
return n
}
// Helper function that, given a full key, determines the index
// at which the chunk pointed by st.keyOffset is different from
// the same chunk in the full key.
func (n *stNode) getDiffIndex(key []byte) int {
for idx, nibble := range n.key {
if nibble != key[idx] {
return idx
}
}
return len(n.key)
}
// Helper function to that inserts a (key, value) pair into
// the trie.
func (t *StackTrie) insert(st *stNode, key, value []byte, path []byte) {
switch st.typ {
case branchNode: /* Branch */
idx := int(key[0])
// Unresolve elder siblings
for i := idx - 1; i >= 0; i-- {
if st.children[i] != nil {
if st.children[i].typ != hashedNode {
t.hash(st.children[i], append(path, byte(i)))
}
break
}
}
// Add new child
if st.children[idx] == nil {
st.children[idx] = newLeaf(key[1:], value)
} else {
t.insert(st.children[idx], key[1:], value, append(path, key[0]))
}
case extNode: /* Ext */
// Compare both key chunks and see where they differ
diffidx := st.getDiffIndex(key)
// Check if chunks are identical. If so, recurse into
// the child node. Otherwise, the key has to be split
// into 1) an optional common prefix, 2) the fullnode
// representing the two differing path, and 3) a leaf
// for each of the differentiated subtrees.
if diffidx == len(st.key) {
// Ext key and key segment are identical, recurse into
// the child node.
t.insert(st.children[0], key[diffidx:], value, append(path, key[:diffidx]...))
return
}
// Save the original part. Depending if the break is
// at the extension's last byte or not, create an
// intermediate extension or use the extension's child
// node directly.
var n *stNode
if diffidx < len(st.key)-1 {
// Break on the non-last byte, insert an intermediate
// extension. The path prefix of the newly-inserted
// extension should also contain the different byte.
n = newExt(st.key[diffidx+1:], st.children[0])
t.hash(n, append(path, st.key[:diffidx+1]...))
} else {
// Break on the last byte, no need to insert
// an extension node: reuse the current node.
// The path prefix of the original part should
// still be same.
n = st.children[0]
t.hash(n, append(path, st.key...))
}
var p *stNode
if diffidx == 0 {
// the break is on the first byte, so
// the current node is converted into
// a branch node.
st.children[0] = nil
p = st
st.typ = branchNode
} else {
// the common prefix is at least one byte
// long, insert a new intermediate branch
// node.
st.children[0] = stPool.Get().(*stNode)
st.children[0].typ = branchNode
p = st.children[0]
}
// Create a leaf for the inserted part
o := newLeaf(key[diffidx+1:], value)
// Insert both child leaves where they belong:
origIdx := st.key[diffidx]
newIdx := key[diffidx]
p.children[origIdx] = n
p.children[newIdx] = o
st.key = st.key[:diffidx]
case leafNode: /* Leaf */
// Compare both key chunks and see where they differ
diffidx := st.getDiffIndex(key)
// Overwriting a key isn't supported, which means that
// the current leaf is expected to be split into 1) an
// optional extension for the common prefix of these 2
// keys, 2) a fullnode selecting the path on which the
// keys differ, and 3) one leaf for the differentiated
// component of each key.
if diffidx >= len(st.key) {
panic("Trying to insert into existing key")
}
// Check if the split occurs at the first nibble of the
// chunk. In that case, no prefix extnode is necessary.
// Otherwise, create that
var p *stNode
if diffidx == 0 {
// Convert current leaf into a branch
st.typ = branchNode
p = st
st.children[0] = nil
} else {
// Convert current node into an ext,
// and insert a child branch node.
st.typ = extNode
st.children[0] = stPool.Get().(*stNode)
st.children[0].typ = branchNode
p = st.children[0]
}
// Create the two child leaves: one containing the original
// value and another containing the new value. The child leaf
// is hashed directly in order to free up some memory.
origIdx := st.key[diffidx]
p.children[origIdx] = newLeaf(st.key[diffidx+1:], st.val)
t.hash(p.children[origIdx], append(path, st.key[:diffidx+1]...))
newIdx := key[diffidx]
p.children[newIdx] = newLeaf(key[diffidx+1:], value)
// Finally, cut off the key part that has been passed
// over to the children.
st.key = st.key[:diffidx]
st.val = nil
case emptyNode: /* Empty */
st.typ = leafNode
st.key = key
st.val = value
case hashedNode:
panic("trying to insert into hash")
default:
panic("invalid type")
}
}
// hash converts st into a 'hashedNode', if possible. Possible outcomes:
//
// 1. The rlp-encoded value was >= 32 bytes:
// - Then the 32-byte `hash` will be accessible in `st.val`.
// - And the 'st.type' will be 'hashedNode'
//
// 2. The rlp-encoded value was < 32 bytes
// - Then the <32 byte rlp-encoded value will be accessible in 'st.val'.
// - And the 'st.type' will be 'hashedNode' AGAIN
//
// This method also sets 'st.type' to hashedNode, and clears 'st.key'.
func (t *StackTrie) hash(st *stNode, path []byte) {
var (
blob []byte // RLP-encoded node blob
internal [][]byte // List of node paths covered by the extension node
)
switch st.typ {
case hashedNode:
return
case emptyNode:
st.val = types.EmptyRootHash.Bytes()
st.key = st.key[:0]
st.typ = hashedNode
return
case branchNode:
var nodes fullNode
for i, child := range st.children {
if child == nil {
nodes.Children[i] = nilValueNode
continue
}
t.hash(child, append(path, byte(i)))
if len(child.val) < 32 {
nodes.Children[i] = rawNode(child.val)
} else {
nodes.Children[i] = hashNode(child.val)
}
st.children[i] = nil
stPool.Put(child.reset()) // Release child back to pool.
}
nodes.encode(t.h.encbuf)
blob = t.h.encodedBytes()
case extNode:
// recursively hash and commit child as the first step
t.hash(st.children[0], append(path, st.key...))
// Collect the path of internal nodes between shortNode and its **in disk**
// child. This is essential in the case of path mode scheme to avoid leaving
// danging nodes within the range of this internal path on disk, which would
// break the guarantee for state healing.
if len(st.children[0].val) >= 32 && t.options.Cleaner != nil {
for i := 1; i < len(st.key); i++ {
internal = append(internal, append(path, st.key[:i]...))
}
}
// encode the extension node
n := shortNode{Key: hexToCompactInPlace(st.key)}
if len(st.children[0].val) < 32 {
n.Val = rawNode(st.children[0].val)
} else {
n.Val = hashNode(st.children[0].val)
}
n.encode(t.h.encbuf)
blob = t.h.encodedBytes()
stPool.Put(st.children[0].reset()) // Release child back to pool.
st.children[0] = nil
case leafNode:
st.key = append(st.key, byte(16))
n := shortNode{Key: hexToCompactInPlace(st.key), Val: valueNode(st.val)}
n.encode(t.h.encbuf)
blob = t.h.encodedBytes()
default:
panic("invalid node type")
}
st.typ = hashedNode
st.key = st.key[:0]
// Skip committing the non-root node if the size is smaller than 32 bytes.
if len(blob) < 32 && len(path) > 0 {
st.val = common.CopyBytes(blob)
return
}
// Write the hash to the 'val'. We allocate a new val here to not mutate
// input values.
st.val = t.h.hashData(blob)
// Short circuit if the stack trie is not configured for writing.
if t.options.Writer == nil {
return
}
// Skip committing if the node is on the left boundary and stackTrie is
// configured to filter the boundary.
if t.options.SkipLeftBoundary && bytes.HasPrefix(t.first, path) {
if t.options.boundaryGauge != nil {
t.options.boundaryGauge.Inc(1)
}
return
}
// Skip committing if the node is on the right boundary and stackTrie is
// configured to filter the boundary.
if t.options.SkipRightBoundary && bytes.HasPrefix(t.last, path) {
if t.options.boundaryGauge != nil {
t.options.boundaryGauge.Inc(1)
}
return
}
// Clean up the internal dangling nodes covered by the extension node.
// This should be done before writing the node to adhere to the committing
// order from bottom to top.
for _, path := range internal {
t.options.Cleaner(path)
}
t.options.Writer(path, common.BytesToHash(st.val), blob)
}
// Hash will firstly hash the entire trie if it's still not hashed and then commit
// all nodes to the associated database. Actually most of the trie nodes have been
// committed already. The main purpose here is to commit the nodes on right boundary.
//
// For stack trie, Hash and Commit are functionally identical.
func (t *StackTrie) Hash() common.Hash {
n := t.root
t.hash(n, nil)
return common.BytesToHash(n.val)
}
// Commit will firstly hash the entire trie if it's still not hashed and then commit
// all nodes to the associated database. Actually most of the trie nodes have been
// committed already. The main purpose here is to commit the nodes on right boundary.
//
// For stack trie, Hash and Commit are functionally identical.
func (t *StackTrie) Commit() common.Hash {
return t.Hash()
}

View File

@ -0,0 +1,156 @@
// Copyright 2020 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package trie
import (
"bytes"
"encoding/binary"
"fmt"
"testing"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/crypto"
"golang.org/x/crypto/sha3"
"golang.org/x/exp/slices"
"github.com/cerc-io/ipld-eth-statedb/trie_by_cid/trie/trienode"
)
func FuzzStackTrie(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
fuzz(data, false)
})
}
func fuzz(data []byte, debugging bool) {
// This spongeDb is used to check the sequence of disk-db-writes
var (
input = bytes.NewReader(data)
spongeA = &spongeDb{sponge: sha3.NewLegacyKeccak256()}
dbA = newTestDatabase(rawdb.NewDatabase(spongeA), rawdb.HashScheme)
trieA = NewEmpty(dbA)
spongeB = &spongeDb{sponge: sha3.NewLegacyKeccak256()}
dbB = newTestDatabase(rawdb.NewDatabase(spongeB), rawdb.HashScheme)
options = NewStackTrieOptions().WithWriter(func(path []byte, hash common.Hash, blob []byte) {
rawdb.WriteTrieNode(spongeB, common.Hash{}, path, hash, blob, dbB.Scheme())
})
trieB = NewStackTrie(options)
vals []*kv
maxElements = 10000
// operate on unique keys only
keys = make(map[string]struct{})
)
// Fill the trie with elements
for i := 0; input.Len() > 0 && i < maxElements; i++ {
k := make([]byte, 32)
input.Read(k)
var a uint16
binary.Read(input, binary.LittleEndian, &a)
a = 1 + a%100
v := make([]byte, a)
input.Read(v)
if input.Len() == 0 {
// If it was exhausted while reading, the value may be all zeroes,
// thus 'deletion' which is not supported on stacktrie
break
}
if _, present := keys[string(k)]; present {
// This key is a duplicate, ignore it
continue
}
keys[string(k)] = struct{}{}
vals = append(vals, &kv{k: k, v: v})
trieA.MustUpdate(k, v)
}
if len(vals) == 0 {
return
}
// Flush trie -> database
rootA, nodes, err := trieA.Commit(false)
if err != nil {
panic(err)
}
if nodes != nil {
dbA.Update(rootA, types.EmptyRootHash, trienode.NewWithNodeSet(nodes))
}
// Flush memdb -> disk (sponge)
dbA.Commit(rootA)
// Stacktrie requires sorted insertion
slices.SortFunc(vals, (*kv).cmp)
for _, kv := range vals {
if debugging {
fmt.Printf("{\"%#x\" , \"%#x\"} // stacktrie.Update\n", kv.k, kv.v)
}
trieB.MustUpdate(kv.k, kv.v)
}
rootB := trieB.Hash()
trieB.Commit()
if rootA != rootB {
panic(fmt.Sprintf("roots differ: (trie) %x != %x (stacktrie)", rootA, rootB))
}
sumA := spongeA.sponge.Sum(nil)
sumB := spongeB.sponge.Sum(nil)
if !bytes.Equal(sumA, sumB) {
panic(fmt.Sprintf("sequence differ: (trie) %x != %x (stacktrie)", sumA, sumB))
}
// Ensure all the nodes are persisted correctly
var (
nodeset = make(map[string][]byte) // path -> blob
optionsC = NewStackTrieOptions().WithWriter(func(path []byte, hash common.Hash, blob []byte) {
if crypto.Keccak256Hash(blob) != hash {
panic("invalid node blob")
}
nodeset[string(path)] = common.CopyBytes(blob)
})
trieC = NewStackTrie(optionsC)
checked int
)
for _, kv := range vals {
trieC.MustUpdate(kv.k, kv.v)
}
rootC := trieC.Commit()
if rootA != rootC {
panic(fmt.Sprintf("roots differ: (trie) %x != %x (stacktrie)", rootA, rootC))
}
trieA, _ = New(TrieID(rootA), dbA)
iterA := trieA.MustNodeIterator(nil)
for iterA.Next(true) {
if iterA.Hash() == (common.Hash{}) {
if _, present := nodeset[string(iterA.Path())]; present {
panic("unexpected tiny node")
}
continue
}
nodeBlob, present := nodeset[string(iterA.Path())]
if !present {
panic("missing node")
}
if !bytes.Equal(nodeBlob, iterA.NodeBlob()) {
panic("node blob is not matched")
}
checked += 1
}
if checked != len(nodeset) {
panic("node number is not matched")
}
}

