ipld-eth-server/vendor/go.uber.org/fx/app.go
Elizabeth Engelman 36533f7c3f Update vendor directory and make necessary code changes
Fixes for new geth version
2019-09-25 16:32:27 -05:00

609 lines
20 KiB
Go

// Copyright (c) 2019 Uber Technologies, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
package fx
import (
"bytes"
"context"
"errors"
"fmt"
"os"
"os/signal"
"reflect"
"strings"
"sync"
"syscall"
"time"
"go.uber.org/dig"
"go.uber.org/fx/internal/fxlog"
"go.uber.org/fx/internal/fxreflect"
"go.uber.org/fx/internal/lifecycle"
"go.uber.org/multierr"
)
// DefaultTimeout is the default timeout for starting or stopping an
// application. It can be configured with the StartTimeout and StopTimeout
// options.
const DefaultTimeout = 15 * time.Second
// An Option configures an App using the functional options paradigm
// popularized by Rob Pike. If you're unfamiliar with this style, see
// https://commandcenter.blogspot.com/2014/01/self-referential-functions-and-design.html.
type Option interface {
apply(*App)
}
type optionFunc func(*App)
func (f optionFunc) apply(app *App) { f(app) }
// Provide registers any number of constructor functions, teaching the
// application how to instantiate various types. The supplied constructor
// function(s) may depend on other types available in the application, must
// return one or more objects, and may return an error. For example:
//
// // Constructs type *C, depends on *A and *B.
// func(*A, *B) *C
//
// // Constructs type *C, depends on *A and *B, and indicates failure by
// // returning an error.
// func(*A, *B) (*C, error)
//
// // Constructs types *B and *C, depends on *A, and can fail.
// func(*A) (*B, *C, error)
//
// The order in which constructors are provided doesn't matter, and passing
// multiple Provide options appends to the application's collection of
// constructors. Constructors are called only if one or more of their returned
// types are needed, and their results are cached for reuse (so instances of a
// type are effectively singletons within an application). Taken together,
// these properties make it perfectly reasonable to Provide a large number of
// constructors even if only a fraction of them are used.
//
// See the documentation of the In and Out types for advanced features,
// including optional parameters and named instances.
func Provide(constructors ...interface{}) Option {
return provideOption(constructors)
}
type provideOption []interface{}
func (po provideOption) apply(app *App) {
app.provides = append(app.provides, po...)
}
func (po provideOption) String() string {
items := make([]string, len(po))
for i, c := range po {
items[i] = fxreflect.FuncName(c)
}
return fmt.Sprintf("fx.Provide(%s)", strings.Join(items, ", "))
}
// Invoke registers functions that are executed eagerly on application start.
// Arguments for these invocations are built using the constructors registered
// by Provide. Passing multiple Invoke options appends the new invocations to
// the application's existing list.
//
// Unlike constructors, invocations are always executed, and they're always
// run in order. Invocations may have any number of returned values. If the
// final returned object is an error, it's assumed to be a success indicator.
// All other returned values are discarded.
//
// Typically, invoked functions take a handful of high-level objects (whose
// constructors depend on lower-level objects) and introduce them to each
// other. This kick-starts the application by forcing it to instantiate a
// variety of types.
//
// To see an invocation in use, read through the package-level example. For
// advanced features, including optional parameters and named instances, see
// the documentation of the In and Out types.
func Invoke(funcs ...interface{}) Option {
return invokeOption(funcs)
}
type invokeOption []interface{}
func (io invokeOption) apply(app *App) {
app.invokes = append(app.invokes, io...)
}
func (io invokeOption) String() string {
items := make([]string, len(io))
for i, f := range io {
items[i] = fxreflect.FuncName(f)
}
return fmt.Sprintf("fx.Invoke(%s)", strings.Join(items, ", "))
}
// Error registers any number of errors with the application to short-circuit
// startup. If more than one error is given, the errors are combined into a
// single error.
//
// Similar to invocations, errors are applied in order. All Provide and Invoke
// options registered before or after an Error option will not be applied.
func Error(errs ...error) Option {
return optionFunc(func(app *App) {
app.err = multierr.Append(app.err, multierr.Combine(errs...))
})
}
// Options converts a collection of Options into a single Option. This allows
// packages to bundle sophisticated functionality into easy-to-use Fx modules.
