ipld-eth-state-snapshot/pkg/snapshot/service.go
2023-05-31 18:08:02 -05:00

602 lines
21 KiB
Go

// Copyright © 2020 Vulcanize, Inc
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
package snapshot
import (
"bytes"
"context"
"errors"
"fmt"
"math/big"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/core/state"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/rlp"
"github.com/ethereum/go-ethereum/statediff/indexer/ipld"
"github.com/ethereum/go-ethereum/statediff/indexer/models"
"github.com/ethereum/go-ethereum/trie"
iter "github.com/ethereum/go-ethereum/trie/concurrent_iterator"
log "github.com/sirupsen/logrus"
"golang.org/x/sync/errgroup"
"github.com/cerc-io/ipld-eth-state-snapshot/pkg/prom"
. "github.com/cerc-io/ipld-eth-state-snapshot/pkg/types"
)
var (
emptyNode, _ = rlp.EncodeToBytes(&[]byte{})
emptyCodeHash = crypto.Keccak256([]byte{})
emptyContractRoot = crypto.Keccak256Hash(emptyNode)
defaultBatchSize = uint(100)
)
// Service holds ethDB and stateDB to read data from lvldb and Publisher
// to publish trie in postgres DB.
type Service struct {
watchingAddresses bool
ethDB ethdb.Database
stateDB state.Database
ipfsPublisher Publisher
maxBatchSize uint
tracker iteratorTracker
recoveryFile string
}
func NewLevelDB(con *EthConfig) (ethdb.Database, error) {
kvdb, _ := rawdb.NewLevelDBDatabase(con.LevelDBPath, 1024, 256, "ipld-eth-state-snapshot", true)
edb, err := rawdb.NewDatabaseWithFreezer(kvdb, con.AncientDBPath, "ipld-eth-state-snapshot", true)
if err != nil {
return nil, fmt.Errorf("unable to create NewLevelDBDatabaseWithFreezer: %s", err)
}
return edb, nil
}
// NewSnapshotService creates Service.
func NewSnapshotService(edb ethdb.Database, pub Publisher, recoveryFile string) (*Service, error) {
return &Service{
ethDB: edb,
stateDB: state.NewDatabase(edb),
ipfsPublisher: pub,
maxBatchSize: defaultBatchSize,
recoveryFile: recoveryFile,
}, nil
}
type SnapshotParams struct {
WatchedAddresses map[common.Address]struct{}
Height uint64
Workers uint
}
func (s *Service) CreateSnapshot(params SnapshotParams) error {
paths := make([][]byte, 0, len(params.WatchedAddresses))
for addr := range params.WatchedAddresses {
paths = append(paths, keybytesToHex(crypto.Keccak256(addr.Bytes())))
}
s.watchingAddresses = len(paths) > 0
// extract header from lvldb and publish to PG-IPFS
// hold onto the headerID so that we can link the state nodes to this header
log.Infof("Creating snapshot at height %d", params.Height)
hash := rawdb.ReadCanonicalHash(s.ethDB, params.Height)
header := rawdb.ReadHeader(s.ethDB, hash, params.Height)
if header == nil {
return fmt.Errorf("unable to read canonical header at height %d", params.Height)
}
log.Infof("head hash: %s head height: %d", hash.Hex(), params.Height)
err := s.ipfsPublisher.PublishHeader(header)
if err != nil {
return err
}
tree, err := s.stateDB.OpenTrie(header.Root)
if err != nil {
return err
}
headerID := header.Hash().String()
ctx, cancelCtx := context.WithCancel(context.Background())
s.tracker = newTracker(s.recoveryFile, int(params.Workers))
s.tracker.captureSignal(cancelCtx)
var iters []trie.NodeIterator
// attempt to restore from recovery file if it exists
iters, err = s.tracker.restore(tree)
if err != nil {
log.Errorf("restore error: %s", err.Error())
return err
}
if iters != nil {
log.Debugf("restored iterators; count: %d", len(iters))
if params.Workers < uint(len(iters)) {
return fmt.Errorf(
"number of recovered workers (%d) is greater than number configured (%d)",
len(iters), params.Workers,
)
}
} else {
// nothing to restore
log.Debugf("no iterators to restore")
if params.Workers > 1 {
iters = iter.SubtrieIterators(tree, params.Workers)
} else {
iters = []trie.NodeIterator{tree.NodeIterator(nil)}
}
for i, it := range iters {
// recovered path is nil for fresh iterators
iters[i] = s.tracker.tracked(it, nil)
}
}
defer func() {
err := s.tracker.haltAndDump()
if err != nil {
log.Errorf("failed to write recovery file: %v", err)
}
}()
switch {
case len(iters) > 1:
return s.createSnapshotAsync(ctx, iters, headerID, new(big.Int).SetUint64(params.Height), paths)