View File

@ -0,0 +1,488 @@
// Copyright 2020 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package trie
import (
"bytes"
"math/big"
"math/rand"
"testing"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/crypto"
"github.com/stretchr/testify/assert"
"golang.org/x/exp/slices"
"github.com/cerc-io/ipld-eth-statedb/trie_by_cid/trie/testutil"
)
func TestStackTrieInsertAndHash(t *testing.T) {
type KeyValueHash struct {
K string // Hex string for key.
V string // Value, directly converted to bytes.
H string // Expected root hash after insert of (K, V) to an existing trie.
}
tests := [][]KeyValueHash{
{ // {0:0, 7:0, f:0}
{"00", "v_______________________0___0", "5cb26357b95bb9af08475be00243ceb68ade0b66b5cd816b0c18a18c612d2d21"},
{"70", "v_______________________0___1", "8ff64309574f7a437a7ad1628e690eb7663cfde10676f8a904a8c8291dbc1603"},
{"f0", "v_______________________0___2", "9e3a01bd8d43efb8e9d4b5506648150b8e3ed1caea596f84ee28e01a72635470"},
},
{ // {1:0cc, e:{1:fc, e:fc}}
{"10cc", "v_______________________1___0", "233e9b257843f3dfdb1cce6676cdaf9e595ac96ee1b55031434d852bc7ac9185"},
{"e1fc", "v_______________________1___1", "39c5e908ae83d0c78520c7c7bda0b3782daf594700e44546e93def8f049cca95"},
{"eefc", "v_______________________1___2", "d789567559fd76fe5b7d9cc42f3750f942502ac1c7f2a466e2f690ec4b6c2a7c"},
},
{ // {b:{a:ac, b:ac}, d:acc}
{"baac", "v_______________________2___0", "8be1c86ba7ec4c61e14c1a9b75055e0464c2633ae66a055a24e75450156a5d42"},
{"bbac", "v_______________________2___1", "8495159b9895a7d88d973171d737c0aace6fe6ac02a4769fff1bc43bcccce4cc"},
{"dacc", "v_______________________2___2", "9bcfc5b220a27328deb9dc6ee2e3d46c9ebc9c69e78acda1fa2c7040602c63ca"},
},
{ // {0:0cccc, 2:456{0:0, 2:2}
{"00cccc", "v_______________________3___0", "e57dc2785b99ce9205080cb41b32ebea7ac3e158952b44c87d186e6d190a6530"},
{"245600", "v_______________________3___1", "0335354adbd360a45c1871a842452287721b64b4234dfe08760b243523c998db"},
{"245622", "v_______________________3___2", "9e6832db0dca2b5cf81c0e0727bfde6afc39d5de33e5720bccacc183c162104e"},
},
{ // {1:4567{1:1c, 3:3c}, 3:0cccccc}
{"1456711c", "v_______________________4___0", "f2389e78d98fed99f3e63d6d1623c1d4d9e8c91cb1d585de81fbc7c0e60d3529"},
{"1456733c", "v_______________________4___1", "101189b3fab852be97a0120c03d95eefcf984d3ed639f2328527de6def55a9c0"},
{"30cccccc", "v_______________________4___2", "3780ce111f98d15751dfde1eb21080efc7d3914b429e5c84c64db637c55405b3"},
},
{ // 8800{1:f, 2:e, 3:d}
{"88001f", "v_______________________5___0", "e817db50d84f341d443c6f6593cafda093fc85e773a762421d47daa6ac993bd5"},
{"88002e", "v_______________________5___1", "d6e3e6047bdc110edd296a4d63c030aec451bee9d8075bc5a198eee8cda34f68"},
{"88003d", "v_______________________5___2", "b6bdf8298c703342188e5f7f84921a402042d0e5fb059969dd53a6b6b1fb989e"},
},
{ // 0{1:fc, 2:ec, 4:dc}
{"01fc", "v_______________________6___0", "693268f2ca80d32b015f61cd2c4dba5a47a6b52a14c34f8e6945fad684e7a0d5"},
{"02ec", "v_______________________6___1", "e24ddd44469310c2b785a2044618874bf486d2f7822603a9b8dce58d6524d5de"},
{"04dc", "v_______________________6___2", "33fc259629187bbe54b92f82f0cd8083b91a12e41a9456b84fc155321e334db7"},
},
{ // f{0:fccc, f:ff{0:f, f:f}}
{"f0fccc", "v_______________________7___0", "b0966b5aa469a3e292bc5fcfa6c396ae7a657255eef552ea7e12f996de795b90"},
{"ffff0f", "v_______________________7___1", "3b1ca154ec2a3d96d8d77bddef0abfe40a53a64eb03cecf78da9ec43799fa3d0"},
{"ffffff", "v_______________________7___2", "e75463041f1be8252781be0ace579a44ea4387bf5b2739f4607af676f7719678"},
},
{ // ff{0:f{0:f, f:f}, f:fcc}
{"ff0f0f", "v_______________________8___0", "0928af9b14718ec8262ab89df430f1e5fbf66fac0fed037aff2b6767ae8c8684"},
{"ff0fff", "v_______________________8___1", "d870f4d3ce26b0bf86912810a1960693630c20a48ba56be0ad04bc3e9ddb01e6"},
{"ffffcc", "v_______________________8___2", "4239f10dd9d9915ecf2e047d6a576bdc1733ed77a30830f1bf29deaf7d8e966f"},
},
{
{"123d", "x___________________________0", "fc453d88b6f128a77c448669710497380fa4588abbea9f78f4c20c80daa797d0"},
{"123e", "x___________________________1", "5af48f2d8a9a015c1ff7fa8b8c7f6b676233bd320e8fb57fd7933622badd2cec"},
{"123f", "x___________________________2", "1164d7299964e74ac40d761f9189b2a3987fae959800d0f7e29d3aaf3eae9e15"},
},
{
{"123d", "x___________________________0", "fc453d88b6f128a77c448669710497380fa4588abbea9f78f4c20c80daa797d0"},
{"123e", "x___________________________1", "5af48f2d8a9a015c1ff7fa8b8c7f6b676233bd320e8fb57fd7933622badd2cec"},
{"124a", "x___________________________2", "661a96a669869d76b7231380da0649d013301425fbea9d5c5fae6405aa31cfce"},
},
{
{"123d", "x___________________________0", "fc453d88b6f128a77c448669710497380fa4588abbea9f78f4c20c80daa797d0"},
{"123e", "x___________________________1", "5af48f2d8a9a015c1ff7fa8b8c7f6b676233bd320e8fb57fd7933622badd2cec"},
{"13aa", "x___________________________2", "6590120e1fd3ffd1a90e8de5bb10750b61079bb0776cca4414dd79a24e4d4356"},
},
{
{"123d", "x___________________________0", "fc453d88b6f128a77c448669710497380fa4588abbea9f78f4c20c80daa797d0"},
{"123e", "x___________________________1", "5af48f2d8a9a015c1ff7fa8b8c7f6b676233bd320e8fb57fd7933622badd2cec"},
{"2aaa", "x___________________________2", "f869b40e0c55eace1918332ef91563616fbf0755e2b946119679f7ef8e44b514"},
},
{
{"1234da", "x___________________________0", "1c4b4462e9f56a80ca0f5d77c0d632c41b0102290930343cf1791e971a045a79"},
{"1234ea", "x___________________________1", "2f502917f3ba7d328c21c8b45ee0f160652e68450332c166d4ad02d1afe31862"},
{"1234fa", "x___________________________2", "4f4e368ab367090d5bc3dbf25f7729f8bd60df84de309b4633a6b69ab66142c0"},
},
{
{"1234da", "x___________________________0", "1c4b4462e9f56a80ca0f5d77c0d632c41b0102290930343cf1791e971a045a79"},
{"1234ea", "x___________________________1", "2f502917f3ba7d328c21c8b45ee0f160652e68450332c166d4ad02d1afe31862"},
{"1235aa", "x___________________________2", "21840121d11a91ac8bbad9a5d06af902a5c8d56a47b85600ba813814b7bfcb9b"},
},
{
{"1234da", "x___________________________0", "1c4b4462e9f56a80ca0f5d77c0d632c41b0102290930343cf1791e971a045a79"},
{"1234ea", "x___________________________1", "2f502917f3ba7d328c21c8b45ee0f160652e68450332c166d4ad02d1afe31862"},
{"124aaa", "x___________________________2", "ea4040ddf6ae3fbd1524bdec19c0ab1581015996262006632027fa5cf21e441e"},
},
{
{"1234da", "x___________________________0", "1c4b4462e9f56a80ca0f5d77c0d632c41b0102290930343cf1791e971a045a79"},
{"1234ea", "x___________________________1", "2f502917f3ba7d328c21c8b45ee0f160652e68450332c166d4ad02d1afe31862"},
{"13aaaa", "x___________________________2", "e4beb66c67e44f2dd8ba36036e45a44ff68f8d52942472b1911a45f886a34507"},
},
{
{"1234da", "x___________________________0", "1c4b4462e9f56a80ca0f5d77c0d632c41b0102290930343cf1791e971a045a79"},
{"1234ea", "x___________________________1", "2f502917f3ba7d328c21c8b45ee0f160652e68450332c166d4ad02d1afe31862"},
{"2aaaaa", "x___________________________2", "5f5989b820ff5d76b7d49e77bb64f26602294f6c42a1a3becc669cd9e0dc8ec9"},
},
{
{"000000", "x___________________________0", "3b32b7af0bddc7940e7364ee18b5a59702c1825e469452c8483b9c4e0218b55a"},
{"1234da", "x___________________________1", "3ab152a1285dca31945566f872c1cc2f17a770440eda32aeee46a5e91033dde2"},
{"1234ea", "x___________________________2", "0cccc87f96ddef55563c1b3be3c64fff6a644333c3d9cd99852cb53b6412b9b8"},
{"1234fa", "x___________________________3", "65bb3aafea8121111d693ffe34881c14d27b128fd113fa120961f251fe28428d"},
},
{
{"000000", "x___________________________0", "3b32b7af0bddc7940e7364ee18b5a59702c1825e469452c8483b9c4e0218b55a"},
{"1234da", "x___________________________1", "3ab152a1285dca31945566f872c1cc2f17a770440eda32aeee46a5e91033dde2"},
{"1234ea", "x___________________________2", "0cccc87f96ddef55563c1b3be3c64fff6a644333c3d9cd99852cb53b6412b9b8"},
{"1235aa", "x___________________________3", "f670e4d2547c533c5f21e0045442e2ecb733f347ad6d29ef36e0f5ba31bb11a8"},
},
{
{"000000", "x___________________________0", "3b32b7af0bddc7940e7364ee18b5a59702c1825e469452c8483b9c4e0218b55a"},
{"1234da", "x___________________________1", "3ab152a1285dca31945566f872c1cc2f17a770440eda32aeee46a5e91033dde2"},
{"1234ea", "x___________________________2", "0cccc87f96ddef55563c1b3be3c64fff6a644333c3d9cd99852cb53b6412b9b8"},
{"124aaa", "x___________________________3", "c17464123050a9a6f29b5574bb2f92f6d305c1794976b475b7fb0316b6335598"},
},
{
{"000000", "x___________________________0", "3b32b7af0bddc7940e7364ee18b5a59702c1825e469452c8483b9c4e0218b55a"},
{"1234da", "x___________________________1", "3ab152a1285dca31945566f872c1cc2f17a770440eda32aeee46a5e91033dde2"},
{"1234ea", "x___________________________2", "0cccc87f96ddef55563c1b3be3c64fff6a644333c3d9cd99852cb53b6412b9b8"},
{"13aaaa", "x___________________________3", "aa8301be8cb52ea5cd249f5feb79fb4315ee8de2140c604033f4b3fff78f0105"},
},
{
{"0000", "x___________________________0", "cb8c09ad07ae882136f602b3f21f8733a9f5a78f1d2525a8d24d1c13258000b2"},
{"123d", "x___________________________1", "8f09663deb02f08958136410dc48565e077f76bb6c9d8c84d35fc8913a657d31"},
{"123e", "x___________________________2", "0d230561e398c579e09a9f7b69ceaf7d3970f5a436fdb28b68b7a37c5bdd6b80"},
{"123f", "x___________________________3", "80f7bad1893ca57e3443bb3305a517723a74d3ba831bcaca22a170645eb7aafb"},
},
{
{"0000", "x___________________________0", "cb8c09ad07ae882136f602b3f21f8733a9f5a78f1d2525a8d24d1c13258000b2"},
{"123d", "x___________________________1", "8f09663deb02f08958136410dc48565e077f76bb6c9d8c84d35fc8913a657d31"},
{"123e", "x___________________________2", "0d230561e398c579e09a9f7b69ceaf7d3970f5a436fdb28b68b7a37c5bdd6b80"},
{"124a", "x___________________________3", "383bc1bb4f019e6bc4da3751509ea709b58dd1ac46081670834bae072f3e9557"},
},
{
{"0000", "x___________________________0", "cb8c09ad07ae882136f602b3f21f8733a9f5a78f1d2525a8d24d1c13258000b2"},
{"123d", "x___________________________1", "8f09663deb02f08958136410dc48565e077f76bb6c9d8c84d35fc8913a657d31"},
{"123e", "x___________________________2", "0d230561e398c579e09a9f7b69ceaf7d3970f5a436fdb28b68b7a37c5bdd6b80"},
{"13aa", "x___________________________3", "ff0dc70ce2e5db90ee42a4c2ad12139596b890e90eb4e16526ab38fa465b35cf"},