// For example, a logging package might export a simple option like this:
//
// package logging
//
// var Module = fx.Provide(func() *log.Logger {
// return log.New(os.Stdout, "", 0)
// })
//
// A shared all-in-one microservice package could then use Options to bundle
// logging with similar metrics, tracing, and gRPC modules:
//
// package server
//
// var Module = fx.Options(
// logging.Module,
// metrics.Module,
// tracing.Module,
// grpc.Module,
// )
//
// Since this all-in-one module has a minimal API surface, it's easy to add
// new functionality to it without breaking existing users. Individual
// applications can take advantage of all this functionality with only one
// line of code:
//
// app := fx.New(server.Module)
//
// Use this pattern sparingly, since it limits the user's ability to customize
// their application.
func Options(opts ...Option) Option {
return optionGroup(opts)
}
type optionGroup []Option
func (og optionGroup) apply(app *App) {
for _, opt := range og {
opt.apply(app)
}
}
func (og optionGroup) String() string {
items := make([]string, len(og))
for i, opt := range og {
items[i] = fmt.Sprint(opt)
}
return fmt.Sprintf("fx.Options(%s)", strings.Join(items, ", "))
}
// StartTimeout changes the application's start timeout.
func StartTimeout(v time.Duration) Option {
return optionFunc(func(app *App) {
app.startTimeout = v
})
}
// StopTimeout changes the application's stop timeout.
func StopTimeout(v time.Duration) Option {
return optionFunc(func(app *App) {
app.stopTimeout = v
})
}
// Printer is the interface required by Fx's logging backend. It's implemented
// by most loggers, including the one bundled with the standard library.
type Printer interface {
Printf(string, ...interface{})
}
// Logger redirects the application's log output to the provided printer.
func Logger(p Printer) Option {
return optionFunc(func(app *App) {
app.logger = &fxlog.Logger{Printer: p}
app.lifecycle = &lifecycleWrapper{lifecycle.New(app.logger)}
})
}
// NopLogger disables the application's log output. Note that this makes some
// failures difficult to debug, since no errors are printed to console.
var NopLogger = Logger(nopLogger{})
type nopLogger struct{}
func (l nopLogger) Printf(string, ...interface{}) {
return
}
// An App is a modular application built around dependency injection. Most
// users will only need to use the New constructor and the all-in-one Run
// convenience method. In more unusual cases, users may need to use the Err,
// Start, Done, and Stop methods by hand instead of relying on Run.
//
// New creates and initializes an App. All applications begin with a
// constructor for the Lifecycle type already registered.
//
// In addition to that built-in functionality, users typically pass a handful
// of Provide options and one or more Invoke options. The Provide options
// teach the application how to instantiate a variety of types, and the Invoke
// options describe how to initialize the application.
//
// When created, the application immediately executes all the functions passed
// via Invoke options. To supply these functions with the parameters they
// need, the application looks for constructors that return the appropriate
// types; if constructors for any required types are missing or any
// invocations return an error, the application will fail to start (and Err
// will return a descriptive error message).
//
// Once all the invocations (and any required constructors) have been called,
// New returns and the application is ready to be started using Run or Start.
// On startup, it executes any OnStart hooks registered with its Lifecycle.
// OnStart hooks are executed one at a time, in order, and must all complete
// within a configurable deadline (by default, 15 seconds). For details on the
// order in which OnStart hooks are executed, see the documentation for the
// Start method.
//
// At this point, the application has successfully started up. If started via
// Run, it will continue operating until it receives a shutdown signal from
// Done (see the Done documentation for details); if started explicitly via
// Start, it will operate until the user calls Stop. On shutdown, OnStop hooks
// execute one at a time, in reverse order, and must all complete within a
// configurable deadline (again, 15 seconds by default).
type App struct {
err error
container *dig.Container
lifecycle *lifecycleWrapper
provides []interface{}
invokes []interface{}
logger *fxlog.Logger
startTimeout time.Duration
stopTimeout time.Duration
errorHooks []ErrorHandler
donesMu sync.RWMutex
dones []chan os.Signal
}
// ErrorHook registers error handlers that implement error handling functions.
// They are executed on invoke failures. Passing multiple ErrorHandlers appends
// the new handlers to the application's existing list.
func ErrorHook(funcs ...ErrorHandler) Option {
return errorHookOption(funcs)
}
// ErrorHandler handles Fx application startup errors.
type ErrorHandler interface {
HandleError(error)
}
type errorHookOption []ErrorHandler
func (eho errorHookOption) apply(app *App) {
app.errorHooks = append(app.errorHooks, eho...)
