ipld-eth-server/vendor/golang.org/x/text/internal/number/gen.go
2017-10-19 09:22:12 -05:00

459 lines
13 KiB
Go

// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build ignore
package main
import (
"flag"
"fmt"
"log"
"reflect"
"strings"
"unicode/utf8"
"golang.org/x/text/internal"
"golang.org/x/text/internal/gen"
"golang.org/x/text/internal/number"
"golang.org/x/text/internal/stringset"
"golang.org/x/text/language"
"golang.org/x/text/unicode/cldr"
)
var (
test = flag.Bool("test", false,
"test existing tables; can be used to compare web data with package data.")
outputFile = flag.String("output", "tables.go", "output file")
outputTestFile = flag.String("testoutput", "data_test.go", "output file")
draft = flag.String("draft",
"contributed",
`Minimal draft requirements (approved, contributed, provisional, unconfirmed).`)
)
func main() {
gen.Init()
const pkg = "number"
gen.Repackage("gen_common.go", "common.go", pkg)
// Read the CLDR zip file.
r := gen.OpenCLDRCoreZip()
defer r.Close()
d := &cldr.Decoder{}
d.SetDirFilter("supplemental", "main")
d.SetSectionFilter("numbers", "numberingSystem")
data, err := d.DecodeZip(r)
if err != nil {
log.Fatalf("DecodeZip: %v", err)
}
w := gen.NewCodeWriter()
defer w.WriteGoFile(*outputFile, pkg)
fmt.Fprintln(w, `import "golang.org/x/text/internal/stringset"`)
gen.WriteCLDRVersion(w)
genNumSystem(w, data)
genSymbols(w, data)
genFormats(w, data)
}
var systemMap = map[string]system{"latn": 0}
func getNumberSystem(str string) system {
ns, ok := systemMap[str]
if !ok {
log.Fatalf("No index for numbering system %q", str)
}
return ns
}
func genNumSystem(w *gen.CodeWriter, data *cldr.CLDR) {
numSysData := []systemData{
{digitSize: 1, zero: [4]byte{'0'}},
}
for _, ns := range data.Supplemental().NumberingSystems.NumberingSystem {
if len(ns.Digits) == 0 {
continue
}
switch ns.Id {
case "latn":
// hard-wired
continue
case "hanidec":
// non-consecutive digits: treat as "algorithmic"
continue
}
zero, sz := utf8.DecodeRuneInString(ns.Digits)
if ns.Digits[sz-1]+9 > 0xBF { // 1011 1111: highest continuation byte
log.Fatalf("Last byte of zero value overflows for %s", ns.Id)
}
i := rune(0)
for _, r := range ns.Digits {
// Verify that we can do simple math on the UTF-8 byte sequence
// of zero to get the digit.
if zero+i != r {
// Runes not consecutive.
log.Fatalf("Digit %d of %s (%U) is not offset correctly from zero value", i, ns.Id, r)
}
i++
}
var x [utf8.UTFMax]byte
utf8.EncodeRune(x[:], zero)
id := system(len(numSysData))
systemMap[ns.Id] = id
numSysData = append(numSysData, systemData{
id: id,
digitSize: byte(sz),
zero: x,
})
}
w.WriteVar("numSysData", numSysData)
algoID := system(len(numSysData))
fmt.Fprintln(w, "const (")
for _, ns := range data.Supplemental().NumberingSystems.NumberingSystem {
id, ok := systemMap[ns.Id]
if !ok {
id = algoID
systemMap[ns.Id] = id
algoID++
}
fmt.Fprintf(w, "num%s = %#x\n", strings.Title(ns.Id), id)
}
fmt.Fprintln(w, "numNumberSystems")
fmt.Fprintln(w, ")")
fmt.Fprintln(w, "var systemMap = map[string]system{")
for _, ns := range data.Supplemental().NumberingSystems.NumberingSystem {
fmt.Fprintf(w, "%q: num%s,\n", ns.Id, strings.Title(ns.Id))
w.Size += len(ns.Id) + 16 + 1 // very coarse approximation
}
fmt.Fprintln(w, "}")
}
func genSymbols(w *gen.CodeWriter, data *cldr.CLDR) {
d, err := cldr.ParseDraft(*draft)
if err != nil {
log.Fatalf("invalid draft level: %v", err)
}
nNumberSystems := system(len(systemMap))
type symbols [NumSymbolTypes]string
type key struct {
tag int // from language.CompactIndex
system system
}
symbolMap := map[key]*symbols{}
defaults := map[int]system{}
for _, lang := range data.Locales() {
ldml := data.RawLDML(lang)
if ldml.Numbers == nil {
continue
}
langIndex, ok := language.CompactIndex(language.MustParse(lang))
if !ok {
log.Fatalf("No compact index for language %s", lang)
}
if d := ldml.Numbers.DefaultNumberingSystem; len(d) > 0 {
defaults[langIndex] = getNumberSystem(d[0].Data())
}
syms := cldr.MakeSlice(&ldml.Numbers.Symbols)
syms.SelectDraft(d)
getFirst := func(name string, x interface{}) string {
v := reflect.ValueOf(x)
slice := cldr.MakeSlice(x)
slice.SelectAnyOf("alt", "", "alt")
if reflect.Indirect(v).Len() == 0 {
return ""
} else if reflect.Indirect(v).Len() > 1 {
log.Fatalf("%s: multiple values of %q within single symbol not supported.", lang, name)
}
return reflect.Indirect(v).Index(0).MethodByName("Data").Call(nil)[0].String()
}
for _, sym := range ldml.Numbers.Symbols {
if sym.NumberSystem == "" {
// This is just linking the default of root to "latn".