},
{ // branch node with short values
{"01", "a", "b48605025f5f4b129d40a420e721aa7d504487f015fce85b96e52126365ef7dc"},
{"80", "b", "2dc6b680daf74db067cb7aeaad73265ded93d96fce190fcbf64f498d475672ab"},
{"ee", "c", "017dc705a54ac5328dd263fa1bae68d655310fb3e3f7b7bc57e9a43ddf99c4bf"},
{"ff", "d", "bd5a3584d271d459bd4eb95247b2fc88656b3671b60c1125ffe7bc0b689470d0"},
},
{ // ext node with short branch node, then becoming long
{"a0", "a", "a83e028cb1e4365935661a9fd36a5c65c30b9ab416eaa877424146ca2a69d088"},
{"a1", "b", "f586a4639b07b01798ca65e05c253b75d51135ebfbf6f8d6e87c0435089e65f0"},
{"a2", "c", "63e297c295c008e09a8d531e18d57f270b6bc403e23179b915429db948cd62e3"},
{"a3", "d", "94a7b721535578e9381f1f4e4b6ec29f8bdc5f0458a30320684c562f5d47b4b5"},
{"a4", "e", "4b7e66d1c81965cdbe8fab8295ef56bc57fefdc5733d4782d2f8baf630f083c6"},
{"a5", "f", "2997e7b502198ce1783b5277faacf52b25844fb55a99b63e88bdbbafac573106"},
{"a6", "g", "bee629dd27a40772b2e1a67ec6db270d26acdf8d3b674dfae27866ad6ae1f48b"},
},
{ // branch node with short values, then long ones
{"a001", "v1", "b9cc982d995392b51e6787f1915f0b88efd4ad8b30f138da0a3e2242f2323e35"},
{"b002", "v2", "a7b474bc77ef5097096fa0ee6298fdae8928c0bc3724e7311cd0fa9ed1942fc7"},
{"c003", "v___________________________3", "dceb5bb7c92b0e348df988a8d9fc36b101397e38ebd405df55ba6ee5f14a264a"},
{"d004", "v___________________________4", "36e60ecb86b9626165e1c6543c42ecbe4d83bca58e8e1124746961511fce362a"},
},
{ // ext node to branch node with short values, then long ones
{"8002", "v1", "3258fcb3e9e7d7234ecd3b8d4743999e4ab3a21592565e0a5ca64c141e8620d9"},
{"8004", "v2", "b6cb95b7024a83c17624a3c9bed09b4b5e8ed426f49f54b8ad13c39028b1e75a"},
{"8008", "v___________________________3", "c769d82963abe6f0900bf69754738eeb2f84559777cfa87a44f54e1aab417871"},
{"800d", "v___________________________4", "1cad1fdaab1a6fa95d7b780fd680030e423eb76669971368ba04797a8d9cdfc9"},
},
{ // ext node with a child of size 31 (Y) and branch node with a child of size 31 (X)
{"000001", "ZZZZZZZZZ", "cef154b87c03c563408520ff9b26923c360cbc3ddb590c079bedeeb25a8c9c77"},
{"000002", "Y", "2130735e600f612f6e657a32bd7be64ddcaec6512c5694844b19de713922895d"},
{"000003", "XXXXXXXXXXXXXXXXXXXXXXXXXXXX", "962c0fffdeef7612a4f7bff1950d67e3e81c878e48b9ae45b3b374253b050bd8"},
},
}
for i, test := range tests {
// The StackTrie does not allow Insert(), Hash(), Insert(), ...
// so we will create new trie for every sequence length of inserts.
for l := 1; l <= len(test); l++ {
st := NewStackTrie(nil)
for j := 0; j < l; j++ {
kv := &test[j]
if err := st.Update(common.FromHex(kv.K), []byte(kv.V)); err != nil {
t.Fatal(err)
}
}
expected := common.HexToHash(test[l-1].H)
if h := st.Hash(); h != expected {
t.Errorf("%d(%d): root hash mismatch: %x, expected %x", i, l, h, expected)
}
}
}
}
func TestSizeBug(t *testing.T) {
st := NewStackTrie(nil)
nt := NewEmpty(newTestDatabase(rawdb.NewMemoryDatabase(), rawdb.HashScheme))
leaf := common.FromHex("290decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef3e563")
value := common.FromHex("94cf40d0d2b44f2b66e07cace1372ca42b73cf21a3")
nt.Update(leaf, value)
st.Update(leaf, value)
if nt.Hash() != st.Hash() {
t.Fatalf("error %x != %x", st.Hash(), nt.Hash())
}
}
func TestEmptyBug(t *testing.T) {
st := NewStackTrie(nil)
nt := NewEmpty(newTestDatabase(rawdb.NewMemoryDatabase(), rawdb.HashScheme))
//leaf := common.FromHex("290decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef3e563")
//value := common.FromHex("94cf40d0d2b44f2b66e07cace1372ca42b73cf21a3")
kvs := []struct {
K string
V string
}{
{K: "405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ace", V: "9496f4ec2bf9dab484cac6be589e8417d84781be08"},
{K: "40edb63a35fcf86c08022722aa3287cdd36440d671b4918131b2514795fefa9c", V: "01"},
{K: "b10e2d527612073b26eecdfd717e6a320cf44b4afac2b0732d9fcbe2b7fa0cf6", V: "947a30f7736e48d6599356464ba4c150d8da0302ff"},
{K: "c2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b", V: "02"},
}
for _, kv := range kvs {
nt.Update(common.FromHex(kv.K), common.FromHex(kv.V))
st.Update(common.FromHex(kv.K), common.FromHex(kv.V))
}
if nt.Hash() != st.Hash() {
t.Fatalf("error %x != %x", st.Hash(), nt.Hash())
}
}
func TestValLength56(t *testing.T) {
st := NewStackTrie(nil)
nt := NewEmpty(newTestDatabase(rawdb.NewMemoryDatabase(), rawdb.HashScheme))
//leaf := common.FromHex("290decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef3e563")
//value := common.FromHex("94cf40d0d2b44f2b66e07cace1372ca42b73cf21a3")
kvs := []struct {
K string
V string
}{
{K: "405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ace", V: "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111"},
}
for _, kv := range kvs {
nt.Update(common.FromHex(kv.K), common.FromHex(kv.V))
st.Update(common.FromHex(kv.K), common.FromHex(kv.V))
}
if nt.Hash() != st.Hash() {
t.Fatalf("error %x != %x", st.Hash(), nt.Hash())
}
}
// TestUpdateSmallNodes tests a case where the leaves are small (both key and value),
// which causes a lot of node-within-node. This case was found via fuzzing.
func TestUpdateSmallNodes(t *testing.T) {
st := NewStackTrie(nil)
nt := NewEmpty(newTestDatabase(rawdb.NewMemoryDatabase(), rawdb.HashScheme))
kvs := []struct {
K string
V string
}{
{"63303030", "3041"}, // stacktrie.Update
{"65", "3000"}, // stacktrie.Update
}
for _, kv := range kvs {
nt.Update(common.FromHex(kv.K), common.FromHex(kv.V))
st.Update(common.FromHex(kv.K), common.FromHex(kv.V))
}
if nt.Hash() != st.Hash() {
t.Fatalf("error %x != %x", st.Hash(), nt.Hash())
}
}
// TestUpdateVariableKeys contains a case which stacktrie fails: when keys of different
// sizes are used, and the second one has the same prefix as the first, then the
// stacktrie fails, since it's unable to 'expand' on an already added leaf.
// For all practical purposes, this is fine, since keys are fixed-size length
// in account and storage tries.
//
// The test is marked as 'skipped', and exists just to have the behaviour documented.
// This case was found via fuzzing.
func TestUpdateVariableKeys(t *testing.T) {
t.SkipNow()
st := NewStackTrie(nil)
nt := NewEmpty(newTestDatabase(rawdb.NewMemoryDatabase(), rawdb.HashScheme))
kvs := []struct {
K string
V string
}{
{"0x33303534636532393561313031676174", "303030"},
{"0x3330353463653239356131303167617430", "313131"},
}
for _, kv := range kvs {
nt.Update(common.FromHex(kv.K), common.FromHex(kv.V))
st.Update(common.FromHex(kv.K), common.FromHex(kv.V))
}
if nt.Hash() != st.Hash() {
t.Fatalf("error %x != %x", st.Hash(), nt.Hash())
}
}
// TestStacktrieNotModifyValues checks that inserting blobs of data into the
// stacktrie does not mutate the blobs
func TestStacktrieNotModifyValues(t *testing.T) {
st := NewStackTrie(nil)
{ // Test a very small trie
// Give it the value as a slice with large backing alloc,
// so if the stacktrie tries to append, it won't have to realloc
value := make([]byte, 1, 100)
value[0] = 0x2
want := common.CopyBytes(value)
st.Update([]byte{0x01}, value)
st.Hash()
if have := value; !bytes.Equal(have, want) {
t.Fatalf("tiny trie: have %#x want %#x", have, want)
}
st = NewStackTrie(nil)
}
// Test with a larger trie
keyB := big.NewInt(1)
keyDelta := big.NewInt(1)
var vals [][]byte
getValue := func(i int) []byte {
if i%2 == 0 { // large
return crypto.Keccak256(big.NewInt(int64(i)).Bytes())
} else { //small
return big.NewInt(int64(i)).Bytes()
}
}
for i := 0; i < 1000; i++ {
key := common.BigToHash(keyB)
value := getValue(i)
st.Update(key.Bytes(), value)
vals = append(vals, value)
keyB = keyB.Add(keyB, keyDelta)
keyDelta.Add(keyDelta, common.Big1)
}
st.Hash()
for i := 0; i < 1000; i++ {
want := getValue(i)
have := vals[i]
if !bytes.Equal(have, want) {
t.Fatalf("item %d, have %#x want %#x", i, have, want)
}
}
}
func buildPartialTree(entries []*kv, t *testing.T) map[string]common.Hash {
var (
options = NewStackTrieOptions()
nodes = make(map[string]common.Hash)
)
var (
first int
last = len(entries) - 1
noLeft bool
noRight bool
)
// Enter split mode if there are at least two elements
if rand.Intn(5) != 0 {
for {
first = rand.Intn(len(entries))
last = rand.Intn(len(entries))
if first <= last {
break
}
}
if first != 0 {
noLeft = true
}
if last != len(entries)-1 {
noRight = true
}
}
options = options.WithSkipBoundary(noLeft, noRight, nil)
options = options.WithWriter(func(path []byte, hash common.Hash, blob []byte) {
nodes[string(path)] = hash
})
tr := NewStackTrie(options)
for i := first; i <= last; i++ {
tr.MustUpdate(entries[i].k, entries[i].v)
}
tr.Commit()
return nodes
}
func TestPartialStackTrie(t *testing.T) {
for round := 0; round < 100; round++ {
var (
n = rand.Intn(100) + 1
entries []*kv
)
for i := 0; i < n; i++ {
var val []byte
if rand.Intn(3) == 0 {
val = testutil.RandBytes(3)
} else {
val = testutil.RandBytes(32)
}
entries = append(entries, &kv{
k: testutil.RandBytes(32),
v: val,
})
}
slices.SortFunc(entries, (*kv).cmp)
var (
nodes = make(map[string]common.Hash)
options = NewStackTrieOptions().WithWriter(func(path []byte, hash common.Hash, blob []byte) {
nodes[string(path)] = hash
})
)
tr := NewStackTrie(options)
for i := 0; i < len(entries); i++ {
tr.MustUpdate(entries[i].k, entries[i].v)
}
tr.Commit()
for j := 0; j < 100; j++ {
for path, hash := range buildPartialTree(entries, t) {
if nodes[path] != hash {
t.Errorf("%v, want %x, got %x", []byte(path), nodes[path], hash)
}
}
}
}
}
func TestStackTrieErrors(t *testing.T) {
s := NewStackTrie(nil)
// Deletion
if err := s.Update(nil, nil); err == nil {
t.Fatal("expected error")
}
if err := s.Update(nil, []byte{}); err == nil {
t.Fatal("expected error")
}
if err := s.Update([]byte{0xa}, []byte{}); err == nil {
t.Fatal("expected error")
}
// Non-ascending keys (going backwards or repeating)
assert.Nil(t, s.Update([]byte{0xaa}, []byte{0xa}))
assert.NotNil(t, s.Update([]byte{0xaa}, []byte{0xa}), "repeat insert same key")
assert.NotNil(t, s.Update([]byte{0xaa}, []byte{0xb}), "repeat insert same key")
assert.Nil(t, s.Update([]byte{0xab}, []byte{0xa}))
assert.NotNil(t, s.Update([]byte{0x10}, []byte{0xb}), "out of order insert")
assert.NotNil(t, s.Update([]byte{0xaa}, []byte{0xb}), "repeat insert same key")
}

