d41209d293
* Bump geth to 1.8.20 for Constantinople * Fix conflicting import/toml source for logrus
743 lines
20 KiB
Go
743 lines
20 KiB
Go
// Copyright 2015 The go-ethereum Authors
|
|
// This file is part of the go-ethereum library.
|
|
//
|
|
// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU Lesser General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// The go-ethereum library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
// Package discover implements the Node Discovery Protocol.
|
|
//
|
|
// The Node Discovery protocol provides a way to find RLPx nodes that
|
|
// can be connected to. It uses a Kademlia-like protocol to maintain a
|
|
// distributed database of the IDs and endpoints of all listening
|
|
// nodes.
|
|
package discover
|
|
|
|
import (
|
|
"crypto/ecdsa"
|
|
crand "crypto/rand"
|
|
"encoding/binary"
|
|
"fmt"
|
|
mrand "math/rand"
|
|
"net"
|
|
"sort"
|
|
"sync"
|
|
"time"
|
|
|
|
"github.com/ethereum/go-ethereum/common"
|
|
"github.com/ethereum/go-ethereum/crypto"
|
|
"github.com/ethereum/go-ethereum/log"
|
|
"github.com/ethereum/go-ethereum/p2p/enode"
|
|
"github.com/ethereum/go-ethereum/p2p/netutil"
|
|
)
|
|
|
|
const (
|
|
alpha = 3 // Kademlia concurrency factor
|
|
bucketSize = 16 // Kademlia bucket size
|
|
maxReplacements = 10 // Size of per-bucket replacement list
|
|
|
|
// We keep buckets for the upper 1/15 of distances because
|
|
// it's very unlikely we'll ever encounter a node that's closer.
|
|
hashBits = len(common.Hash{}) * 8
|
|
nBuckets = hashBits / 15 // Number of buckets
|
|
bucketMinDistance = hashBits - nBuckets // Log distance of closest bucket
|
|
|
|
// IP address limits.
|
|
bucketIPLimit, bucketSubnet = 2, 24 // at most 2 addresses from the same /24
|
|
tableIPLimit, tableSubnet = 10, 24
|
|
|
|
maxFindnodeFailures = 5 // Nodes exceeding this limit are dropped
|
|
refreshInterval = 30 * time.Minute
|
|
revalidateInterval = 10 * time.Second
|
|
copyNodesInterval = 30 * time.Second
|
|
seedMinTableTime = 5 * time.Minute
|
|
seedCount = 30
|
|
seedMaxAge = 5 * 24 * time.Hour
|
|
)
|
|
|
|
type Table struct {
|
|
mutex sync.Mutex // protects buckets, bucket content, nursery, rand
|
|
buckets [nBuckets]*bucket // index of known nodes by distance
|
|
nursery []*node // bootstrap nodes
|
|
rand *mrand.Rand // source of randomness, periodically reseeded
|
|
ips netutil.DistinctNetSet
|
|
|
|
db *enode.DB // database of known nodes
|
|
net transport
|
|
refreshReq chan chan struct{}
|
|
initDone chan struct{}
|
|
closeReq chan struct{}
|
|
closed chan struct{}
|
|
|
|
nodeAddedHook func(*node) // for testing
|
|
}
|
|
|
|
// transport is implemented by the UDP transport.
|
|
// it is an interface so we can test without opening lots of UDP
|
|
// sockets and without generating a private key.
|
|
type transport interface {
|
|
self() *enode.Node
|
|
ping(enode.ID, *net.UDPAddr) error
|
|
findnode(toid enode.ID, addr *net.UDPAddr, target encPubkey) ([]*node, error)
|
|
close()
|
|
}
|
|
|
|
// bucket contains nodes, ordered by their last activity. the entry
|
|
// that was most recently active is the first element in entries.