}
type errorHandlerList []ErrorHandler
func (ehl errorHandlerList) HandleError(err error) {
for _, eh := range ehl {
eh.HandleError(err)
}
}
// New creates and initializes an App, immediately executing any functions
// registered via Invoke options. See the documentation of the App struct for
// details on the application's initialization, startup, and shutdown logic.
func New(opts ...Option) *App {
logger := fxlog.New()
lc := &lifecycleWrapper{lifecycle.New(logger)}
app := &App{
container: dig.New(dig.DeferAcyclicVerification()),
lifecycle: lc,
logger: logger,
startTimeout: DefaultTimeout,
stopTimeout: DefaultTimeout,
}
for _, opt := range opts {
opt.apply(app)
}
for _, p := range app.provides {
app.provide(p)
}
app.provide(func() Lifecycle { return app.lifecycle })
app.provide(app.shutdowner)
app.provide(app.dotGraph)
if app.err != nil {
app.logger.Printf("Error after options were applied: %v", app.err)
return app
}
if err := app.executeInvokes(); err != nil {
app.err = err
if dig.CanVisualizeError(err) {
var b bytes.Buffer
dig.Visualize(app.container, &b, dig.VisualizeError(err))
err = errorWithGraph{
graph: b.String(),
err: err,
}
}
errorHandlerList(app.errorHooks).HandleError(err)
}
return app
}
// DotGraph contains a DOT language visualization of the dependency graph in
// an Fx application. It is provided in the container by default at
// initialization. On failure to build the dependency graph, it is attached
// to the error and if possible, colorized to highlight the root cause of the
// failure.
type DotGraph string
type errWithGraph interface {
Graph() DotGraph
}
type errorWithGraph struct {
graph string
err error
}
func (err errorWithGraph) Graph() DotGraph {
return DotGraph(err.graph)
}
func (err errorWithGraph) Error() string {
return err.err.Error()
}
// VisualizeError returns the visualization of the error if available.
func VisualizeError(err error) (string, error) {
if e, ok := err.(errWithGraph); ok && e.Graph() != "" {
return string(e.Graph()), nil
}
return "", errors.New("unable to visualize error")
}
// Run starts the application, blocks on the signals channel, and then
// gracefully shuts the application down. It uses DefaultTimeout to set a
// deadline for application startup and shutdown, unless the user has
// configured different timeouts with the StartTimeout or StopTimeout options.
// It's designed to make typical applications simple to run.
//
// However, all of Run's functionality is implemented in terms of the exported
// Start, Done, and Stop methods. Applications with more specialized needs
// can use those methods directly instead of relying on Run.
func (app *App) Run() {
app.run(app.Done())
}
// Err returns any error encountered during New's initialization. See the
// documentation of the New method for details, but typical errors include
// missing constructors, circular dependencies, constructor errors, and
// invocation errors.
//
// Most users won't need to use this method, since both Run and Start
// short-circuit if initialization failed.
func (app *App) Err() error {
return app.err
}
// Start kicks off all long-running goroutines, like network servers or
// message queue consumers. It does this by interacting with the application's
// Lifecycle.
//
// By taking a dependency on the Lifecycle type, some of the user-supplied
// functions called during initialization may have registered start and stop
// hooks. Because initialization calls constructors serially and in dependency
// order, hooks are naturally registered in dependency order too.
//
// Start executes all OnStart hooks registered with the application's
// Lifecycle, one at a time and in order. This ensures that each constructor's
// start hooks aren't executed until all its dependencies' start hooks
// complete. If any of the start hooks return an error, Start short-circuits,
// calls Stop, and returns the inciting error.
//
// Note that Start short-circuits immediately if the New constructor
// encountered any errors in application initialization.
func (app *App) Start(ctx context.Context) error {
return withTimeout(ctx, app.start)
}
// Stop gracefully stops the application. It executes any registered OnStop
// hooks in reverse order, so that each constructor's stop hooks are called
// before its dependencies' stop hooks.
//
// If the application didn't start cleanly, only hooks whose OnStart phase was
// called are executed. However, all those hooks are executed, even if some
// fail.
func (app *App) Stop(ctx context.Context) error {
return withTimeout(ctx, app.lifecycle.Stop)
}
// Done returns a channel of signals to block on after starting the
// application. Applications listen for the SIGINT and SIGTERM signals; during
// development, users can send the application SIGTERM by pressing Ctrl-C in
// the same terminal as the running process.
