ipld-eth-server/vendor/github.com/ipfs/go-bitswap/decision/engine.go
Elizabeth Engelman 36533f7c3f Update vendor directory and make necessary code changes
Fixes for new geth version
2019-09-25 16:32:27 -05:00

425 lines
12 KiB
Go

// Package decision implements the decision engine for the bitswap service.
package decision
import (
"context"
"fmt"
"sync"
"time"
"github.com/google/uuid"
bsmsg "github.com/ipfs/go-bitswap/message"
wl "github.com/ipfs/go-bitswap/wantlist"
blocks "github.com/ipfs/go-block-format"
cid "github.com/ipfs/go-cid"
bstore "github.com/ipfs/go-ipfs-blockstore"
logging "github.com/ipfs/go-log"
"github.com/ipfs/go-peertaskqueue"
"github.com/ipfs/go-peertaskqueue/peertask"
peer "github.com/libp2p/go-libp2p-core/peer"
)
// TODO consider taking responsibility for other types of requests. For
// example, there could be a |cancelQueue| for all of the cancellation
// messages that need to go out. There could also be a |wantlistQueue| for
// the local peer's wantlists. Alternatively, these could all be bundled
// into a single, intelligent global queue that efficiently
// batches/combines and takes all of these into consideration.
//
// Right now, messages go onto the network for four reasons:
// 1. an initial `sendwantlist` message to a provider of the first key in a
// request
// 2. a periodic full sweep of `sendwantlist` messages to all providers
// 3. upon receipt of blocks, a `cancel` message to all peers
// 4. draining the priority queue of `blockrequests` from peers
//
// Presently, only `blockrequests` are handled by the decision engine.
// However, there is an opportunity to give it more responsibility! If the
// decision engine is given responsibility for all of the others, it can
// intelligently decide how to combine requests efficiently.
//
// Some examples of what would be possible:
//
// * when sending out the wantlists, include `cancel` requests
// * when handling `blockrequests`, include `sendwantlist` and `cancel` as
// appropriate
// * when handling `cancel`, if we recently received a wanted block from a
// peer, include a partial wantlist that contains a few other high priority
// blocks
//
// In a sense, if we treat the decision engine as a black box, it could do
// whatever it sees fit to produce desired outcomes (get wanted keys
// quickly, maintain good relationships with peers, etc).
var log = logging.Logger("engine")
const (
// outboxChanBuffer must be 0 to prevent stale messages from being sent
outboxChanBuffer = 0
// maxMessageSize is the maximum size of the batched payload
maxMessageSize = 512 * 1024
// tagPrefix is the tag given to peers associated an engine
tagPrefix = "bs-engine-%s"
// tagWeight is the default weight for peers associated with an engine
tagWeight = 5
)
// Envelope contains a message for a Peer.
type Envelope struct {
// Peer is the intended recipient.
Peer peer.ID
// Message is the payload.
Message bsmsg.BitSwapMessage
// A callback to notify the decision queue that the task is complete
Sent func()
}
// PeerTagger covers the methods on the connection manager used by the decision
// engine to tag peers
type PeerTagger interface {
TagPeer(peer.ID, string, int)
UntagPeer(p peer.ID, tag string)
}
// Engine manages sending requested blocks to peers.
type Engine struct {
// peerRequestQueue is a priority queue of requests received from peers.
// Requests are popped from the queue, packaged up, and placed in the
// outbox.
peerRequestQueue *peertaskqueue.PeerTaskQueue
// FIXME it's a bit odd for the client and the worker to both share memory
// (both modify the peerRequestQueue) and also to communicate over the
// workSignal channel. consider sending requests over the channel and
// allowing the worker to have exclusive access to the peerRequestQueue. In
// that case, no lock would be required.
workSignal chan struct{}
// outbox contains outgoing messages to peers. This is owned by the
// taskWorker goroutine
outbox chan (<-chan *Envelope)
bs bstore.Blockstore
peerTagger PeerTagger
tag string
lock sync.Mutex // protects the fields immediatly below
// ledgerMap lists Ledgers by their Partner key.