View File

@ -0,0 +1,62 @@
// Copyright 2023 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package testutil
import (
crand "crypto/rand"
"encoding/binary"
mrand "math/rand"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/crypto"
"github.com/cerc-io/ipld-eth-statedb/trie_by_cid/trie/trienode"
)
// Prng is a pseudo random number generator seeded by strong randomness.
// The randomness is printed on startup in order to make failures reproducible.
var prng = initRand()
func initRand() *mrand.Rand {
var seed [8]byte
crand.Read(seed[:])
rnd := mrand.New(mrand.NewSource(int64(binary.LittleEndian.Uint64(seed[:]))))
return rnd
}
// RandBytes generates a random byte slice with specified length.
func RandBytes(n int) []byte {
r := make([]byte, n)
prng.Read(r)
return r
}
// RandomHash generates a random blob of data and returns it as a hash.
func RandomHash() common.Hash {
return common.BytesToHash(RandBytes(common.HashLength))
}
// RandomAddress generates a random blob of data and returns it as an address.
func RandomAddress() common.Address {
return common.BytesToAddress(RandBytes(common.AddressLength))
}
// RandomNode generates a random node.
func RandomNode() *trienode.Node {
val := RandBytes(100)
return trienode.New(crypto.Keccak256Hash(val), val)
}

View File

@ -0,0 +1,377 @@
// Copyright 2022 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package trie
import (
"bytes"
"testing"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/core/types"
"github.com/cerc-io/ipld-eth-statedb/trie_by_cid/trie/trienode"
)
var (
tiny = []struct{ k, v string }{
{"k1", "v1"},
{"k2", "v2"},
{"k3", "v3"},
}
nonAligned = []struct{ k, v string }{
{"do", "verb"},
{"ether", "wookiedoo"},
{"horse", "stallion"},
{"shaman", "horse"},
{"doge", "coin"},
{"dog", "puppy"},
{"somethingveryoddindeedthis is", "myothernodedata"},
}
standard = []struct{ k, v string }{
{string(randBytes(32)), "verb"},
{string(randBytes(32)), "wookiedoo"},
{string(randBytes(32)), "stallion"},
{string(randBytes(32)), "horse"},
{string(randBytes(32)), "coin"},
{string(randBytes(32)), "puppy"},
{string(randBytes(32)), "myothernodedata"},
}
)
func TestTrieTracer(t *testing.T) {
testTrieTracer(t, tiny)
testTrieTracer(t, nonAligned)
testTrieTracer(t, standard)
}
// Tests if the trie diffs are tracked correctly. Tracer should capture
// all non-leaf dirty nodes, no matter the node is embedded or not.
func testTrieTracer(t *testing.T, vals []struct{ k, v string }) {
db := newTestDatabase(rawdb.NewMemoryDatabase(), rawdb.HashScheme)
trie := NewEmpty(db)
// Determine all new nodes are tracked
for _, val := range vals {
trie.MustUpdate([]byte(val.k), []byte(val.v))
}
insertSet := copySet(trie.tracer.inserts) // copy before commit
deleteSet := copySet(trie.tracer.deletes) // copy before commit
root, nodes, _ := trie.Commit(false)
db.Update(root, types.EmptyRootHash, trienode.NewWithNodeSet(nodes))
seen := setKeys(iterNodes(db, root))
if !compareSet(insertSet, seen) {
t.Fatal("Unexpected insertion set")
}
if !compareSet(deleteSet, nil) {
t.Fatal("Unexpected deletion set")
}
// Determine all deletions are tracked
trie, _ = New(TrieID(root), db)
for _, val := range vals {
trie.MustDelete([]byte(val.k))
}
insertSet, deleteSet = copySet(trie.tracer.inserts), copySet(trie.tracer.deletes)
if !compareSet(insertSet, nil) {
t.Fatal("Unexpected insertion set")
}
if !compareSet(deleteSet, seen) {
t.Fatal("Unexpected deletion set")
}
}
// Test that after inserting a new batch of nodes and deleting them immediately,
// the trie tracer should be cleared normally as no operation happened.
func TestTrieTracerNoop(t *testing.T) {
testTrieTracerNoop(t, tiny)
testTrieTracerNoop(t, nonAligned)
testTrieTracerNoop(t, standard)
}
func testTrieTracerNoop(t *testing.T, vals []struct{ k, v string }) {
db := newTestDatabase(rawdb.NewMemoryDatabase(), rawdb.HashScheme)
trie := NewEmpty(db)
for _, val := range vals {
trie.MustUpdate([]byte(val.k), []byte(val.v))
}
for _, val := range vals {
trie.MustDelete([]byte(val.k))
}
if len(trie.tracer.inserts) != 0 {
t.Fatal("Unexpected insertion set")
}
if len(trie.tracer.deletes) != 0 {
t.Fatal("Unexpected deletion set")
}
}
// Tests if the accessList is correctly tracked.
func TestAccessList(t *testing.T) {
testAccessList(t, tiny)
testAccessList(t, nonAligned)
testAccessList(t, standard)
}
func testAccessList(t *testing.T, vals []struct{ k, v string }) {
var (
db = newTestDatabase(rawdb.NewMemoryDatabase(), rawdb.HashScheme)
trie = NewEmpty(db)
orig = trie.Copy()
)
// Create trie from scratch
for _, val := range vals {
trie.MustUpdate([]byte(val.k), []byte(val.v))
}
root, nodes, _ := trie.Commit(false)
db.Update(root, types.EmptyRootHash, trienode.NewWithNodeSet(nodes))
trie, _ = New(TrieID(root), db)
if err := verifyAccessList(orig, trie, nodes); err != nil {
t.Fatalf("Invalid accessList %v", err)
}
// Update trie
parent := root
trie, _ = New(TrieID(root), db)
orig = trie.Copy()
for _, val := range vals {
trie.MustUpdate([]byte(val.k), randBytes(32))
}
root, nodes, _ = trie.Commit(false)
db.Update(root, parent, trienode.NewWithNodeSet(nodes))
trie, _ = New(TrieID(root), db)
if err := verifyAccessList(orig, trie, nodes); err != nil {
t.Fatalf("Invalid accessList %v", err)
}
// Add more new nodes
parent = root
trie, _ = New(TrieID(root), db)
orig = trie.Copy()
var keys []string
for i := 0; i < 30; i++ {
key := randBytes(32)
keys = append(keys, string(key))
trie.MustUpdate(key, randBytes(32))
}
root, nodes, _ = trie.Commit(false)
db.Update(root, parent, trienode.NewWithNodeSet(nodes))
trie, _ = New(TrieID(root), db)
if err := verifyAccessList(orig, trie, nodes); err != nil {
t.Fatalf("Invalid accessList %v", err)
}
// Partial deletions
parent = root
trie, _ = New(TrieID(root), db)
orig = trie.Copy()
for _, key := range keys {
trie.MustUpdate([]byte(key), nil)
}
root, nodes, _ = trie.Commit(false)
db.Update(root, parent, trienode.NewWithNodeSet(nodes))
trie, _ = New(TrieID(root), db)
if err := verifyAccessList(orig, trie, nodes); err != nil {
t.Fatalf("Invalid accessList %v", err)
}
// Delete all
parent = root
trie, _ = New(TrieID(root), db)
orig = trie.Copy()
for _, val := range vals {
trie.MustUpdate([]byte(val.k), nil)
}
root, nodes, _ = trie.Commit(false)
db.Update(root, parent, trienode.NewWithNodeSet(nodes))
trie, _ = New(TrieID(root), db)
if err := verifyAccessList(orig, trie, nodes); err != nil {
t.Fatalf("Invalid accessList %v", err)
}
}
// Tests origin values won't be tracked in Iterator or Prover
func TestAccessListLeak(t *testing.T) {
var (
db = newTestDatabase(rawdb.NewMemoryDatabase(), rawdb.HashScheme)
trie = NewEmpty(db)
)
// Create trie from scratch
for _, val := range standard {
trie.MustUpdate([]byte(val.k), []byte(val.v))
}
root, nodes, _ := trie.Commit(false)
db.Update(root, types.EmptyRootHash, trienode.NewWithNodeSet(nodes))
var cases = []struct {
op func(tr *Trie)
}{
{
func(tr *Trie) {
it := tr.MustNodeIterator(nil)
for it.Next(true) {
}
},
},
{
func(tr *Trie) {
it := NewIterator(tr.MustNodeIterator(nil))
for it.Next() {
}
},
},
{
func(tr *Trie) {
for _, val := range standard {
tr.Prove([]byte(val.k), rawdb.NewMemoryDatabase())
}
},
},
}
for _, c := range cases {
trie, _ = New(TrieID(root), db)
n1 := len(trie.tracer.accessList)
c.op(trie)
n2 := len(trie.tracer.accessList)
if n1 != n2 {
t.Fatalf("AccessList is leaked, prev %d after %d", n1, n2)
}
}
}
// Tests whether the original tree node is correctly deleted after being embedded
// in its parent due to the smaller size of the original tree node.
func TestTinyTree(t *testing.T) {
var (
db = newTestDatabase(rawdb.NewMemoryDatabase(), rawdb.HashScheme)
trie = NewEmpty(db)
)
for _, val := range tiny {
trie.MustUpdate([]byte(val.k), randBytes(32))
}
root, set, _ := trie.Commit(false)
db.Update(root, types.EmptyRootHash, trienode.NewWithNodeSet(set))
parent := root
trie, _ = New(TrieID(root), db)
orig := trie.Copy()
for _, val := range tiny {
trie.MustUpdate([]byte(val.k), []byte(val.v))
}
root, set, _ = trie.Commit(false)
db.Update(root, parent, trienode.NewWithNodeSet(set))
trie, _ = New(TrieID(root), db)
if err := verifyAccessList(orig, trie, set); err != nil {
t.Fatalf("Invalid accessList %v", err)
}
}
func compareSet(setA, setB map[string]struct{}) bool {
if len(setA) != len(setB) {
return false
}
for key := range setA {
if _, ok := setB[key]; !ok {
return false
}
}
return true
}
func forNodes(tr *Trie) map[string][]byte {
var (
it = tr.MustNodeIterator(nil)
nodes = make(map[string][]byte)
)
for it.Next(true) {
if it.Leaf() {
continue
}
nodes[string(it.Path())] = common.CopyBytes(it.NodeBlob())
}
return nodes
}
func iterNodes(db *testDb, root common.Hash) map[string][]byte {
tr, _ := New(TrieID(root), db)
return forNodes(tr)
}
func forHashedNodes(tr *Trie) map[string][]byte {
var (
it = tr.MustNodeIterator(nil)
nodes = make(map[string][]byte)
)
for it.Next(true) {
if it.Hash() == (common.Hash{}) {
continue
}
nodes[string(it.Path())] = common.CopyBytes(it.NodeBlob())
}
return nodes
}
func diffTries(trieA, trieB *Trie) (map[string][]byte, map[string][]byte, map[string][]byte) {
var (
nodesA = forHashedNodes(trieA)
nodesB = forHashedNodes(trieB)
inA = make(map[string][]byte) // hashed nodes in trie a but not b
inB = make(map[string][]byte) // hashed nodes in trie b but not a
both = make(map[string][]byte) // hashed nodes in both tries but different value
)
for path, blobA := range nodesA {
if blobB, ok := nodesB[path]; ok {
if bytes.Equal(blobA, blobB) {
continue
}
both[path] = blobA
continue
}
inA[path] = blobA
}
for path, blobB := range nodesB {
if _, ok := nodesA[path]; ok {
continue
}
inB[path] = blobB
}
return inA, inB, both
}
func setKeys(set map[string][]byte) map[string]struct{} {
keys := make(map[string]struct{})
for k := range set {
keys[k] = struct{}{}
}
return keys
}
func copySet(set map[string]struct{}) map[string]struct{} {
copied := make(map[string]struct{})
for k := range set {
copied[k] = struct{}{}
}
return copied
}