//
// Alternatively, a signal can be broadcast to all done channels manually by
// using the Shutdown functionality (see the Shutdowner documentation for details).
func (app *App) Done() <-chan os.Signal {
c := make(chan os.Signal, 1)
signal.Notify(c, syscall.SIGINT, syscall.SIGTERM)
app.donesMu.Lock()
app.dones = append(app.dones, c)
app.donesMu.Unlock()
return c
}
// StartTimeout returns the configured startup timeout. Apps default to using
// DefaultTimeout, but users can configure this behavior using the
// StartTimeout option.
func (app *App) StartTimeout() time.Duration {
return app.startTimeout
}
// StopTimeout returns the configured shutdown timeout. Apps default to using
// DefaultTimeout, but users can configure this behavior using the StopTimeout
// option.
func (app *App) StopTimeout() time.Duration {
return app.stopTimeout
}
func (app *App) dotGraph() (DotGraph, error) {
var b bytes.Buffer
err := dig.Visualize(app.container, &b)
return DotGraph(b.String()), err
}
func (app *App) provide(constructor interface{}) {
if app.err != nil {
return
}
app.logger.PrintProvide(constructor)
if _, ok := constructor.(Option); ok {
app.err = fmt.Errorf("fx.Option should be passed to fx.New directly, not to fx.Provide: fx.Provide received %v", constructor)
return
}
if a, ok := constructor.(Annotated); ok {
var opts []dig.ProvideOption
switch {
case len(a.Group) > 0 && len(a.Name) > 0:
app.err = fmt.Errorf("fx.Annotate may not specify both name and group for %v", constructor)
return
case len(a.Name) > 0:
opts = append(opts, dig.Name(a.Name))
case len(a.Group) > 0:
opts = append(opts, dig.Group(a.Group))
}
if err := app.container.Provide(a.Target, opts...); err != nil {
app.err = err
}
return
}
if reflect.TypeOf(constructor).Kind() == reflect.Func {
ft := reflect.ValueOf(constructor).Type()
for i := 0; i < ft.NumOut(); i++ {
t := ft.Out(i)
if t == reflect.TypeOf(Annotated{}) {
app.err = fmt.Errorf("fx.Annotated should be passed to fx.Provide directly, it should not be returned by the constructor: fx.Provide received %v", constructor)
return
}
}
}
if err := app.container.Provide(constructor); err != nil {
app.err = err
}
}
// Execute invokes in order supplied to New, returning the first error
// encountered.
func (app *App) executeInvokes() error {
// TODO: consider taking a context to limit the time spent running invocations.
var err error
for _, fn := range app.invokes {
fname := fxreflect.FuncName(fn)
app.logger.Printf("INVOKE\t\t%s", fname)
if _, ok := fn.(Option); ok {
err = fmt.Errorf("fx.Option should be passed to fx.New directly, not to fx.Invoke: fx.Invoke received %v", fn)
} else {
err = app.container.Invoke(fn)
}
if err != nil {
app.logger.Printf("Error during %q invoke: %v", fname, err)
break
}
}
return err
}
func (app *App) run(done <-chan os.Signal) {
startCtx, cancel := context.WithTimeout(context.Background(), app.StartTimeout())
defer cancel()
if err := app.Start(startCtx); err != nil {
app.logger.Fatalf("ERROR\t\tFailed to start: %v", err)
}
app.logger.PrintSignal(<-done)
stopCtx, cancel := context.WithTimeout(context.Background(), app.StopTimeout())
defer cancel()
if err := app.Stop(stopCtx); err != nil {
app.logger.Fatalf("ERROR\t\tFailed to stop cleanly: %v", err)
}
}
func (app *App) start(ctx context.Context) error {
if app.err != nil {
// Some provides failed, short-circuit immediately.
return app.err
}
// Attempt to start cleanly.
if err := app.lifecycle.Start(ctx); err != nil {
// Start failed, roll back.
app.logger.Printf("ERROR\t\tStart failed, rolling back: %v", err)
if stopErr := app.lifecycle.Stop(ctx); stopErr != nil {
app.logger.Printf("ERROR\t\tCouldn't rollback cleanly: %v", stopErr)
return multierr.Append(err, stopErr)
}
return err
}
app.logger.Printf("RUNNING")
return nil
}
func withTimeout(ctx context.Context, f func(context.Context) error) error {
c := make(chan error, 1)
go func() { c <- f(ctx) }()
select {
case <-ctx.Done():
return ctx.Err()
case err := <-c:
return err
}
}