5a652190d9
* Upgrade go-ethereum to v1.8 * Add Node Info for parity nodes * Upgrade start_private_blockchain to use v1.8
211 lines
10 KiB
Go
211 lines
10 KiB
Go
// Copyright 2016 The go-ethereum Authors
|
||
// This file is part of the go-ethereum library.
|
||
//
|
||
// The go-ethereum library is free software: you can redistribute it and/or modify
|
||
// it under the terms of the GNU Lesser General Public License as published by
|
||
// the Free Software Foundation, either version 3 of the License, or
|
||
// (at your option) any later version.
|
||
//
|
||
// The go-ethereum library is distributed in the hope that it will be useful,
|
||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
// GNU Lesser General Public License for more details.
|
||
//
|
||
// You should have received a copy of the GNU Lesser General Public License
|
||
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
||
|
||
// Package ethereum defines interfaces for interacting with Ethereum.
|
||
package ethereum
|
||
|
||
import (
|
||
"context"
|
||
"errors"
|
||
"math/big"
|
||
|
||
"github.com/ethereum/go-ethereum/common"
|
||
"github.com/ethereum/go-ethereum/core/types"
|
||
)
|
||
|
||
// NotFound is returned by API methods if the requested item does not exist.
|
||
var NotFound = errors.New("not found")
|
||
|
||
// TODO: move subscription to package event
|
||
|
||
// Subscription represents an event subscription where events are
|
||
// delivered on a data channel.
|
||
type Subscription interface {
|
||
// Unsubscribe cancels the sending of events to the data channel
|
||
// and closes the error channel.
|
||
Unsubscribe()
|
||
// Err returns the subscription error channel. The error channel receives
|
||
// a value if there is an issue with the subscription (e.g. the network connection
|
||
// delivering the events has been closed). Only one value will ever be sent.
|
||
// The error channel is closed by Unsubscribe.
|
||
Err() <-chan error
|
||
}
|
||
|
||
// ChainReader provides access to the blockchain. The methods in this interface access raw
|
||
// data from either the canonical chain (when requesting by block number) or any
|
||
// blockchain fork that was previously downloaded and processed by the node. The block
|
||
// number argument can be nil to select the latest canonical block. Reading block headers
|
||
// should be preferred over full blocks whenever possible.
|
||
//
|
||
// The returned error is NotFound if the requested item does not exist.
|
||
type ChainReader interface {
|
||
BlockByHash(ctx context.Context, hash common.Hash) (*types.Block, error)
|
||
BlockByNumber(ctx context.Context, number *big.Int) (*types.Block, error)
|
||
HeaderByHash(ctx context.Context, hash common.Hash) (*types.Header, error)
|
||
HeaderByNumber(ctx context.Context, number *big.Int) (*types.Header, error)
|
||
TransactionCount(ctx context.Context, blockHash common.Hash) (uint, error)
|
||
TransactionInBlock(ctx context.Context, blockHash common.Hash, index uint) (*types.Transaction, error)
|
||
|
||
// This method subscribes to notifications about changes of the head block of
|
||
// the canonical chain.
|
||
SubscribeNewHead(ctx context.Context, ch chan<- *types.Header) (Subscription, error)
|
||
}
|
||
|
||
// TransactionReader provides access to past transactions and their receipts.
|
||
// Implementations may impose arbitrary restrictions on the transactions and receipts that
|
||
// can be retrieved. Historic transactions may not be available.
|
||
//
|
||
// Avoid relying on this interface if possible. Contract logs (through the LogFilterer
|
||
// interface) are more reliable and usually safer in the presence of chain
|
||
// reorganisations.
|
||
//
|
||
// The returned error is NotFound if the requested item does not exist.
|
||
type TransactionReader interface {
|
||
// TransactionByHash checks the pool of pending transactions in addition to the
|
||
// blockchain. The isPending return value indicates whether the transaction has been
|
||
// mined yet. Note that the transaction may not be part of the canonical chain even if
|
||
// it's not pending.
|
||
TransactionByHash(ctx context.Context, txHash common.Hash) (tx *types.Transaction, isPending bool, err error)
|
||
// TransactionReceipt returns the receipt of a mined transaction. Note that the
|
||
// transaction may not be included in the current canonical chain even if a receipt
|
||
// exists.
|
||
TransactionReceipt(ctx context.Context, txHash common.Hash) (*types.Receipt, error)
|
||
}
|
||
|
||
// ChainStateReader wraps access to the state trie of the canonical blockchain. Note that
|
||
// implementations of the interface may be unable to return state values for old blocks.
|
||
// In many cases, using CallContract can be preferable to reading raw contract storage.
|
||
type ChainStateReader interface {
|
||
BalanceAt(ctx context.Context, account common.Address, blockNumber *big.Int) (*big.Int, error)
|
||
StorageAt(ctx context.Context, account common.Address, key common.Hash, blockNumber *big.Int) ([]byte, error)
|
||
CodeAt(ctx context.Context, account common.Address, blockNumber *big.Int) ([]byte, error)
|
||
NonceAt(ctx context.Context, account common.Address, blockNumber *big.Int) (uint64, error)
|
||
}
|
||
|
||
// SyncProgress gives progress indications when the node is synchronising with
|
||
// the Ethereum network.
|
||
type SyncProgress struct {
|
||
StartingBlock uint64 // Block number where sync began
|
||
CurrentBlock uint64 // Current block number where sync is at
|
||
HighestBlock uint64 // Highest alleged block number in the chain
|
||
PulledStates uint64 // Number of state trie entries already downloaded
|
||
KnownStates uint64 // Total number of state trie entries known about
|
||
}
|
||
|
||
// ChainSyncReader wraps access to the node's current sync status. If there's no
|
||
// sync currently running, it returns nil.