case len(iters) == 1:
return s.createSnapshot(ctx, iters[0], headerID, new(big.Int).SetUint64(params.Height), paths)
default:
return nil
}
}
// CreateLatestSnapshot snapshot at head (ignores height param)
func (s *Service) CreateLatestSnapshot(workers uint, watchedAddresses map[common.Address]struct{}) error {
log.Info("Creating snapshot at head")
hash := rawdb.ReadHeadHeaderHash(s.ethDB)
height := rawdb.ReadHeaderNumber(s.ethDB, hash)
if height == nil {
return fmt.Errorf("unable to read header height for header hash %s", hash.String())
}
return s.CreateSnapshot(SnapshotParams{Height: *height, Workers: workers, WatchedAddresses: watchedAddresses})
}
// Full-trie concurrent snapshot
func (s *Service) createSnapshotAsync(ctx context.Context, iters []trie.NodeIterator, headerID string, height *big.Int, seekingPaths [][]byte) error {
// use errgroup with a context to stop all concurrent iterators if one runs into an error
// each concurrent iterator completes processing it's current node before stopping
g, ctx := errgroup.WithContext(ctx)
for _, it := range iters {
func(it trie.NodeIterator) {
g.Go(func() error {
return s.createSnapshot(ctx, it, headerID, height, seekingPaths)
})
}(it)
}
return g.Wait()
}
// createSnapshot performs traversal using the given iterator and indexes the nodes
// optionally filtering them according to a list of paths
func (s *Service) createSnapshot(ctx context.Context, it trie.NodeIterator, headerID string, height *big.Int, seekingPaths [][]byte) error {
tx, err := s.ipfsPublisher.BeginTx()
if err != nil {
return err
}
// we must avoid overshadowing the `err`
defer func() {
err = CommitOrRollback(tx, err)
if err != nil {
log.Errorf("CommitOrRollback failed: %s", err)
}
}()
// path (from recovery dump) to be seeked on recovery
// nil in case of a fresh iterator
var recoveredPath []byte
// latest path seeked from the concurrent iterator
// (updated after a node processed)
// nil in case of a fresh iterator; initially holds the recovered path in case of a recovered iterator
var seekedPath *[]byte
// end path for the concurrent iterator
var endPath []byte
if i, ok := it.(*trackedIter); ok {
seekedPath = &i.seekedPath
recoveredPath = append(recoveredPath, *seekedPath...)
endPath = i.endPath
} else {
err = errors.New("untracked iterator")
return err
}
tx, err = s.createSubTrieSnapshot(ctx, tx, nil, it, recoveredPath, seekedPath, endPath, headerID, height, seekingPaths)
return err
}
// createSubTrieSnapshot processes nodes at the next level of a trie using the given subtrie iterator
// continually updating seekedPath with path of the latest processed node
func (s *Service) createSubTrieSnapshot(ctx context.Context, tx Tx, prefixPath []byte, subTrieIt trie.NodeIterator,
recoveredPath []byte, seekedPath *[]byte, endPath []byte, headerID string, height *big.Int, seekingPaths [][]byte) (Tx, error) {
prom.IncActiveIterCount()
defer prom.DecActiveIterCount()
// descend in the first loop iteration to reach first child node
var err error
descend := true
for {
select {
case <-ctx.Done():
return tx, errors.New("ctx cancelled")
default:
if ok := subTrieIt.Next(descend); !ok {
return tx, subTrieIt.Error()
}
// to avoid descending further
descend = false
// move on to next node if current path is empty
// occurs when reaching root node or just before reaching the first child of a subtrie in case of some concurrent iterators
if bytes.Equal(subTrieIt.Path(), []byte{}) {
// if node path is empty and prefix is nil, it's the root node
if prefixPath == nil {
// create snapshot of node, if it is a leaf this will also create snapshot of entire storage trie
tx, err = s.createNodeSnapshot(tx, subTrieIt, headerID, height, seekingPaths, prefixPath)
if err != nil {
return tx, err
}
updateSeekedPath(seekedPath, subTrieIt.Path())
}
if ok := subTrieIt.Next(true); !ok {
// return if no further nodes available
return tx, subTrieIt.Error()
}
}
// create the full node path as it.Path() doesn't include the path before subtrie root
nodePath := append(prefixPath, subTrieIt.Path()...)