|
|
type bucket struct {
|
|
entries []*node // live entries, sorted by time of last contact
|
|
replacements []*node // recently seen nodes to be used if revalidation fails
|
|
ips netutil.DistinctNetSet
|
|
}
|
|
|
|
func newTable(t transport, db *enode.DB, bootnodes []*enode.Node) (*Table, error) {
|
|
tab := &Table{
|
|
net: t,
|
|
db: db,
|
|
refreshReq: make(chan chan struct{}),
|
|
initDone: make(chan struct{}),
|
|
closeReq: make(chan struct{}),
|
|
closed: make(chan struct{}),
|
|
rand: mrand.New(mrand.NewSource(0)),
|
|
ips: netutil.DistinctNetSet{Subnet: tableSubnet, Limit: tableIPLimit},
|
|
}
|
|
if err := tab.setFallbackNodes(bootnodes); err != nil {
|
|
return nil, err
|
|
}
|
|
for i := range tab.buckets {
|
|
tab.buckets[i] = &bucket{
|
|
ips: netutil.DistinctNetSet{Subnet: bucketSubnet, Limit: bucketIPLimit},
|
|
}
|
|
}
|
|
tab.seedRand()
|
|
tab.loadSeedNodes()
|
|
|
|
go tab.loop()
|
|
return tab, nil
|
|
}
|
|
|
|
func (tab *Table) self() *enode.Node {
|
|
return tab.net.self()
|
|
}
|
|
|
|
func (tab *Table) seedRand() {
|
|
var b [8]byte
|
|
crand.Read(b[:])
|
|
|
|
tab.mutex.Lock()
|
|
tab.rand.Seed(int64(binary.BigEndian.Uint64(b[:])))
|
|
tab.mutex.Unlock()
|
|
}
|
|
|
|
// ReadRandomNodes fills the given slice with random nodes from the table. The results
|
|
// are guaranteed to be unique for a single invocation, no node will appear twice.
|
|
func (tab *Table) ReadRandomNodes(buf []*enode.Node) (n int) {
|
|
if !tab.isInitDone() {
|
|
return 0
|
|
}
|
|
tab.mutex.Lock()
|
|
defer tab.mutex.Unlock()
|
|
|
|
// Find all non-empty buckets and get a fresh slice of their entries.
|
|
var buckets [][]*node
|
|
for _, b := range &tab.buckets {
|
|
if len(b.entries) > 0 {
|
|
buckets = append(buckets, b.entries)
|
|
}
|
|
}
|
|
if len(buckets) == 0 {
|
|
return 0
|
|
}
|
|
// Shuffle the buckets.
|
|
for i := len(buckets) - 1; i > 0; i-- {
|
|
j := tab.rand.Intn(len(buckets))
|
|
buckets[i], buckets[j] = buckets[j], buckets[i]
|
|
}
|
|
// Move head of each bucket into buf, removing buckets that become empty.
|
|
var i, j int
|
|
for ; i < len(buf); i, j = i+1, (j+1)%len(buckets) {
|
|
b := buckets[j]
|
|
buf[i] = unwrapNode(b[0])
|
|
buckets[j] = b[1:]
|
|
if len(b) == 1 {
|
|
buckets = append(buckets[:j], buckets[j+1:]...)
|
|
}
|
|
if len(buckets) == 0 {
|
|
break
|
|
}
|
|
}
|
|
return i + 1
|
|
}
|
|
|
|
// Close terminates the network listener and flushes the node database.
|
|
func (tab *Table) Close() {
|
|
if tab.net != nil {
|
|
tab.net.close()
|
|
}
|
|
|
|
select {
|
|
case <-tab.closed:
|
|
// already closed.
|
|
case tab.closeReq <- struct{}{}:
|
|
<-tab.closed // wait for refreshLoop to end.
|
|
}
|
|
}
|
|
|
|
// setFallbackNodes sets the initial points of contact. These nodes
|
|
// are used to connect to the network if the table is empty and there
|
|
// are no known nodes in the database.