View File

@ -0,0 +1,199 @@
// Copyright 2023 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>
package trienode
import (
"fmt"
"sort"
"strings"
"github.com/ethereum/go-ethereum/common"
)
// Node is a wrapper which contains the encoded blob of the trie node and its
// node hash. It is general enough that can be used to represent trie node
// corresponding to different trie implementations.
type Node struct {
Hash common.Hash // Node hash, empty for deleted node
Blob []byte // Encoded node blob, nil for the deleted node
}
// Size returns the total memory size used by this node.
func (n *Node) Size() int {
return len(n.Blob) + common.HashLength
}
// IsDeleted returns the indicator if the node is marked as deleted.
func (n *Node) IsDeleted() bool {
return len(n.Blob) == 0
}
// New constructs a node with provided node information.
func New(hash common.Hash, blob []byte) *Node {
return &Node{Hash: hash, Blob: blob}
}
// NewDeleted constructs a node which is deleted.
func NewDeleted() *Node { return New(common.Hash{}, nil) }
// leaf represents a trie leaf node
type leaf struct {
Blob []byte // raw blob of leaf
Parent common.Hash // the hash of parent node
}
// NodeSet contains a set of nodes collected during the commit operation.
// Each node is keyed by path. It's not thread-safe to use.
type NodeSet struct {
Owner common.Hash
Leaves []*leaf
Nodes map[string]*Node
updates int // the count of updated and inserted nodes
deletes int // the count of deleted nodes
}
// NewNodeSet initializes a node set. The owner is zero for the account trie and
// the owning account address hash for storage tries.
func NewNodeSet(owner common.Hash) *NodeSet {
return &NodeSet{
Owner: owner,
Nodes: make(map[string]*Node),
}
}
// ForEachWithOrder iterates the nodes with the order from bottom to top,
// right to left, nodes with the longest path will be iterated first.
func (set *NodeSet) ForEachWithOrder(callback func(path string, n *Node)) {
var paths []string
for path := range set.Nodes {
paths = append(paths, path)
}
// Bottom-up, the longest path first
sort.Sort(sort.Reverse(sort.StringSlice(paths)))
for _, path := range paths {
callback(path, set.Nodes[path])
}
}
// AddNode adds the provided node into set.
func (set *NodeSet) AddNode(path []byte, n *Node) {
if n.IsDeleted() {
set.deletes += 1
} else {
set.updates += 1
}
set.Nodes[string(path)] = n
}
// Merge adds a set of nodes into the set.
func (set *NodeSet) Merge(owner common.Hash, nodes map[string]*Node) error {
if set.Owner != owner {
return fmt.Errorf("nodesets belong to different owner are not mergeable %x-%x", set.Owner, owner)
}
for path, node := range nodes {
prev, ok := set.Nodes[path]
if ok {
// overwrite happens, revoke the counter
if prev.IsDeleted() {
set.deletes -= 1
} else {
set.updates -= 1
}
}
set.AddNode([]byte(path), node)
}
return nil
}
// AddLeaf adds the provided leaf node into set. TODO(rjl493456442) how can
// we get rid of it?
func (set *NodeSet) AddLeaf(parent common.Hash, blob []byte) {
set.Leaves = append(set.Leaves, &leaf{Blob: blob, Parent: parent})
}
// Size returns the number of dirty nodes in set.
func (set *NodeSet) Size() (int, int) {
return set.updates, set.deletes
}
// Hashes returns the hashes of all updated nodes. TODO(rjl493456442) how can
// we get rid of it?
func (set *NodeSet) Hashes() []common.Hash {
var ret []common.Hash
for _, node := range set.Nodes {
ret = append(ret, node.Hash)
}
return ret
}
// Summary returns a string-representation of the NodeSet.
func (set *NodeSet) Summary() string {
var out = new(strings.Builder)
fmt.Fprintf(out, "nodeset owner: %v\n", set.Owner)
if set.Nodes != nil {
for path, n := range set.Nodes {
// Deletion
if n.IsDeleted() {
fmt.Fprintf(out, " [-]: %x\n", path)
continue
}
// Insertion or update
fmt.Fprintf(out, " [+/*]: %x -> %v \n", path, n.Hash)
}
}
for _, n := range set.Leaves {
fmt.Fprintf(out, "[leaf]: %v\n", n)
}
return out.String()
}
// MergedNodeSet represents a merged node set for a group of tries.
type MergedNodeSet struct {
Sets map[common.Hash]*NodeSet
}
// NewMergedNodeSet initializes an empty merged set.
func NewMergedNodeSet() *MergedNodeSet {
return &MergedNodeSet{Sets: make(map[common.Hash]*NodeSet)}
}
// NewWithNodeSet constructs a merged nodeset with the provided single set.
func NewWithNodeSet(set *NodeSet) *MergedNodeSet {
merged := NewMergedNodeSet()
merged.Merge(set)
return merged
}
// Merge merges the provided dirty nodes of a trie into the set. The assumption
// is held that no duplicated set belonging to the same trie will be merged twice.
func (set *MergedNodeSet) Merge(other *NodeSet) error {
subset, present := set.Sets[other.Owner]
if present {
return subset.Merge(other.Owner, other.Nodes)
}
set.Sets[other.Owner] = other
return nil
}
// Flatten returns a two-dimensional map for internal nodes.
func (set *MergedNodeSet) Flatten() map[common.Hash]map[string]*Node {
nodes := make(map[common.Hash]map[string]*Node)
for owner, set := range set.Sets {
nodes[owner] = set.Nodes
}
return nodes
}

View File

@ -0,0 +1,162 @@
// Copyright 2017 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package trienode
import (
"errors"
"sync"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/rlp"
)
// ProofSet stores a set of trie nodes. It implements trie.Database and can also
// act as a cache for another trie.Database.
type ProofSet struct {
nodes map[string][]byte
order []string
dataSize int
lock sync.RWMutex
}
// NewProofSet creates an empty node set
func NewProofSet() *ProofSet {
return &ProofSet{
nodes: make(map[string][]byte),
}
}
// Put stores a new node in the set
func (db *ProofSet) Put(key []byte, value []byte) error {
db.lock.Lock()
defer db.lock.Unlock()
if _, ok := db.nodes[string(key)]; ok {
return nil
}
keystr := string(key)
db.nodes[keystr] = common.CopyBytes(value)
db.order = append(db.order, keystr)
db.dataSize += len(value)
return nil
}
// Delete removes a node from the set
func (db *ProofSet) Delete(key []byte) error {
db.lock.Lock()
defer db.lock.Unlock()
delete(db.nodes, string(key))
return nil
}
// Get returns a stored node
func (db *ProofSet) Get(key []byte) ([]byte, error) {
db.lock.RLock()
defer db.lock.RUnlock()
if entry, ok := db.nodes[string(key)]; ok {
return entry, nil
}
return nil, errors.New("not found")
}
// Has returns true if the node set contains the given key
func (db *ProofSet) Has(key []byte) (bool, error) {
_, err := db.Get(key)
return err == nil, nil
}
// KeyCount returns the number of nodes in the set
func (db *ProofSet) KeyCount() int {
db.lock.RLock()
defer db.lock.RUnlock()
return len(db.nodes)
}
// DataSize returns the aggregated data size of nodes in the set
func (db *ProofSet) DataSize() int {
db.lock.RLock()
defer db.lock.RUnlock()
return db.dataSize
}
// List converts the node set to a ProofList
func (db *ProofSet) List() ProofList {
db.lock.RLock()
defer db.lock.RUnlock()
var values ProofList
for _, key := range db.order {
values = append(values, db.nodes[key])
}
return values
}
// Store writes the contents of the set to the given database
func (db *ProofSet) Store(target ethdb.KeyValueWriter) {
db.lock.RLock()
defer db.lock.RUnlock()
for key, value := range db.nodes {
target.Put([]byte(key), value)
}
}
// ProofList stores an ordered list of trie nodes. It implements ethdb.KeyValueWriter.
type ProofList []rlp.RawValue
// Store writes the contents of the list to the given database
func (n ProofList) Store(db ethdb.KeyValueWriter) {
for _, node := range n {
db.Put(crypto.Keccak256(node), node)
}
}
// Set converts the node list to a ProofSet
func (n ProofList) Set() *ProofSet {
db := NewProofSet()
n.Store(db)
return db
}
// Put stores a new node at the end of the list
func (n *ProofList) Put(key []byte, value []byte) error {
*n = append(*n, value)
return nil
}
// Delete panics as there's no reason to remove a node from the list.
func (n *ProofList) Delete(key []byte) error {
panic("not supported")
}
// DataSize returns the aggregated data size of nodes in the list
func (n ProofList) DataSize() int {
var size int
for _, node := range n {
size += len(node)
}
return size
}