ledgerMap map[peer.ID]*ledger
ticker *time.Ticker
}
// NewEngine creates a new block sending engine for the given block store
func NewEngine(ctx context.Context, bs bstore.Blockstore, peerTagger PeerTagger) *Engine {
e := &Engine{
ledgerMap: make(map[peer.ID]*ledger),
bs: bs,
peerTagger: peerTagger,
outbox: make(chan (<-chan *Envelope), outboxChanBuffer),
workSignal: make(chan struct{}, 1),
ticker: time.NewTicker(time.Millisecond * 100),
}
e.tag = fmt.Sprintf(tagPrefix, uuid.New().String())
e.peerRequestQueue = peertaskqueue.New(peertaskqueue.OnPeerAddedHook(e.onPeerAdded), peertaskqueue.OnPeerRemovedHook(e.onPeerRemoved))
go e.taskWorker(ctx)
return e
}
func (e *Engine) onPeerAdded(p peer.ID) {
e.peerTagger.TagPeer(p, e.tag, tagWeight)
}
func (e *Engine) onPeerRemoved(p peer.ID) {
e.peerTagger.UntagPeer(p, e.tag)
}
// WantlistForPeer returns the currently understood want list for a given peer
func (e *Engine) WantlistForPeer(p peer.ID) (out []wl.Entry) {
partner := e.findOrCreate(p)
partner.lk.Lock()
defer partner.lk.Unlock()
return partner.wantList.SortedEntries()
}
// LedgerForPeer returns aggregated data about blocks swapped and communication
// with a given peer.
func (e *Engine) LedgerForPeer(p peer.ID) *Receipt {
ledger := e.findOrCreate(p)
ledger.lk.Lock()
defer ledger.lk.Unlock()
return &Receipt{
Peer: ledger.Partner.String(),
Value: ledger.Accounting.Value(),
Sent: ledger.Accounting.BytesSent,
Recv: ledger.Accounting.BytesRecv,
Exchanged: ledger.ExchangeCount(),
}
}
func (e *Engine) taskWorker(ctx context.Context) {
defer close(e.outbox) // because taskWorker uses the channel exclusively
for {
oneTimeUse := make(chan *Envelope, 1) // buffer to prevent blocking
select {
case <-ctx.Done():
return
case e.outbox <- oneTimeUse:
}
// receiver is ready for an outoing envelope. let's prepare one. first,
// we must acquire a task from the PQ...
envelope, err := e.nextEnvelope(ctx)
if err != nil {
close(oneTimeUse)
return // ctx cancelled
}
oneTimeUse <- envelope // buffered. won't block
close(oneTimeUse)
}
}
// nextEnvelope runs in the taskWorker goroutine. Returns an error if the
// context is cancelled before the next Envelope can be created.
func (e *Engine) nextEnvelope(ctx context.Context) (*Envelope, error) {
for {
nextTask := e.peerRequestQueue.PopBlock()
for nextTask == nil {
select {
case <-ctx.Done():
return nil, ctx.Err()
case <-e.workSignal:
nextTask = e.peerRequestQueue.PopBlock()
case <-e.ticker.C:
e.peerRequestQueue.ThawRound()
nextTask = e.peerRequestQueue.PopBlock()
}
}
// with a task in hand, we're ready to prepare the envelope...
msg := bsmsg.New(true)
for _, entry := range nextTask.Tasks {
block, err := e.bs.Get(entry.Identifier.(cid.Cid))
if err != nil {
log.Errorf("tried to execute a task and errored fetching block: %s", err)
continue
}
msg.AddBlock(block)
}
if msg.Empty() {
// If we don't have the block, don't hold that against the peer
// make sure to update that the task has been 'completed'
nextTask.Done(nextTask.Tasks)
continue
}
return &Envelope{
Peer: nextTask.Target,
Message: msg,
Sent: func() {
nextTask.Done(nextTask.Tasks)
select {
case e.workSignal <- struct{}{}:
// work completing may mean that our queue will provide new
// work to be done.
default:
}
},
}, nil
}
}
// Outbox returns a channel of one-time use Envelope channels.
func (e *Engine) Outbox() <-chan (<-chan *Envelope) {
return e.outbox
}
// Peers returns a slice of Peers with whom the local node has active sessions.
func (e *Engine) Peers() []peer.ID {
e.lock.Lock()
defer e.lock.Unlock()
response := make([]peer.ID, 0, len(e.ledgerMap))
for _, ledger := range e.ledgerMap {
response = append(response, ledger.Partner)
}
return response
}
// MessageReceived performs book-keeping. Returns error if passed invalid
// arguments.