// check iterator upper bound before processing the node
// required to avoid processing duplicate nodes:
// if a node is considered more than once,
// it's whole subtrie is re-processed giving large number of duplicate nodoes
if !checkUpperPathBound(nodePath, endPath) {
// fmt.Println("failed checkUpperPathBound", nodePath, endPath)
// explicitly stop the iterator in tracker if upper bound check fails
// required since it won't be marked as stopped if further nodes are still available
if trackedSubtrieIt, ok := subTrieIt.(*trackedIter); ok {
s.tracker.stopIter(trackedSubtrieIt)
}
return tx, subTrieIt.Error()
}
// skip the current node if it's before recovered path and not along the recovered path
// nodes at the same level that are before recovered path are ignored to avoid duplicate nodes
// however, nodes along the recovered path are re-considered for redundancy
if bytes.Compare(recoveredPath, nodePath) > 0 &&
// a node is along the recovered path if it's path is shorter or equal in length
// and is part of the recovered path
!(len(nodePath) <= len(recoveredPath) && bytes.Equal(recoveredPath[:len(nodePath)], nodePath)) {
continue
}
// ignore node if it is not along paths of interest
if s.watchingAddresses && !validPath(nodePath, seekingPaths) {
// consider this node as processed since it is getting ignored
// and update the seeked path
updateSeekedPath(seekedPath, nodePath)
// move on to the next node
continue
}
// if the node is along paths of interest
// create snapshot of node, if it is a leaf this will also create snapshot of entire storage trie
tx, err = s.createNodeSnapshot(tx, subTrieIt, headerID, height, seekingPaths, prefixPath)
if err != nil {
return tx, err
}
// update seeked path after node has been processed
updateSeekedPath(seekedPath, nodePath)
// create an iterator to traverse and process the next level of this subTrie
nextSubTrieIt, err := s.createSubTrieIt(nodePath, subTrieIt.Hash(), recoveredPath)
if err != nil {
return tx, err
}
// pass on the seekedPath of the tracked concurrent iterator to be updated
tx, err = s.createSubTrieSnapshot(ctx, tx, nodePath, nextSubTrieIt, recoveredPath, seekedPath, endPath, headerID, height, seekingPaths)
if err != nil {
return tx, err
}
}
}
}
// createSubTrieIt creates an iterator to traverse the subtrie of node with the given hash
// the subtrie iterator is initialized at a node from the recovered path at corresponding level (if avaiable)
func (s *Service) createSubTrieIt(prefixPath []byte, hash common.Hash, recoveredPath []byte) (trie.NodeIterator, error) {
// skip directly to the node from the recovered path at corresponding level
// applicable if:
// node path is behind recovered path
// and recovered path includes the prefix path
var startPath []byte
if bytes.Compare(recoveredPath, prefixPath) > 0 &&
len(recoveredPath) > len(prefixPath) &&
bytes.Equal(recoveredPath[:len(prefixPath)], prefixPath) {
startPath = append(startPath, recoveredPath[len(prefixPath):len(prefixPath)+1]...)
// force the lower bound path to an even length
// (required by HexToKeyBytes())
if len(startPath)&0b1 == 1 {
// decrement first to avoid skipped nodes
decrementPath(startPath)
startPath = append(startPath, 0)
}
}
// create subTrie iterator with the given hash
subTrie, err := s.stateDB.OpenTrie(hash)
if err != nil {
return nil, err
}
return subTrie.NodeIterator(iter.HexToKeyBytes(startPath)), nil
}
// createNodeSnapshot indexes the current node
// entire storage trie is also indexed (if available)
func (s *Service) createNodeSnapshot(tx Tx, it trie.NodeIterator, headerID string, height *big.Int,
watchedAddressesLeafPaths [][]byte, prefixPath []byte) (Tx, error) {
tx, err := s.ipfsPublisher.PrepareTxForBatch(tx, s.maxBatchSize)
if err != nil {
return tx, err
}
// index values by leaf key
if it.Leaf() {
// if it is a "value" node, we will index the value by leaf key
// publish codehash => code mappings
// take storage snapshot
if err := s.processStateValueNode(it, headerID, height, prefixPath, watchedAddressesLeafPaths, tx); err != nil {
return tx, err
}
} else { // trie nodes will be written to blockstore only
// reminder that this includes leaf nodes, since the geth iterator.Leaf() actually signifies a "value" node
// so this is also where we publish the IPLD block corresponding to the "value" nodes indexed above
if IsNullHash(it.Hash()) {
// skip null node
return tx, nil
}
nodeVal := make([]byte, len(it.NodeBlob()))
copy(nodeVal, it.NodeBlob())
if len(watchedAddressesLeafPaths) > 0 {
var elements []interface{}
if err := rlp.DecodeBytes(nodeVal, &elements); err != nil {
return tx, err
}
ok, err := isLeaf(elements)
if err != nil {
return tx, err
}
if ok {
// create the full node path as it.Path() doesn't include the path before subtrie root
nodePath := append(prefixPath, it.Path()...)