continue
}
symbolMap[key{langIndex, getNumberSystem(sym.NumberSystem)}] = &symbols{
SymDecimal: getFirst("decimal", &sym.Decimal),
SymGroup: getFirst("group", &sym.Group),
SymList: getFirst("list", &sym.List),
SymPercentSign: getFirst("percentSign", &sym.PercentSign),
SymPlusSign: getFirst("plusSign", &sym.PlusSign),
SymMinusSign: getFirst("minusSign", &sym.MinusSign),
SymExponential: getFirst("exponential", &sym.Exponential),
SymSuperscriptingExponent: getFirst("superscriptingExponent", &sym.SuperscriptingExponent),
SymPerMille: getFirst("perMille", &sym.PerMille),
SymInfinity: getFirst("infinity", &sym.Infinity),
SymNan: getFirst("nan", &sym.Nan),
SymTimeSeparator: getFirst("timeSeparator", &sym.TimeSeparator),
}
}
}
// Expand all values.
for k, syms := range symbolMap {
for t := SymDecimal; t < NumSymbolTypes; t++ {
p := k.tag
for syms[t] == "" {
p = int(internal.Parent[p])
if pSyms, ok := symbolMap[key{p, k.system}]; ok && (*pSyms)[t] != "" {
syms[t] = (*pSyms)[t]
break
}
if p == 0 /* und */ {
// Default to root, latn.
syms[t] = (*symbolMap[key{}])[t]
}
}
}
}
// Unique the symbol sets and write the string data.
m := map[symbols]int{}
sb := stringset.NewBuilder()
symIndex := [][NumSymbolTypes]byte{}
for ns := system(0); ns < nNumberSystems; ns++ {
for _, l := range data.Locales() {
langIndex, _ := language.CompactIndex(language.MustParse(l))
s := symbolMap[key{langIndex, ns}]
if s == nil {
continue
}
if _, ok := m[*s]; !ok {
m[*s] = len(symIndex)
sb.Add(s[:]...)
var x [NumSymbolTypes]byte
for i := SymDecimal; i < NumSymbolTypes; i++ {
x[i] = byte(sb.Index((*s)[i]))
}
symIndex = append(symIndex, x)
}
}
}
w.WriteVar("symIndex", symIndex)
w.WriteVar("symData", sb.Set())
// resolveSymbolIndex gets the index from the closest matching locale,
// including the locale itself.
resolveSymbolIndex := func(langIndex int, ns system) byte {
for {
if sym := symbolMap[key{langIndex, ns}]; sym != nil {
return byte(m[*sym])
}
if langIndex == 0 {
return 0 // und, latn
}
langIndex = int(internal.Parent[langIndex])
}
}
// Create an index with the symbols for each locale for the latn numbering
// system. If this is not the default, or the only one, for a locale, we
// will overwrite the value later.
var langToDefaults [language.NumCompactTags]byte
for _, l := range data.Locales() {
langIndex, _ := language.CompactIndex(language.MustParse(l))
langToDefaults[langIndex] = resolveSymbolIndex(langIndex, 0)
}
// Delete redundant entries.
for _, l := range data.Locales() {
langIndex, _ := language.CompactIndex(language.MustParse(l))
def := defaults[langIndex]
syms := symbolMap[key{langIndex, def}]
if syms == nil {
continue
}
for ns := system(0); ns < nNumberSystems; ns++ {
if ns == def {
continue
}
if altSyms, ok := symbolMap[key{langIndex, ns}]; ok && *altSyms == *syms {
delete(symbolMap, key{langIndex, ns})
}
}
}
// Create a sorted list of alternatives per language. This will only need to
// be referenced if a user specified an alternative numbering system.