func (e *Engine) MessageReceived(p peer.ID, m bsmsg.BitSwapMessage) {
if m.Empty() {
log.Debugf("received empty message from %s", p)
}
newWorkExists := false
defer func() {
if newWorkExists {
e.signalNewWork()
}
}()
l := e.findOrCreate(p)
l.lk.Lock()
defer l.lk.Unlock()
if m.Full() {
l.wantList = wl.New()
}
var msgSize int
var activeEntries []peertask.Task
for _, entry := range m.Wantlist() {
if entry.Cancel {
log.Debugf("%s cancel %s", p, entry.Cid)
l.CancelWant(entry.Cid)
e.peerRequestQueue.Remove(entry.Cid, p)
} else {
log.Debugf("wants %s - %d", entry.Cid, entry.Priority)
l.Wants(entry.Cid, entry.Priority)
blockSize, err := e.bs.GetSize(entry.Cid)
if err != nil {
if err == bstore.ErrNotFound {
continue
}
log.Error(err)
} else {
// we have the block
newWorkExists = true
if msgSize+blockSize > maxMessageSize {
e.peerRequestQueue.PushBlock(p, activeEntries...)
activeEntries = []peertask.Task{}
msgSize = 0
}
activeEntries = append(activeEntries, peertask.Task{Identifier: entry.Cid, Priority: entry.Priority})
msgSize += blockSize
}
}
}
if len(activeEntries) > 0 {
e.peerRequestQueue.PushBlock(p, activeEntries...)
}
for _, block := range m.Blocks() {
log.Debugf("got block %s %d bytes", block, len(block.RawData()))
l.ReceivedBytes(len(block.RawData()))
}
}
func (e *Engine) addBlock(block blocks.Block) {
work := false
for _, l := range e.ledgerMap {
l.lk.Lock()
if entry, ok := l.WantListContains(block.Cid()); ok {
e.peerRequestQueue.PushBlock(l.Partner, peertask.Task{
Identifier: entry.Cid,
Priority: entry.Priority,
})
work = true
}
l.lk.Unlock()
}
if work {
e.signalNewWork()
}
}
// AddBlock is called to when a new block is received and added to a block store
// meaning there may be peers who want that block that we should send it to.
func (e *Engine) AddBlock(block blocks.Block) {
e.lock.Lock()
defer e.lock.Unlock()
e.addBlock(block)
}
// TODO add contents of m.WantList() to my local wantlist? NB: could introduce
// race conditions where I send a message, but MessageSent gets handled after
// MessageReceived. The information in the local wantlist could become
// inconsistent. Would need to ensure that Sends and acknowledgement of the
// send happen atomically
// MessageSent is called when a message has successfully been sent out, to record
// changes.
func (e *Engine) MessageSent(p peer.ID, m bsmsg.BitSwapMessage) {
l := e.findOrCreate(p)
l.lk.Lock()
defer l.lk.Unlock()
for _, block := range m.Blocks() {
l.SentBytes(len(block.RawData()))
l.wantList.Remove(block.Cid())
e.peerRequestQueue.Remove(block.Cid(), p)
}
}
// PeerConnected is called when a new peer connects, meaning we should start
// sending blocks.
func (e *Engine) PeerConnected(p peer.ID) {
e.lock.Lock()
defer e.lock.Unlock()
l, ok := e.ledgerMap[p]
if !ok {
l = newLedger(p)
e.ledgerMap[p] = l
}
l.lk.Lock()
defer l.lk.Unlock()
l.ref++
}
// PeerDisconnected is called when a peer disconnects.
func (e *Engine) PeerDisconnected(p peer.ID) {
e.lock.Lock()
defer e.lock.Unlock()
l, ok := e.ledgerMap[p]
if !ok {
return
}
l.lk.Lock()
defer l.lk.Unlock()
l.ref--
if l.ref <= 0 {
delete(e.ledgerMap, p)
}
}
func (e *Engine) numBytesSentTo(p peer.ID) uint64 {
// NB not threadsafe
return e.findOrCreate(p).Accounting.BytesSent
}
func (e *Engine) numBytesReceivedFrom(p peer.ID) uint64 {
// NB not threadsafe
return e.findOrCreate(p).Accounting.BytesRecv
}
// ledger lazily instantiates a ledger
func (e *Engine) findOrCreate(p peer.ID) *ledger {
e.lock.Lock()
defer e.lock.Unlock()
l, ok := e.ledgerMap[p]
if !ok {
l = newLedger(p)
e.ledgerMap[p] = l
}
return l
}
func (e *Engine) signalNewWork() {
// Signal task generation to restart (if stopped!)
select {
case e.workSignal <- struct{}{}:
default:
}
}