partialPath := trie.CompactToHex(elements[0].([]byte))
valueNodePath := append(nodePath, partialPath...)
if !isWatchedAddress(watchedAddressesLeafPaths, valueNodePath) {
// skip this node
return tx, nil
}
}
}
nodeHash := make([]byte, len(it.Hash().Bytes()))
copy(nodeHash, it.Hash().Bytes())
if err := s.ipfsPublisher.PublishIPLD(ipld.Keccak256ToCid(ipld.MEthStateTrie, nodeHash), nodeVal, height, tx); err != nil {
return tx, err
}
}
return tx, it.Error()
}
// reminder: it.Leaf() == true when the iterator is positioned at a "value node" which is not something that actually exists in an MMPT
func (s *Service) processStateValueNode(it trie.NodeIterator, headerID string, height *big.Int, prefixPath []byte,
watchedAddressesLeafPaths [][]byte, tx Tx) error {
// create the full node path as it.Path() doesn't include the path before subtrie root
nodePath := append(prefixPath, it.Path()...)
// skip if it is not a watched address
// If we aren't watching any specific addresses, we are watching everything
if len(watchedAddressesLeafPaths) > 0 && !isWatchedAddress(watchedAddressesLeafPaths, nodePath) {
return nil
}
// since this is a "value node", we need to move up to the "parent" node which is the actual leaf node
// it should be in the fastcache since it necessarily was recently accessed to reach the current "node"
parentNodeRLP, err := s.stateDB.TrieDB().Node(it.Parent())
if err != nil {
return err
}
var nodeElements []interface{}
if err = rlp.DecodeBytes(parentNodeRLP, &nodeElements); err != nil {
return err
}
parentSubPath := make([]byte, len(it.ParentPath()))
copy(parentSubPath, it.ParentPath())
parentPath := append(prefixPath, parentSubPath...)
partialPath := trie.CompactToHex(nodeElements[0].([]byte))
valueNodePath := append(parentPath, partialPath...)
encodedPath := trie.HexToCompact(valueNodePath)
leafKey := encodedPath[1:]
// created vs updated is important for leaf nodes since we need to diff their storage
// so we need to map all changed accounts at B to their leafkey, since account can change pathes but not leafkey
var account types.StateAccount
accountRLP := make([]byte, len(it.LeafBlob()))
copy(accountRLP, it.LeafBlob())
if err := rlp.DecodeBytes(accountRLP, &account); err != nil {
return fmt.Errorf("error decoding account for leaf value at leaf key %x\nerror: %v", leafKey, err)
}
// write codehash => code mappings if we have a contract
if !bytes.Equal(account.CodeHash, emptyCodeHash) {
codeHash := common.BytesToHash(account.CodeHash)
code, err := s.stateDB.ContractCode(common.Hash{}, codeHash)
if err != nil {
return fmt.Errorf("failed to retrieve code for codehash %s\r\n error: %v", codeHash.String(), err)
}
if err := s.ipfsPublisher.PublishIPLD(ipld.Keccak256ToCid(ipld.RawBinary, codeHash.Bytes()), code, height, tx); err != nil {
return err
}
}
// publish the state leaf model
stateKeyStr := common.BytesToHash(leafKey).String()
stateLeafNodeModel := &models.StateNodeModel{
BlockNumber: height.String(),
HeaderID: headerID,
StateKey: stateKeyStr,
Removed: false,
CID: ipld.Keccak256ToCid(ipld.MEthStateTrie, crypto.Keccak256(parentNodeRLP)).String(),
Diff: false,
Balance: account.Balance.String(),
Nonce: account.Nonce,
CodeHash: common.BytesToHash(account.CodeHash).String(),
StorageRoot: account.Root.String(),
}
if err := s.ipfsPublisher.PublishStateLeafNode(stateLeafNodeModel, tx); err != nil {
return fmt.Errorf("failed publishing state leaf node for leaf key %s\r\nerror: %w", stateKeyStr, err)
}
// create storage snapshot