View File

@ -0,0 +1,277 @@
// Copyright 2023 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>
package triestate
import (
"errors"
"fmt"
"sync"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/rlp"
"golang.org/x/crypto/sha3"
"github.com/cerc-io/ipld-eth-statedb/trie_by_cid/trie/trienode"
)
// Trie is an Ethereum state trie, can be implemented by Ethereum Merkle Patricia
// tree or Verkle tree.
type Trie interface {
// Get returns the value for key stored in the trie.
Get(key []byte) ([]byte, error)
// Update associates key with value in the trie.
Update(key, value []byte) error
// Delete removes any existing value for key from the trie.
Delete(key []byte) error
// Commit the trie and returns a set of dirty nodes generated along with
// the new root hash.
Commit(collectLeaf bool) (common.Hash, *trienode.NodeSet, error)
}
// TrieLoader wraps functions to load tries.
type TrieLoader interface {
// OpenTrie opens the main account trie.
OpenTrie(root common.Hash) (Trie, error)
// OpenStorageTrie opens the storage trie of an account.
OpenStorageTrie(stateRoot common.Hash, addrHash, root common.Hash) (Trie, error)
}
// Set represents a collection of mutated states during a state transition.
// The value refers to the original content of state before the transition
// is made. Nil means that the state was not present previously.
type Set struct {
Accounts map[common.Address][]byte // Mutated account set, nil means the account was not present
Storages map[common.Address]map[common.Hash][]byte // Mutated storage set, nil means the slot was not present
Incomplete map[common.Address]struct{} // Indicator whether the storage is incomplete due to large deletion
size common.StorageSize // Approximate size of set
}
// New constructs the state set with provided data.
func New(accounts map[common.Address][]byte, storages map[common.Address]map[common.Hash][]byte, incomplete map[common.Address]struct{}) *Set {
return &Set{
Accounts: accounts,
Storages: storages,
Incomplete: incomplete,
}
}
// Size returns the approximate memory size occupied by the set.
func (s *Set) Size() common.StorageSize {
if s.size != 0 {
return s.size
}
for _, account := range s.Accounts {
s.size += common.StorageSize(common.AddressLength + len(account))
}
for _, slots := range s.Storages {
for _, val := range slots {
s.size += common.StorageSize(common.HashLength + len(val))
}
s.size += common.StorageSize(common.AddressLength)
}
s.size += common.StorageSize(common.AddressLength * len(s.Incomplete))
return s.size
}
// context wraps all fields for executing state diffs.
type context struct {
prevRoot common.Hash
postRoot common.Hash
accounts map[common.Address][]byte
storages map[common.Address]map[common.Hash][]byte
accountTrie Trie
nodes *trienode.MergedNodeSet
}
// Apply traverses the provided state diffs, apply them in the associated
// post-state and return the generated dirty trie nodes. The state can be
// loaded via the provided trie loader.
func Apply(prevRoot common.Hash, postRoot common.Hash, accounts map[common.Address][]byte, storages map[common.Address]map[common.Hash][]byte, loader TrieLoader) (map[common.Hash]map[string]*trienode.Node, error) {
tr, err := loader.OpenTrie(postRoot)
if err != nil {
return nil, err
}
ctx := &context{
prevRoot: prevRoot,
postRoot: postRoot,
accounts: accounts,
storages: storages,
accountTrie: tr,
nodes: trienode.NewMergedNodeSet(),
}
for addr, account := range accounts {
var err error
if len(account) == 0 {
err = deleteAccount(ctx, loader, addr)
} else {
err = updateAccount(ctx, loader, addr)
}
if err != nil {
return nil, fmt.Errorf("failed to revert state, err: %w", err)
}
}
root, result, err := tr.Commit(false)
if err != nil {
return nil, err
}
if root != prevRoot {
return nil, fmt.Errorf("failed to revert state, want %#x, got %#x", prevRoot, root)
}
if err := ctx.nodes.Merge(result); err != nil {
return nil, err
}
return ctx.nodes.Flatten(), nil
}
// updateAccount the account was present in prev-state, and may or may not
// existent in post-state. Apply the reverse diff and verify if the storage
// root matches the one in prev-state account.
func updateAccount(ctx *context, loader TrieLoader, addr common.Address) error {
// The account was present in prev-state, decode it from the
// 'slim-rlp' format bytes.
h := newHasher()
defer h.release()
addrHash := h.hash(addr.Bytes())
prev, err := types.FullAccount(ctx.accounts[addr])
if err != nil {
return err
}
// The account may or may not existent in post-state, try to
// load it and decode if it's found.
blob, err := ctx.accountTrie.Get(addrHash.Bytes())
if err != nil {
return err
}
post := types.NewEmptyStateAccount()
if len(blob) != 0 {
if err := rlp.DecodeBytes(blob, &post); err != nil {
return err
}
}
// Apply all storage changes into the post-state storage trie.
st, err := loader.OpenStorageTrie(ctx.postRoot, addrHash, post.Root)
if err != nil {
return err
}
for key, val := range ctx.storages[addr] {
var err error
if len(val) == 0 {
err = st.Delete(key.Bytes())
} else {
err = st.Update(key.Bytes(), val)
}
if err != nil {
return err
}
}
root, result, err := st.Commit(false)
if err != nil {
return err
}
if root != prev.Root {
return errors.New("failed to reset storage trie")
}
// The returned set can be nil if storage trie is not changed
// at all.
if result != nil {
if err := ctx.nodes.Merge(result); err != nil {
return err
}
}
// Write the prev-state account into the main trie
full, err := rlp.EncodeToBytes(prev)
if err != nil {
return err
}
return ctx.accountTrie.Update(addrHash.Bytes(), full)
}
// deleteAccount the account was not present in prev-state, and is expected
// to be existent in post-state. Apply the reverse diff and verify if the
// account and storage is wiped out correctly.
func deleteAccount(ctx *context, loader TrieLoader, addr common.Address) error {
// The account must be existent in post-state, load the account.
h := newHasher()
defer h.release()
addrHash := h.hash(addr.Bytes())
blob, err := ctx.accountTrie.Get(addrHash.Bytes())
if err != nil {
return err
}
if len(blob) == 0 {
return fmt.Errorf("account is non-existent %#x", addrHash)
}
var post types.StateAccount
if err := rlp.DecodeBytes(blob, &post); err != nil {
return err
}
st, err := loader.OpenStorageTrie(ctx.postRoot, addrHash, post.Root)
if err != nil {
return err
}
for key, val := range ctx.storages[addr] {
if len(val) != 0 {
return errors.New("expect storage deletion")
}
if err := st.Delete(key.Bytes()); err != nil {
return err
}
}
root, result, err := st.Commit(false)
if err != nil {
return err
}
if root != types.EmptyRootHash {
return errors.New("failed to clear storage trie")
}
// The returned set can be nil if storage trie is not changed
// at all.
if result != nil {
if err := ctx.nodes.Merge(result); err != nil {
return err
}
}
// Delete the post-state account from the main trie.
return ctx.accountTrie.Delete(addrHash.Bytes())
}
// hasher is used to compute the sha256 hash of the provided data.
type hasher struct{ sha crypto.KeccakState }
var hasherPool = sync.Pool{
New: func() interface{} { return &hasher{sha: sha3.NewLegacyKeccak256().(crypto.KeccakState)} },
}
func newHasher() *hasher {
return hasherPool.Get().(*hasher)
}
func (h *hasher) hash(data []byte) common.Hash {
return crypto.HashData(h.sha, data)
}
func (h *hasher) release() {
hasherPool.Put(h)
}

View File

@ -0,0 +1,342 @@
// Copyright 2023 go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package utils
import (
"encoding/binary"
"sync"
"github.com/crate-crypto/go-ipa/bandersnatch/fr"
"github.com/ethereum/go-ethereum/common/lru"
"github.com/ethereum/go-ethereum/metrics"
"github.com/gballet/go-verkle"
"github.com/holiman/uint256"
)
const (
// The spec of verkle key encoding can be found here.
// https://notes.ethereum.org/@vbuterin/verkle_tree_eip#Tree-embedding
VersionLeafKey = 0
BalanceLeafKey = 1
NonceLeafKey = 2
CodeKeccakLeafKey = 3
CodeSizeLeafKey = 4
)
var (
zero = uint256.NewInt(0)
verkleNodeWidthLog2 = 8
headerStorageOffset = uint256.NewInt(64)
mainStorageOffsetLshVerkleNodeWidth = new(uint256.Int).Lsh(uint256.NewInt(256), 31-uint(verkleNodeWidthLog2))
codeOffset = uint256.NewInt(128)
verkleNodeWidth = uint256.NewInt(256)
codeStorageDelta = uint256.NewInt(0).Sub(codeOffset, headerStorageOffset)
index0Point *verkle.Point // pre-computed commitment of polynomial [2+256*64]
// cacheHitGauge is the metric to track how many cache hit occurred.
cacheHitGauge = metrics.NewRegisteredGauge("trie/verkle/cache/hit", nil)
// cacheMissGauge is the metric to track how many cache miss occurred.
cacheMissGauge = metrics.NewRegisteredGauge("trie/verkle/cache/miss", nil)
)
func init() {
// The byte array is the Marshalled output of the point computed as such:
//
// var (
// config = verkle.GetConfig()
// fr verkle.Fr
// )
// verkle.FromLEBytes(&fr, []byte{2, 64})
// point := config.CommitToPoly([]verkle.Fr{fr}, 1)
index0Point = new(verkle.Point)
err := index0Point.SetBytes([]byte{34, 25, 109, 242, 193, 5, 144, 224, 76, 52, 189, 92, 197, 126, 9, 145, 27, 152, 199, 130, 165, 3, 210, 27, 193, 131, 142, 28, 110, 26, 16, 191})
if err != nil {
panic(err)
}
}
// PointCache is the LRU cache for storing evaluated address commitment.
type PointCache struct {
lru lru.BasicLRU[string, *verkle.Point]
lock sync.RWMutex
}
// NewPointCache returns the cache with specified size.
func NewPointCache(maxItems int) *PointCache {
return &PointCache{
lru: lru.NewBasicLRU[string, *verkle.Point](maxItems),
}
}
// Get returns the cached commitment for the specified address, or computing
// it on the flight.
func (c *PointCache) Get(addr []byte) *verkle.Point {
c.lock.Lock()
defer c.lock.Unlock()
p, ok := c.lru.Get(string(addr))
if ok {
cacheHitGauge.Inc(1)
return p
}
cacheMissGauge.Inc(1)
p = evaluateAddressPoint(addr)
c.lru.Add(string(addr), p)
return p
}
// GetStem returns the first 31 bytes of the tree key as the tree stem. It only
// works for the account metadata whose treeIndex is 0.
func (c *PointCache) GetStem(addr []byte) []byte {
p := c.Get(addr)
return pointToHash(p, 0)[:31]
}
// GetTreeKey performs both the work of the spec's get_tree_key function, and that
// of pedersen_hash: it builds the polynomial in pedersen_hash without having to
// create a mostly zero-filled buffer and "type cast" it to a 128-long 16-byte
// array. Since at most the first 5 coefficients of the polynomial will be non-zero,
// these 5 coefficients are created directly.
func GetTreeKey(address []byte, treeIndex *uint256.Int, subIndex byte) []byte {
if len(address) < 32 {
var aligned [32]byte
address = append(aligned[:32-len(address)], address...)
}
// poly = [2+256*64, address_le_low, address_le_high, tree_index_le_low, tree_index_le_high]
var poly [5]fr.Element
// 32-byte address, interpreted as two little endian
// 16-byte numbers.
verkle.FromLEBytes(&poly[1], address[:16])
verkle.FromLEBytes(&poly[2], address[16:])
// treeIndex must be interpreted as a 32-byte aligned little-endian integer.
// e.g: if treeIndex is 0xAABBCC, we need the byte representation to be 0xCCBBAA00...00.
// poly[3] = LE({CC,BB,AA,00...0}) (16 bytes), poly[4]=LE({00,00,...}) (16 bytes).
//
// To avoid unnecessary endianness conversions for go-ipa, we do some trick:
// - poly[3]'s byte representation is the same as the *top* 16 bytes (trieIndexBytes[16:]) of
// 32-byte aligned big-endian representation (BE({00,...,AA,BB,CC})).
// - poly[4]'s byte representation is the same as the *low* 16 bytes (trieIndexBytes[:16]) of
// the 32-byte aligned big-endian representation (BE({00,00,...}).
trieIndexBytes := treeIndex.Bytes32()
verkle.FromBytes(&poly[3], trieIndexBytes[16:])
verkle.FromBytes(&poly[4], trieIndexBytes[:16])
cfg := verkle.GetConfig()
ret := cfg.CommitToPoly(poly[:], 0)
// add a constant point corresponding to poly[0]=[2+256*64].
ret.Add(ret, index0Point)
return pointToHash(ret, subIndex)
}
// GetTreeKeyWithEvaluatedAddress is basically identical to GetTreeKey, the only
// difference is a part of polynomial is already evaluated.
//
// Specifically, poly = [2+256*64, address_le_low, address_le_high] is already
// evaluated.
func GetTreeKeyWithEvaluatedAddress(evaluated *verkle.Point, treeIndex *uint256.Int, subIndex byte) []byte {
var poly [5]fr.Element
poly[0].SetZero()
poly[1].SetZero()
poly[2].SetZero()
// little-endian, 32-byte aligned treeIndex
var index [32]byte
for i := 0; i < len(treeIndex); i++ {
binary.LittleEndian.PutUint64(index[i*8:(i+1)*8], treeIndex[i])
}
verkle.FromLEBytes(&poly[3], index[:16])
verkle.FromLEBytes(&poly[4], index[16:])
cfg := verkle.GetConfig()
ret := cfg.CommitToPoly(poly[:], 0)
// add the pre-evaluated address
ret.Add(ret, evaluated)
return pointToHash(ret, subIndex)
}
// VersionKey returns the verkle tree key of the version field for the specified account.
func VersionKey(address []byte) []byte {
return GetTreeKey(address, zero, VersionLeafKey)
}
// BalanceKey returns the verkle tree key of the balance field for the specified account.
func BalanceKey(address []byte) []byte {
return GetTreeKey(address, zero, BalanceLeafKey)
}
// NonceKey returns the verkle tree key of the nonce field for the specified account.
func NonceKey(address []byte) []byte {
return GetTreeKey(address, zero, NonceLeafKey)
}
// CodeKeccakKey returns the verkle tree key of the code keccak field for
// the specified account.
func CodeKeccakKey(address []byte) []byte {
return GetTreeKey(address, zero, CodeKeccakLeafKey)
}
// CodeSizeKey returns the verkle tree key of the code size field for the
// specified account.
func CodeSizeKey(address []byte) []byte {
return GetTreeKey(address, zero, CodeSizeLeafKey)
}
func codeChunkIndex(chunk *uint256.Int) (*uint256.Int, byte) {
var (
chunkOffset = new(uint256.Int).Add(codeOffset, chunk)
treeIndex = new(uint256.Int).Div(chunkOffset, verkleNodeWidth)
subIndexMod = new(uint256.Int).Mod(chunkOffset, verkleNodeWidth)
)
var subIndex byte
if len(subIndexMod) != 0 {
subIndex = byte(subIndexMod[0])
}
return treeIndex, subIndex
}
// CodeChunkKey returns the verkle tree key of the code chunk for the
// specified account.
func CodeChunkKey(address []byte, chunk *uint256.Int) []byte {
treeIndex, subIndex := codeChunkIndex(chunk)
return GetTreeKey(address, treeIndex, subIndex)
}
func storageIndex(bytes []byte) (*uint256.Int, byte) {
// If the storage slot is in the header, we need to add the header offset.
var key uint256.Int
key.SetBytes(bytes)
if key.Cmp(codeStorageDelta) < 0 {
// This addition is always safe; it can't ever overflow since pos<codeStorageDelta.
key.Add(headerStorageOffset, &key)
// In this branch, the tree-index is zero since we're in the account header,
// and the sub-index is the LSB of the modified storage key.
return zero, byte(key[0] & 0xFF)
}
// We first divide by VerkleNodeWidth to create room to avoid an overflow next.
key.Rsh(&key, uint(verkleNodeWidthLog2))
// We add mainStorageOffset/VerkleNodeWidth which can't overflow.
key.Add(&key, mainStorageOffsetLshVerkleNodeWidth)
// The sub-index is the LSB of the original storage key, since mainStorageOffset
// doesn't affect this byte, so we can avoid masks or shifts.
return &key, byte(key[0] & 0xFF)
}
// StorageSlotKey returns the verkle tree key of the storage slot for the
// specified account.
func StorageSlotKey(address []byte, storageKey []byte) []byte {
treeIndex, subIndex := storageIndex(storageKey)
return GetTreeKey(address, treeIndex, subIndex)
}
// VersionKeyWithEvaluatedAddress returns the verkle tree key of the version
// field for the specified account. The difference between VersionKey is the
// address evaluation is already computed to minimize the computational overhead.
func VersionKeyWithEvaluatedAddress(evaluated *verkle.Point) []byte {
return GetTreeKeyWithEvaluatedAddress(evaluated, zero, VersionLeafKey)
}
// BalanceKeyWithEvaluatedAddress returns the verkle tree key of the balance
// field for the specified account. The difference between BalanceKey is the
// address evaluation is already computed to minimize the computational overhead.
func BalanceKeyWithEvaluatedAddress(evaluated *verkle.Point) []byte {
return GetTreeKeyWithEvaluatedAddress(evaluated, zero, BalanceLeafKey)
}
// NonceKeyWithEvaluatedAddress returns the verkle tree key of the nonce
// field for the specified account. The difference between NonceKey is the
// address evaluation is already computed to minimize the computational overhead.
func NonceKeyWithEvaluatedAddress(evaluated *verkle.Point) []byte {
return GetTreeKeyWithEvaluatedAddress(evaluated, zero, NonceLeafKey)
}
// CodeKeccakKeyWithEvaluatedAddress returns the verkle tree key of the code
// keccak for the specified account. The difference between CodeKeccakKey is the
// address evaluation is already computed to minimize the computational overhead.
func CodeKeccakKeyWithEvaluatedAddress(evaluated *verkle.Point) []byte {
return GetTreeKeyWithEvaluatedAddress(evaluated, zero, CodeKeccakLeafKey)
}
// CodeSizeKeyWithEvaluatedAddress returns the verkle tree key of the code
// size for the specified account. The difference between CodeSizeKey is the
// address evaluation is already computed to minimize the computational overhead.
func CodeSizeKeyWithEvaluatedAddress(evaluated *verkle.Point) []byte {
return GetTreeKeyWithEvaluatedAddress(evaluated, zero, CodeSizeLeafKey)
}
// CodeChunkKeyWithEvaluatedAddress returns the verkle tree key of the code
// chunk for the specified account. The difference between CodeChunkKey is the
// address evaluation is already computed to minimize the computational overhead.
func CodeChunkKeyWithEvaluatedAddress(addressPoint *verkle.Point, chunk *uint256.Int) []byte {
treeIndex, subIndex := codeChunkIndex(chunk)
return GetTreeKeyWithEvaluatedAddress(addressPoint, treeIndex, subIndex)
}
// StorageSlotKeyWithEvaluatedAddress returns the verkle tree key of the storage
// slot for the specified account. The difference between StorageSlotKey is the
// address evaluation is already computed to minimize the computational overhead.
func StorageSlotKeyWithEvaluatedAddress(evaluated *verkle.Point, storageKey []byte) []byte {
treeIndex, subIndex := storageIndex(storageKey)
return GetTreeKeyWithEvaluatedAddress(evaluated, treeIndex, subIndex)
}
func pointToHash(evaluated *verkle.Point, suffix byte) []byte {
// The output of Byte() is big endian for banderwagon. This
// introduces an imbalance in the tree, because hashes are
// elements of a 253-bit field. This means more than half the
// tree would be empty. To avoid this problem, use a little
// endian commitment and chop the MSB.
bytes := evaluated.Bytes()
for i := 0; i < 16; i++ {
bytes[31-i], bytes[i] = bytes[i], bytes[31-i]
}
bytes[31] = suffix
return bytes[:]
}
func evaluateAddressPoint(address []byte) *verkle.Point {
if len(address) < 32 {
var aligned [32]byte
address = append(aligned[:32-len(address)], address...)
}
var poly [3]fr.Element
poly[0].SetZero()
// 32-byte address, interpreted as two little endian
// 16-byte numbers.
verkle.FromLEBytes(&poly[1], address[:16])
verkle.FromLEBytes(&poly[2], address[16:])
cfg := verkle.GetConfig()
ret := cfg.CommitToPoly(poly[:], 0)
// add a constant point
ret.Add(ret, index0Point)
return ret
}