|
||
type ChainSyncReader interface {
|
||
SyncProgress(ctx context.Context) (*SyncProgress, error)
|
||
}
|
||
|
||
// CallMsg contains parameters for contract calls.
|
||
type CallMsg struct {
|
||
From common.Address // the sender of the 'transaction'
|
||
To *common.Address // the destination contract (nil for contract creation)
|
||
Gas uint64 // if 0, the call executes with near-infinite gas
|
||
GasPrice *big.Int // wei <-> gas exchange ratio
|
||
Value *big.Int // amount of wei sent along with the call
|
||
Data []byte // input data, usually an ABI-encoded contract method invocation
|
||
}
|
||
|
||
// A ContractCaller provides contract calls, essentially transactions that are executed by
|
||
// the EVM but not mined into the blockchain. ContractCall is a low-level method to
|
||
// execute such calls. For applications which are structured around specific contracts,
|
||
// the abigen tool provides a nicer, properly typed way to perform calls.
|
||
type ContractCaller interface {
|
||
CallContract(ctx context.Context, call CallMsg, blockNumber *big.Int) ([]byte, error)
|
||
}
|
||
|
||
// FilterQuery contains options for contract log filtering.
|
||
type FilterQuery struct {
|
||
FromBlock *big.Int // beginning of the queried range, nil means genesis block
|
||
ToBlock *big.Int // end of the range, nil means latest block
|
||
Addresses []common.Address // restricts matches to events created by specific contracts
|
||
|
||
// The Topic list restricts matches to particular event topics. Each event has a list
|
||
// of topics. Topics matches a prefix of that list. An empty element slice matches any
|
||
// topic. Non-empty elements represent an alternative that matches any of the
|
||
// contained topics.
|
||
//
|
||
// Examples:
|
||
// {} or nil matches any topic list
|
||
// {{A}} matches topic A in first position
|
||
// {{}, {B}} matches any topic in first position, B in second position
|
||
// {{A}}, {B}} matches topic A in first position, B in second position
|
||
// {{A, B}}, {C, D}} matches topic (A OR B) in first position, (C OR D) in second position
|
||
Topics [][]common.Hash
|
||
}
|
||
|
||
// LogFilterer provides access to contract log events using a one-off query or continuous
|
||
// event subscription.
|
||
//
|
||
// Logs received through a streaming query subscription may have Removed set to true,
|
||
// indicating that the log was reverted due to a chain reorganisation.
|
||
type LogFilterer interface {
|
||
FilterLogs(ctx context.Context, q FilterQuery) ([]types.Log, error)
|
||
SubscribeFilterLogs(ctx context.Context, q FilterQuery, ch chan<- types.Log) (Subscription, error)
|
||
}
|
||
|
||
// TransactionSender wraps transaction sending. The SendTransaction method injects a
|
||
// signed transaction into the pending transaction pool for execution. If the transaction
|
||
// was a contract creation, the TransactionReceipt method can be used to retrieve the
|
||
// contract address after the transaction has been mined.
|
||
//
|
||
// The transaction must be signed and have a valid nonce to be included. Consumers of the
|
||
// API can use package accounts to maintain local private keys and need can retrieve the
|
||
// next available nonce using PendingNonceAt.
|
||
type TransactionSender interface {
|
||
SendTransaction(ctx context.Context, tx *types.Transaction) error
|
||
}
|
||
|
||
// GasPricer wraps the gas price oracle, which monitors the blockchain to determine the
|
||
// optimal gas price given current fee market conditions.
|
||
type GasPricer interface {
|
||
SuggestGasPrice(ctx context.Context) (*big.Int, error)
|
||
}
|
||
|
||
// A PendingStateReader provides access to the pending state, which is the result of all
|
||
// known executable transactions which have not yet been included in the blockchain. It is
|
||
// commonly used to display the result of ’unconfirmed’ actions (e.g. wallet value
|
||
// transfers) initiated by the user. The PendingNonceAt operation is a good way to
|
||
// retrieve the next available transaction nonce for a specific account.
|
||
type PendingStateReader interface {
|
||
PendingBalanceAt(ctx context.Context, account common.Address) (*big.Int, error)
|
||
PendingStorageAt(ctx context.Context, account common.Address, key common.Hash) ([]byte, error)
|
||
PendingCodeAt(ctx context.Context, account common.Address) ([]byte, error)
|
||
PendingNonceAt(ctx context.Context, account common.Address) (uint64, error)
|
||
PendingTransactionCount(ctx context.Context) (uint, error)
|
||
}
|
||
|
||
// PendingContractCaller can be used to perform calls against the pending state.
|
||
type PendingContractCaller interface {
|
||
PendingCallContract(ctx context.Context, call CallMsg) ([]byte, error)
|
||
}
|
||
|
||
// GasEstimator wraps EstimateGas, which tries to estimate the gas needed to execute a
|
||
// specific transaction based on the pending state. There is no guarantee that this is the
|
||
// true gas limit requirement as other transactions may be added or removed by miners, but
|
||
// it should provide a basis for setting a reasonable default.
|
||
type GasEstimator interface {
|
||
EstimateGas(ctx context.Context, call CallMsg) (uint64, error)
|
||
}
|
||
|
||
// A PendingStateEventer provides access to real time notifications about changes to the
|
||
// pending state.
|
||
type PendingStateEventer interface {
|
||
SubscribePendingTransactions(ctx context.Context, ch chan<- *types.Transaction) (Subscription, error)
|
||
}
|