ipld-eth-state-snapshot/pkg/prom/tracker.go

175 lines
4.2 KiB
Go
Raw Normal View History

package prom
import (
"bytes"
"fmt"
"sync"
"sync/atomic"
iterutil "github.com/cerc-io/eth-iterator-utils"
"github.com/cerc-io/eth-iterator-utils/tracker"
"github.com/ethereum/go-ethereum/trie"
)
var trackedIterCount atomic.Int32
// Tracker which wraps a tracked iterators in metrics-reporting iterators
type MetricsTracker struct {
*tracker.TrackerImpl
}
type metricsIterator struct {
trie.NodeIterator
id int32
// count uint
done bool
lastPath []byte
sync.RWMutex
}
func NewTracker(file string, bufsize uint) *MetricsTracker {
return &MetricsTracker{TrackerImpl: tracker.NewImpl(file, bufsize)}
}
func (t *MetricsTracker) wrap(tracked *tracker.Iterator) *metricsIterator {
startPath, endPath := tracked.Bounds()
pathDepth := max(max(len(startPath), len(endPath)), 1)
totalSteps := estimateSteps(startPath, endPath, pathDepth)
ret := &metricsIterator{
NodeIterator: tracked,
id: trackedIterCount.Add(1),
}
RegisterGaugeFunc(
fmt.Sprintf("tracked_iterator_%d", ret.id),
func() float64 {
ret.RLock()
done := ret.done
lastPath := ret.lastPath
ret.RUnlock()
if done {
return 100.0
}
if lastPath == nil {
return 0.0
}
// estimate remaining distance based on current position and node count
remainingSteps := estimateSteps(lastPath, endPath, pathDepth)
return (float64(totalSteps) - float64(remainingSteps)) / float64(totalSteps) * 100.0
})
return ret
}
func (t *MetricsTracker) Restore(ctor iterutil.IteratorConstructor) (
[]trie.NodeIterator, []trie.NodeIterator, error,
) {
iters, bases, err := t.TrackerImpl.Restore(ctor)
if err != nil {
return nil, nil, err
}
ret := make([]trie.NodeIterator, len(iters))
for i, tracked := range iters {
ret[i] = t.wrap(tracked)
}
return ret, bases, nil
}
func (t *MetricsTracker) Tracked(it trie.NodeIterator) trie.NodeIterator {
tracked := t.TrackerImpl.Tracked(it)
return t.wrap(tracked)
}
func (it *metricsIterator) Next(descend bool) bool {
ret := it.NodeIterator.Next(descend)
it.Lock()
defer it.Unlock()
if ret {
it.lastPath = it.Path()
} else {
it.done = true
}
return ret
}
// Estimate the number of iterations necessary to step from start to end.
func estimateSteps(start []byte, end []byte, depth int) uint64 {
// We see paths in several forms (nil, 0600, 06, etc.). We need to adjust them to a comparable form.
// For nil, start and end indicate the extremes of 0x0 and 0x10. For differences in depth, we often see a
// start/end range on a bounded iterator specified like 0500:0600, while the value returned by it.Path() may
// be shorter, like 06. Since our goal is to estimate how many steps it would take to move from start to end,
// we want to perform the comparison at a stable depth, since to move from 05 to 06 is only 1 step, but
// to move from 0500:06 is 16.
normalizePathRange := func(start []byte, end []byte, depth int) ([]byte, []byte) {
if 0 == len(start) {
start = []byte{0x0}
}
if 0 == len(end) {
end = []byte{0x10}
}
normalizedStart := make([]byte, depth)
normalizedEnd := make([]byte, depth)
for i := 0; i < depth; i++ {
if i < len(start) {
normalizedStart[i] = start[i]
}
if i < len(end) {
normalizedEnd[i] = end[i]
}
}
return normalizedStart, normalizedEnd
}
// We have no need to handle negative exponents, so uints are fine.
pow := func(x uint64, y uint) uint64 {
if 0 == y {
return 1
}
ret := x
for i := uint(0); i < y; i++ {
ret *= x
}
return x
}
// Fix the paths.
start, end = normalizePathRange(start, end, depth)
// No negative distances, if the start is already >= end, the distance is 0.
if bytes.Compare(start, end) >= 0 {
return 0
}
// Subtract each component, right to left, carrying over if necessary.
difference := make([]byte, len(start))
var carry byte = 0
for i := len(start) - 1; i >= 0; i-- {
result := end[i] - start[i] - carry
if result > 0xf && i > 0 {
result &= 0xf
carry = 1
} else {
carry = 0
}
difference[i] = result
}
// Calculate the result.
var ret uint64 = 0
for i := 0; i < len(difference); i++ {
ret += uint64(difference[i]) * pow(16, uint(len(difference)-i-1))
}
return ret
}
func max(a int, b int) int {
if a > b {
return a
}
return b
}