View File

@ -0,0 +1,139 @@
// Copyright 2023 go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>
package utils
import (
"bytes"
"testing"
"github.com/gballet/go-verkle"
"github.com/holiman/uint256"
)
func TestTreeKey(t *testing.T) {
var (
address = []byte{0x01}
addressEval = evaluateAddressPoint(address)
smallIndex = uint256.NewInt(1)
largeIndex = uint256.NewInt(10000)
smallStorage = []byte{0x1}
largeStorage = bytes.Repeat([]byte{0xff}, 16)
)
if !bytes.Equal(VersionKey(address), VersionKeyWithEvaluatedAddress(addressEval)) {
t.Fatal("Unmatched version key")
}
if !bytes.Equal(BalanceKey(address), BalanceKeyWithEvaluatedAddress(addressEval)) {
t.Fatal("Unmatched balance key")
}
if !bytes.Equal(NonceKey(address), NonceKeyWithEvaluatedAddress(addressEval)) {
t.Fatal("Unmatched nonce key")
}
if !bytes.Equal(CodeKeccakKey(address), CodeKeccakKeyWithEvaluatedAddress(addressEval)) {
t.Fatal("Unmatched code keccak key")
}
if !bytes.Equal(CodeSizeKey(address), CodeSizeKeyWithEvaluatedAddress(addressEval)) {
t.Fatal("Unmatched code size key")
}
if !bytes.Equal(CodeChunkKey(address, smallIndex), CodeChunkKeyWithEvaluatedAddress(addressEval, smallIndex)) {
t.Fatal("Unmatched code chunk key")
}
if !bytes.Equal(CodeChunkKey(address, largeIndex), CodeChunkKeyWithEvaluatedAddress(addressEval, largeIndex)) {
t.Fatal("Unmatched code chunk key")
}
if !bytes.Equal(StorageSlotKey(address, smallStorage), StorageSlotKeyWithEvaluatedAddress(addressEval, smallStorage)) {
t.Fatal("Unmatched storage slot key")
}
if !bytes.Equal(StorageSlotKey(address, largeStorage), StorageSlotKeyWithEvaluatedAddress(addressEval, largeStorage)) {
t.Fatal("Unmatched storage slot key")
}
}
// goos: darwin
// goarch: amd64
// pkg: github.com/cerc-io/ipld-eth-statedb/trie_by_cid/trie/utils
// cpu: VirtualApple @ 2.50GHz
// BenchmarkTreeKey
// BenchmarkTreeKey-8 398731 2961 ns/op 32 B/op 1 allocs/op
func BenchmarkTreeKey(b *testing.B) {
// Initialize the IPA settings which can be pretty expensive.
verkle.GetConfig()
b.ReportAllocs()
b.ResetTimer()
for i := 0; i < b.N; i++ {
BalanceKey([]byte{0x01})
}
}
// goos: darwin
// goarch: amd64
// pkg: github.com/cerc-io/ipld-eth-statedb/trie_by_cid/trie/utils
// cpu: VirtualApple @ 2.50GHz
// BenchmarkTreeKeyWithEvaluation
// BenchmarkTreeKeyWithEvaluation-8 513855 2324 ns/op 32 B/op 1 allocs/op
func BenchmarkTreeKeyWithEvaluation(b *testing.B) {
// Initialize the IPA settings which can be pretty expensive.
verkle.GetConfig()
addr := []byte{0x01}
eval := evaluateAddressPoint(addr)
b.ReportAllocs()
b.ResetTimer()
for i := 0; i < b.N; i++ {
BalanceKeyWithEvaluatedAddress(eval)
}
}
// goos: darwin
// goarch: amd64
// pkg: github.com/cerc-io/ipld-eth-statedb/trie_by_cid/trie/utils
// cpu: VirtualApple @ 2.50GHz
// BenchmarkStorageKey
// BenchmarkStorageKey-8 230516 4584 ns/op 96 B/op 3 allocs/op
func BenchmarkStorageKey(b *testing.B) {
// Initialize the IPA settings which can be pretty expensive.
verkle.GetConfig()
b.ReportAllocs()
b.ResetTimer()
for i := 0; i < b.N; i++ {
StorageSlotKey([]byte{0x01}, bytes.Repeat([]byte{0xff}, 32))
}
}
// goos: darwin
// goarch: amd64
// pkg: github.com/cerc-io/ipld-eth-statedb/trie_by_cid/trie/utils
// cpu: VirtualApple @ 2.50GHz
// BenchmarkStorageKeyWithEvaluation
// BenchmarkStorageKeyWithEvaluation-8 320125 3753 ns/op 96 B/op 3 allocs/op
func BenchmarkStorageKeyWithEvaluation(b *testing.B) {
// Initialize the IPA settings which can be pretty expensive.
verkle.GetConfig()
addr := []byte{0x01}
eval := evaluateAddressPoint(addr)
b.ReportAllocs()
b.ResetTimer()
for i := 0; i < b.N; i++ {
StorageSlotKeyWithEvaluatedAddress(eval, bytes.Repeat([]byte{0xff}, 32))
}
}