var langToAlt []altSymData
for _, l := range data.Locales() {
langIndex, _ := language.CompactIndex(language.MustParse(l))
start := len(langToAlt)
if start > 0x7F {
log.Fatal("Number of alternative assignments > 0x7F")
}
// Create the entry for the default value.
def := defaults[langIndex]
langToAlt = append(langToAlt, altSymData{
compactTag: uint16(langIndex),
system: def,
symIndex: resolveSymbolIndex(langIndex, def),
})
for ns := system(0); ns < nNumberSystems; ns++ {
if def == ns {
continue
}
if sym := symbolMap[key{langIndex, ns}]; sym != nil {
langToAlt = append(langToAlt, altSymData{
compactTag: uint16(langIndex),
system: ns,
symIndex: resolveSymbolIndex(langIndex, ns),
})
}
}
if def == 0 && len(langToAlt) == start+1 {
// No additional data: erase the entry.
langToAlt = langToAlt[:start]
} else {
// Overwrite the entry in langToDefaults.
langToDefaults[langIndex] = 0x80 | byte(start)
}
}
w.WriteComment(`
langToDefaults maps a compact language index to the default numbering system
and default symbol set`)
w.WriteVar("langToDefaults", langToDefaults)
w.WriteComment(`
langToAlt is a list of numbering system and symbol set pairs, sorted and
marked by compact language index.`)
w.WriteVar("langToAlt", langToAlt)
}
// genFormats generates the lookup table for decimal, scientific and percent
// patterns.
//
// CLDR allows for patterns to be different per language for different numbering
// systems. In practice the patterns are set to be consistent for a language
// independent of the numbering system. genFormats verifies that no language
// deviates from this.
func genFormats(w *gen.CodeWriter, data *cldr.CLDR) {
d, err := cldr.ParseDraft(*draft)
if err != nil {
log.Fatalf("invalid draft level: %v", err)
}
// Fill the first slot with a dummy so we can identify unspecified tags.
formats := []number.Pattern{{}}
patterns := map[string]int{}
// TODO: It would be possible to eliminate two of these slices by having
// another indirection and store a reference to the combination of patterns.
decimal := make([]byte, language.NumCompactTags)
scientific := make([]byte, language.NumCompactTags)
percent := make([]byte, language.NumCompactTags)
for _, lang := range data.Locales() {
ldml := data.RawLDML(lang)
if ldml.Numbers == nil {
continue
}
langIndex, ok := language.CompactIndex(language.MustParse(lang))
if !ok {
log.Fatalf("No compact index for language %s", lang)
}
type patternSlice []*struct {
cldr.Common
Numbers string `xml:"numbers,attr"`
Count string `xml:"count,attr"`
}
add := func(name string, tags []byte, ps patternSlice) {
sl := cldr.MakeSlice(&ps)
sl.SelectDraft(d)
if len(ps) == 0 {
return
}
if len(ps) > 2 || len(ps) == 2 && ps[0] != ps[1] {
log.Fatalf("Inconsistent %d patterns for language %s", name, lang)
}
s := ps[0].Data()
index, ok := patterns[s]
if !ok {
nf, err := number.ParsePattern(s)
if err != nil {
log.Fatal(err)
}
index = len(formats)
patterns[s] = index
formats = append(formats, *nf)
}
tags[langIndex] = byte(index)
}
for _, df := range ldml.Numbers.DecimalFormats {
for _, l := range df.DecimalFormatLength {
if l.Type != "" {
continue
}
for _, f := range l.DecimalFormat {
add("decimal", decimal, f.Pattern)
}
}
}
for _, df := range ldml.Numbers.ScientificFormats {
for _, l := range df.ScientificFormatLength {
if l.Type != "" {
continue
}
for _, f := range l.ScientificFormat {
add("scientific", scientific, f.Pattern)
}
}
}
for _, df := range ldml.Numbers.PercentFormats {
for _, l := range df.PercentFormatLength {
if l.Type != "" {
continue
}
for _, f := range l.PercentFormat {
add("percent", percent, f.Pattern)
}
}
}
}
// Complete the parent tag array to reflect inheritance. An index of 0
// indicates an unspecified value.
for _, data := range [][]byte{decimal, scientific, percent} {
for i := range data {
p := uint16(i)
for ; data[p] == 0; p = internal.Parent[p] {
}
data[i] = data[p]
}
}
w.WriteVar("tagToDecimal", decimal)
w.WriteVar("tagToScientific", scientific)
w.WriteVar("tagToPercent", percent)
value := strings.Replace(fmt.Sprintf("%#v", formats), "number.", "", -1)
// Break up the lines. This won't give ideal perfect formatting, but it is
// better than one huge line.
value = strings.Replace(value, ", ", ",\n", -1)
fmt.Fprintf(w, "var formats = %s\n", value)
}