// this short circuits if storage is empty
if _, err := s.storageSnapshot(account.Root, stateKeyStr, headerID, height, tx); err != nil {
return fmt.Errorf("failed building storage snapshot for account %+v\r\nerror: %w", account, err)
}
return nil
}
func (s *Service) storageSnapshot(sr common.Hash, stateKey, headerID string, height *big.Int, tx Tx) (Tx, error) {
if bytes.Equal(sr.Bytes(), emptyContractRoot.Bytes()) {
return tx, nil
}
sTrie, err := s.stateDB.OpenTrie(sr)
if err != nil {
return nil, err
}
it := sTrie.NodeIterator(make([]byte, 0))
for it.Next(true) {
if it.Leaf() {
if err := s.processStorageValueNode(it, stateKey, headerID, height, tx); err != nil {
return nil, err
}
} else {
nodeVal := make([]byte, len(it.NodeBlob()))
copy(nodeVal, it.NodeBlob())
nodeHash := make([]byte, len(it.Hash().Bytes()))
copy(nodeHash, it.Hash().Bytes())
if err := s.ipfsPublisher.PublishIPLD(ipld.Keccak256ToCid(ipld.MEthStorageTrie, nodeHash), nodeVal, height, tx); err != nil {
return nil, err
}
}
}
return tx, it.Error()
}
// reminder: it.Leaf() == true when the iterator is positioned at a "value node" which is not something that actually exists in an MMPT
func (s *Service) processStorageValueNode(it trie.NodeIterator, stateKey, headerID string, height *big.Int, tx Tx) error {
// skip if it is not a watched address
leafKey := make([]byte, len(it.LeafKey()))
copy(leafKey, it.LeafKey())
value := make([]byte, len(it.LeafBlob()))
copy(value, it.LeafBlob())
// since this is a "value node", we need to move up to the "parent" node which is the actual leaf node
// it should be in the fastcache since it necessarily was recently accessed to reach the current node
parentNodeRLP, err := s.stateDB.TrieDB().Node(it.Parent())
if err != nil {
return err
}
// publish storage leaf node model
storageLeafKeyStr := common.BytesToHash(leafKey).String()
storageLeafNodeModel := &models.StorageNodeModel{
BlockNumber: height.String(),
HeaderID: headerID,
StateKey: stateKey,
StorageKey: storageLeafKeyStr,
Removed: false,
CID: ipld.Keccak256ToCid(ipld.MEthStorageTrie, crypto.Keccak256(parentNodeRLP)).String(),
Diff: false,
Value: value,
}
if err := s.ipfsPublisher.PublishStorageLeafNode(storageLeafNodeModel, tx); err != nil {
return fmt.Errorf("failed to publish storage leaf node for state leaf key %s and storage leaf key %s\r\nerr: %w", stateKey, storageLeafKeyStr, err)
}
return nil
}
// validPath checks if a path is prefix to any one of the paths in the given list
func validPath(currentPath []byte, seekingPaths [][]byte) bool {
for _, seekingPath := range seekingPaths {
if bytes.HasPrefix(seekingPath, currentPath) {
return true
}
}
return false
}
// isWatchedAddress is used to check if a state account corresponds to one of the addresses the builder is configured to watch
func isWatchedAddress(watchedAddressesLeafPaths [][]byte, valueNodePath []byte) bool {
for _, watchedAddressPath := range watchedAddressesLeafPaths {
if bytes.Equal(watchedAddressPath, valueNodePath) {
return true
}
}
return false
}
// isLeaf checks if the node we are at is a leaf
func isLeaf(elements []interface{}) (bool, error) {
if len(elements) > 2 {
return false, nil
}
if len(elements) < 2 {
return false, fmt.Errorf("node cannot be less than two elements in length")
}
switch elements[0].([]byte)[0] / 16 {
case '\x00':
return false, nil
case '\x01':
return false, nil
case '\x02':
return true, nil
case '\x03':
return true, nil
default:
return false, fmt.Errorf("unknown hex prefix")
}
}