|
|
func (tab *Table) setFallbackNodes(nodes []*enode.Node) error {
|
|
for _, n := range nodes {
|
|
if err := n.ValidateComplete(); err != nil {
|
|
return fmt.Errorf("bad bootstrap node %q: %v", n, err)
|
|
}
|
|
}
|
|
tab.nursery = wrapNodes(nodes)
|
|
return nil
|
|
}
|
|
|
|
// isInitDone returns whether the table's initial seeding procedure has completed.
|
|
func (tab *Table) isInitDone() bool {
|
|
select {
|
|
case <-tab.initDone:
|
|
return true
|
|
default:
|
|
return false
|
|
}
|
|
}
|
|
|
|
// Resolve searches for a specific node with the given ID.
|
|
// It returns nil if the node could not be found.
|
|
func (tab *Table) Resolve(n *enode.Node) *enode.Node {
|
|
// If the node is present in the local table, no
|
|
// network interaction is required.
|
|
hash := n.ID()
|
|
tab.mutex.Lock()
|
|
cl := tab.closest(hash, 1)
|
|
tab.mutex.Unlock()
|
|
if len(cl.entries) > 0 && cl.entries[0].ID() == hash {
|
|
return unwrapNode(cl.entries[0])
|
|
}
|
|
// Otherwise, do a network lookup.
|
|
result := tab.lookup(encodePubkey(n.Pubkey()), true)
|
|
for _, n := range result {
|
|
if n.ID() == hash {
|
|
return unwrapNode(n)
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// LookupRandom finds random nodes in the network.
|
|
func (tab *Table) LookupRandom() []*enode.Node {
|
|
var target encPubkey
|
|
crand.Read(target[:])
|
|
return unwrapNodes(tab.lookup(target, true))
|
|
}
|
|
|
|
// lookup performs a network search for nodes close to the given target. It approaches the
|
|
// target by querying nodes that are closer to it on each iteration. The given target does
|
|
// not need to be an actual node identifier.
|
|
func (tab *Table) lookup(targetKey encPubkey, refreshIfEmpty bool) []*node {
|
|
var (
|
|
target = enode.ID(crypto.Keccak256Hash(targetKey[:]))
|
|
asked = make(map[enode.ID]bool)
|
|
seen = make(map[enode.ID]bool)
|
|
reply = make(chan []*node, alpha)
|
|
pendingQueries = 0
|
|
result *nodesByDistance
|
|
)
|
|
// don't query further if we hit ourself.
|
|
// unlikely to happen often in practice.
|
|
asked[tab.self().ID()] = true
|
|
|
|
for {
|
|
tab.mutex.Lock()
|
|
// generate initial result set
|
|
result = tab.closest(target, bucketSize)
|
|
tab.mutex.Unlock()
|
|
if len(result.entries) > 0 || !refreshIfEmpty {
|
|
break
|
|
}
|
|
// The result set is empty, all nodes were dropped, refresh.
|
|
// We actually wait for the refresh to complete here. The very
|
|
// first query will hit this case and run the bootstrapping
|
|
// logic.
|
|
<-tab.refresh()
|
|
refreshIfEmpty = false
|
|
}
|
|
|
|
for {
|
|
// ask the alpha closest nodes that we haven't asked yet
|
|
for i := 0; i < len(result.entries) && pendingQueries < alpha; i++ {
|
|
n := result.entries[i]
|
|
if !asked[n.ID()] {
|
|
asked[n.ID()] = true
|
|
pendingQueries++
|
|
go tab.findnode(n, targetKey, reply)
|
|
}
|
|
}
|
|
if pendingQueries == 0 {
|
|
// we have asked all closest nodes, stop the search
|
|
break
|
|
}
|
|
// wait for the next reply
|
|
for _, n := range <-reply {
|
|
if n != nil && !seen[n.ID()] {
|
|
seen[n.ID()] = true
|
|
result.push(n, bucketSize)
|
|
}
|
|
}
|
|
pendingQueries--
|
|
}
|
|
return result.entries
|
|
}
|
|
|
|
func (tab *Table) findnode(n *node, targetKey encPubkey, reply chan<- []*node) {
|
|
fails := tab.db.FindFails(n.ID())
|
|
r, err := tab.net.findnode(n.ID(), n.addr(), targetKey)
|
|
if err != nil || len(r) == 0 {
|
|
fails++
|
|
tab.db.UpdateFindFails(n.ID(), fails)
|
|
log.Trace("Findnode failed", "id", n.ID(), "failcount", fails, "err", err)
|
|
if fails >= maxFindnodeFailures {
|
|
log.Trace("Too many findnode failures, dropping", "id", n.ID(), "failcount", fails)
|
|
tab.delete(n)
|
|
}
|
|
} else if fails > 0 {
|
|
tab.db.UpdateFindFails(n.ID(), fails-1)
|
|
}
|
|
|
|
// Grab as many nodes as possible. Some of them might not be alive anymore, but we'll
|
|
// just remove those again during revalidation.