373
trie_by_cid/trie/verkle.go Normal file
View File

@ -0,0 +1,373 @@
// Copyright 2023 go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package trie
import (
"encoding/binary"
"errors"
"fmt"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/gballet/go-verkle"
"github.com/holiman/uint256"
"github.com/cerc-io/ipld-eth-statedb/trie_by_cid/trie/trienode"
"github.com/cerc-io/ipld-eth-statedb/trie_by_cid/trie/utils"
"github.com/cerc-io/ipld-eth-statedb/trie_by_cid/triedb/database"
)
var (
zero [32]byte
errInvalidRootType = errors.New("invalid node type for root")
)
// VerkleTrie is a wrapper around VerkleNode that implements the trie.Trie
// interface so that Verkle trees can be reused verbatim.
type VerkleTrie struct {
root verkle.VerkleNode
cache *utils.PointCache
reader *trieReader
}
// NewVerkleTrie constructs a verkle tree based on the specified root hash.
func NewVerkleTrie(root common.Hash, db database.Database, cache *utils.PointCache) (*VerkleTrie, error) {
reader, err := newTrieReader(root, common.Hash{}, db)
if err != nil {
return nil, err
}
// Parse the root verkle node if it's not empty.
node := verkle.New()
if root != types.EmptyVerkleHash && root != types.EmptyRootHash {
blob, err := reader.node(nil, common.Hash{})
if err != nil {
return nil, err
}
node, err = verkle.ParseNode(blob, 0)
if err != nil {
return nil, err
}
}
return &VerkleTrie{
root: node,
cache: cache,
reader: reader,
}, nil
}
// GetKey returns the sha3 preimage of a hashed key that was previously used
// to store a value.
func (t *VerkleTrie) GetKey(key []byte) []byte {
return key
}
// GetAccount implements state.Trie, retrieving the account with the specified
// account address. If the specified account is not in the verkle tree, nil will
// be returned. If the tree is corrupted, an error will be returned.
func (t *VerkleTrie) GetAccount(addr common.Address) (*types.StateAccount, error) {
var (
acc = &types.StateAccount{}
values [][]byte
err error
)
switch n := t.root.(type) {
case *verkle.InternalNode:
values, err = n.GetValuesAtStem(t.cache.GetStem(addr[:]), t.nodeResolver)
if err != nil {
return nil, fmt.Errorf("GetAccount (%x) error: %v", addr, err)
}
default:
return nil, errInvalidRootType
}
if values == nil {
return nil, nil
}
// Decode nonce in little-endian
if len(values[utils.NonceLeafKey]) > 0 {
acc.Nonce = binary.LittleEndian.Uint64(values[utils.NonceLeafKey])
}
// Decode balance in little-endian
var balance [32]byte
copy(balance[:], values[utils.BalanceLeafKey])
for i := 0; i < len(balance)/2; i++ {
balance[len(balance)-i-1], balance[i] = balance[i], balance[len(balance)-i-1]
}
acc.Balance = new(uint256.Int).SetBytes32(balance[:])
// Decode codehash
acc.CodeHash = values[utils.CodeKeccakLeafKey]
// TODO account.Root is leave as empty. How should we handle the legacy account?
return acc, nil
}
// GetStorage implements state.Trie, retrieving the storage slot with the specified
// account address and storage key. If the specified slot is not in the verkle tree,
// nil will be returned. If the tree is corrupted, an error will be returned.
func (t *VerkleTrie) GetStorage(addr common.Address, key []byte) ([]byte, error) {
k := utils.StorageSlotKeyWithEvaluatedAddress(t.cache.Get(addr.Bytes()), key)
val, err := t.root.Get(k, t.nodeResolver)
if err != nil {
return nil, err
}
return common.TrimLeftZeroes(val), nil
}
// UpdateAccount implements state.Trie, writing the provided account into the tree.
// If the tree is corrupted, an error will be returned.
func (t *VerkleTrie) UpdateAccount(addr common.Address, acc *types.StateAccount) error {
var (
err error
nonce, balance [32]byte
values = make([][]byte, verkle.NodeWidth)
)
values[utils.VersionLeafKey] = zero[:]
values[utils.CodeKeccakLeafKey] = acc.CodeHash[:]
// Encode nonce in little-endian
binary.LittleEndian.PutUint64(nonce[:], acc.Nonce)
values[utils.NonceLeafKey] = nonce[:]
// Encode balance in little-endian
bytes := acc.Balance.Bytes()
if len(bytes) > 0 {
for i, b := range bytes {
balance[len(bytes)-i-1] = b
}
}
values[utils.BalanceLeafKey] = balance[:]
switch n := t.root.(type) {
case *verkle.InternalNode:
err = n.InsertValuesAtStem(t.cache.GetStem(addr[:]), values, t.nodeResolver)
if err != nil {
return fmt.Errorf("UpdateAccount (%x) error: %v", addr, err)
}
default:
return errInvalidRootType
}
// TODO figure out if the code size needs to be updated, too
return nil
}
// UpdateStorage implements state.Trie, writing the provided storage slot into
// the tree. If the tree is corrupted, an error will be returned.
func (t *VerkleTrie) UpdateStorage(address common.Address, key, value []byte) error {
// Left padding the slot value to 32 bytes.
var v [32]byte
if len(value) >= 32 {
copy(v[:], value[:32])
} else {
copy(v[32-len(value):], value[:])
}
k := utils.StorageSlotKeyWithEvaluatedAddress(t.cache.Get(address.Bytes()), key)
return t.root.Insert(k, v[:], t.nodeResolver)
}
// DeleteAccount implements state.Trie, deleting the specified account from the
// trie. If the account was not existent in the trie, no error will be returned.
// If the trie is corrupted, an error will be returned.
func (t *VerkleTrie) DeleteAccount(addr common.Address) error {
var (
err error
values = make([][]byte, verkle.NodeWidth)
)
for i := 0; i < verkle.NodeWidth; i++ {
values[i] = zero[:]
}
switch n := t.root.(type) {
case *verkle.InternalNode:
err = n.InsertValuesAtStem(t.cache.GetStem(addr.Bytes()), values, t.nodeResolver)
if err != nil {
return fmt.Errorf("DeleteAccount (%x) error: %v", addr, err)
}
default:
return errInvalidRootType
}
return nil
}
// DeleteStorage implements state.Trie, deleting the specified storage slot from
// the trie. If the storage slot was not existent in the trie, no error will be
// returned. If the trie is corrupted, an error will be returned.
func (t *VerkleTrie) DeleteStorage(addr common.Address, key []byte) error {
var zero [32]byte
k := utils.StorageSlotKeyWithEvaluatedAddress(t.cache.Get(addr.Bytes()), key)
return t.root.Insert(k, zero[:], t.nodeResolver)
}
// Hash returns the root hash of the tree. It does not write to the database and
// can be used even if the tree doesn't have one.
func (t *VerkleTrie) Hash() common.Hash {
return t.root.Commit().Bytes()
}
// Commit writes all nodes to the tree's memory database.
func (t *VerkleTrie) Commit(_ bool) (common.Hash, *trienode.NodeSet, error) {
root, ok := t.root.(*verkle.InternalNode)
if !ok {
return common.Hash{}, nil, errors.New("unexpected root node type")
}
nodes, err := root.BatchSerialize()
if err != nil {
return common.Hash{}, nil, fmt.Errorf("serializing tree nodes: %s", err)
}
nodeset := trienode.NewNodeSet(common.Hash{})
for _, node := range nodes {
// hash parameter is not used in pathdb
nodeset.AddNode(node.Path, trienode.New(common.Hash{}, node.SerializedBytes))
}
// Serialize root commitment form
return t.Hash(), nodeset, nil
}
// NodeIterator implements state.Trie, returning an iterator that returns
// nodes of the trie. Iteration starts at the key after the given start key.
//
// TODO(gballet, rjl493456442) implement it.
func (t *VerkleTrie) NodeIterator(startKey []byte) (NodeIterator, error) {
panic("not implemented")
}
// Prove implements state.Trie, constructing a Merkle proof for key. The result
// contains all encoded nodes on the path to the value at key. The value itself
// is also included in the last node and can be retrieved by verifying the proof.
//
// If the trie does not contain a value for key, the returned proof contains all
// nodes of the longest existing prefix of the key (at least the root), ending
// with the node that proves the absence of the key.
//
// TODO(gballet, rjl493456442) implement it.
func (t *VerkleTrie) Prove(key []byte, proofDb ethdb.KeyValueWriter) error {
panic("not implemented")
}
// Copy returns a deep-copied verkle tree.
func (t *VerkleTrie) Copy() *VerkleTrie {
return &VerkleTrie{
root: t.root.Copy(),
cache: t.cache,
reader: t.reader,
}
}
// IsVerkle indicates if the trie is a Verkle trie.
func (t *VerkleTrie) IsVerkle() bool {
return true
}
// ChunkedCode represents a sequence of 32-bytes chunks of code (31 bytes of which
// are actual code, and 1 byte is the pushdata offset).
type ChunkedCode []byte
// Copy the values here so as to avoid an import cycle
const (
PUSH1 = byte(0x60)
PUSH32 = byte(0x7f)
)
// ChunkifyCode generates the chunked version of an array representing EVM bytecode
func ChunkifyCode(code []byte) ChunkedCode {
var (
chunkOffset = 0 // offset in the chunk
chunkCount = len(code) / 31
codeOffset = 0 // offset in the code
)
if len(code)%31 != 0 {
chunkCount++
}
chunks := make([]byte, chunkCount*32)
for i := 0; i < chunkCount; i++ {
// number of bytes to copy, 31 unless the end of the code has been reached.
end := 31 * (i + 1)
if len(code) < end {
end = len(code)
}
copy(chunks[i*32+1:], code[31*i:end]) // copy the code itself
// chunk offset = taken from the last chunk.
if chunkOffset > 31 {
// skip offset calculation if push data covers the whole chunk
chunks[i*32] = 31
chunkOffset = 1
continue
}
chunks[32*i] = byte(chunkOffset)
chunkOffset = 0
// Check each instruction and update the offset it should be 0 unless
// a PUSH-N overflows.
for ; codeOffset < end; codeOffset++ {
if code[codeOffset] >= PUSH1 && code[codeOffset] <= PUSH32 {
codeOffset += int(code[codeOffset] - PUSH1 + 1)
if codeOffset+1 >= 31*(i+1) {
codeOffset++
chunkOffset = codeOffset - 31*(i+1)
break
}
}
}
}
return chunks
}
// UpdateContractCode implements state.Trie, writing the provided contract code
// into the trie.
func (t *VerkleTrie) UpdateContractCode(addr common.Address, codeHash common.Hash, code []byte) error {
var (
chunks = ChunkifyCode(code)
values [][]byte
key []byte
err error
)
for i, chunknr := 0, uint64(0); i < len(chunks); i, chunknr = i+32, chunknr+1 {
groupOffset := (chunknr + 128) % 256
if groupOffset == 0 /* start of new group */ || chunknr == 0 /* first chunk in header group */ {
values = make([][]byte, verkle.NodeWidth)
key = utils.CodeChunkKeyWithEvaluatedAddress(t.cache.Get(addr.Bytes()), uint256.NewInt(chunknr))
}
values[groupOffset] = chunks[i : i+32]
// Reuse the calculated key to also update the code size.
if i == 0 {
cs := make([]byte, 32)
binary.LittleEndian.PutUint64(cs, uint64(len(code)))
values[utils.CodeSizeLeafKey] = cs
}
if groupOffset == 255 || len(chunks)-i <= 32 {
switch root := t.root.(type) {
case *verkle.InternalNode:
err = root.InsertValuesAtStem(key[:31], values, t.nodeResolver)
if err != nil {
return fmt.Errorf("UpdateContractCode (addr=%x) error: %w", addr[:], err)
}
default:
return errInvalidRootType
}
}
}
return nil
}
func (t *VerkleTrie) ToDot() string {
return verkle.ToDot(t.root)
}
func (t *VerkleTrie) nodeResolver(path []byte) ([]byte, error) {
return t.reader.node(path, common.Hash{})
}

View File

@ -0,0 +1,92 @@
// Copyright 2023 go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package trie
import (
"bytes"
"reflect"
"testing"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/core/types"
"github.com/holiman/uint256"
"github.com/cerc-io/ipld-eth-statedb/trie_by_cid/trie/utils"
)
var (
accounts = map[common.Address]*types.StateAccount{
{1}: {
Nonce: 100,
Balance: uint256.NewInt(100),
CodeHash: common.Hash{0x1}.Bytes(),
},
{2}: {
Nonce: 200,
Balance: uint256.NewInt(200),
CodeHash: common.Hash{0x2}.Bytes(),
},
}
storages = map[common.Address]map[common.Hash][]byte{
{1}: {
common.Hash{10}: []byte{10},
common.Hash{11}: []byte{11},
common.MaxHash: []byte{0xff},
},
{2}: {
common.Hash{20}: []byte{20},
common.Hash{21}: []byte{21},
common.MaxHash: []byte{0xff},
},
}
)
func TestVerkleTreeReadWrite(t *testing.T) {
db := newTestDatabase(rawdb.NewMemoryDatabase(), rawdb.PathScheme)
tr, _ := NewVerkleTrie(types.EmptyVerkleHash, db, utils.NewPointCache(100))
for addr, acct := range accounts {
if err := tr.UpdateAccount(addr, acct); err != nil {
t.Fatalf("Failed to update account, %v", err)
}
for key, val := range storages[addr] {
if err := tr.UpdateStorage(addr, key.Bytes(), val); err != nil {
t.Fatalf("Failed to update account, %v", err)
}
}
}
for addr, acct := range accounts {
stored, err := tr.GetAccount(addr)
if err != nil {
t.Fatalf("Failed to get account, %v", err)
}
if !reflect.DeepEqual(stored, acct) {
t.Fatal("account is not matched")
}
for key, val := range storages[addr] {
stored, err := tr.GetStorage(addr, key.Bytes())
if err != nil {
t.Fatalf("Failed to get storage, %v", err)
}
if !bytes.Equal(stored, val) {
t.Fatal("storage is not matched")
}
}
}
}