|
|
for _, n := range r {
|
|
tab.add(n)
|
|
}
|
|
reply <- r
|
|
}
|
|
|
|
func (tab *Table) refresh() <-chan struct{} {
|
|
done := make(chan struct{})
|
|
select {
|
|
case tab.refreshReq <- done:
|
|
case <-tab.closed:
|
|
close(done)
|
|
}
|
|
return done
|
|
}
|
|
|
|
// loop schedules refresh, revalidate runs and coordinates shutdown.
|
|
func (tab *Table) loop() {
|
|
var (
|
|
revalidate = time.NewTimer(tab.nextRevalidateTime())
|
|
refresh = time.NewTicker(refreshInterval)
|
|
copyNodes = time.NewTicker(copyNodesInterval)
|
|
refreshDone = make(chan struct{}) // where doRefresh reports completion
|
|
revalidateDone chan struct{} // where doRevalidate reports completion
|
|
waiting = []chan struct{}{tab.initDone} // holds waiting callers while doRefresh runs
|
|
)
|
|
defer refresh.Stop()
|
|
defer revalidate.Stop()
|
|
defer copyNodes.Stop()
|
|
|
|
// Start initial refresh.
|
|
go tab.doRefresh(refreshDone)
|
|
|
|
loop:
|
|
for {
|
|
select {
|
|
case <-refresh.C:
|
|
tab.seedRand()
|
|
if refreshDone == nil {
|
|
refreshDone = make(chan struct{})
|
|
go tab.doRefresh(refreshDone)
|
|
}
|
|
case req := <-tab.refreshReq:
|
|
waiting = append(waiting, req)
|
|
if refreshDone == nil {
|
|
refreshDone = make(chan struct{})
|
|
go tab.doRefresh(refreshDone)
|
|
}
|
|
case <-refreshDone:
|
|
for _, ch := range waiting {
|
|
close(ch)
|
|
}
|
|
waiting, refreshDone = nil, nil
|
|
case <-revalidate.C:
|
|
revalidateDone = make(chan struct{})
|
|
go tab.doRevalidate(revalidateDone)
|
|
case <-revalidateDone:
|
|
revalidate.Reset(tab.nextRevalidateTime())
|
|
revalidateDone = nil
|
|
case <-copyNodes.C:
|
|
go tab.copyLiveNodes()
|
|
case <-tab.closeReq:
|
|
break loop
|
|
}
|
|
}
|
|
|
|
if refreshDone != nil {
|
|
<-refreshDone
|
|
}
|
|
for _, ch := range waiting {
|
|
close(ch)
|
|
}
|
|
if revalidateDone != nil {
|
|
<-revalidateDone
|
|
}
|
|
close(tab.closed)
|
|
}
|
|
|
|
// doRefresh performs a lookup for a random target to keep buckets
|
|
// full. seed nodes are inserted if the table is empty (initial
|
|
// bootstrap or discarded faulty peers).
|
|
func (tab *Table) doRefresh(done chan struct{}) {
|
|
defer close(done)
|
|
|
|
// Load nodes from the database and insert
|
|
// them. This should yield a few previously seen nodes that are
|
|
// (hopefully) still alive.
|
|
tab.loadSeedNodes()
|
|
|
|
// Run self lookup to discover new neighbor nodes.
|
|
// We can only do this if we have a secp256k1 identity.
|
|
var key ecdsa.PublicKey
|
|
if err := tab.self().Load((*enode.Secp256k1)(&key)); err == nil {
|
|
tab.lookup(encodePubkey(&key), false)
|
|
}
|
|
|
|
// The Kademlia paper specifies that the bucket refresh should
|
|
// perform a lookup in the least recently used bucket. We cannot
|
|
// adhere to this because the findnode target is a 512bit value
|
|
// (not hash-sized) and it is not easily possible to generate a
|
|
// sha3 preimage that falls into a chosen bucket.
|
|
// We perform a few lookups with a random target instead.
|
|
for i := 0; i < 3; i++ {
|
|
var target encPubkey
|
|
crand.Read(target[:])
|
|
tab.lookup(target, false)
|
|
}
|
|
}
|
|
|
|
func (tab *Table) loadSeedNodes() {
|
|
seeds := wrapNodes(tab.db.QuerySeeds(seedCount, seedMaxAge))
|
|
seeds = append(seeds, tab.nursery...)
|
|
for i := range seeds {
|
|
seed := seeds[i]
|
|
age := log.Lazy{Fn: func() interface{} { return time.Since(tab.db.LastPongReceived(seed.ID())) }}
|
|
log.Trace("Found seed node in database", "id", seed.ID(), "addr", seed.addr(), "age", age)
|
|
tab.add(seed)
|
|
}
|
|
}
|
|
|
|
// doRevalidate checks that the last node in a random bucket is still live
|
|
// and replaces or deletes the node if it isn't.
|
|
func (tab *Table) doRevalidate(done chan<- struct{}) {
|
|
defer func() { done <- struct{}{} }()
|
|
|
|
last, bi := tab.nodeToRevalidate()
|
|
if last == nil {
|
|
// No non-empty bucket found.
|
|
return
|
|
}
|
|
|
|
// Ping the selected node and wait for a pong.
|
|
err := tab.net.ping(last.ID(), last.addr())
|
|
|
|
tab.mutex.Lock()
|
|
defer tab.mutex.Unlock()
|
|
b := tab.buckets[bi]
|
|
if err == nil {
|
|
// The node responded, move it to the front.
|
|
log.Debug("Revalidated node", "b", bi, "id", last.ID())
|
|
b.bump(last)
|
|
return
|
|
}
|
|
// No reply received, pick a replacement or delete the node if there aren't
|
|
// any replacements.
|
|
if r := tab.replace(b, last); r != nil {
|
|
log.Debug("Replaced dead node", "b", bi, "id", last.ID(), "ip", last.IP(), "r", r.ID(), "rip", r.IP())
|
|
} else {
|
|
log.Debug("Removed dead node", "b", bi, "id", last.ID(), "ip", last.IP())
|
|
}
|
|
}
|
|
|
|
// nodeToRevalidate returns the last node in a random, non-empty bucket.
|
|
func (tab *Table) nodeToRevalidate() (n *node, bi int) {
|
|
tab.mutex.Lock()
|
|
defer tab.mutex.Unlock()
|
|
|
|
for _, bi = range tab.rand.Perm(len(tab.buckets)) {
|
|
b := tab.buckets[bi]
|
|
if len(b.entries) > 0 {
|
|
last := b.entries[len(b.entries)-1]
|
|
return last, bi
|
|
}
|
|
}
|
|
return nil, 0
|
|
}
|
|
|
|
func (tab *Table) nextRevalidateTime() time.Duration {
|
|
tab.mutex.Lock()
|
|
defer tab.mutex.Unlock()
|
|
|
|
return time.Duration(tab.rand.Int63n(int64(revalidateInterval)))
|
|
}
|
|
|
|
// copyLiveNodes adds nodes from the table to the database if they have been in the table
|
|
// longer then minTableTime.
|
|
func (tab *Table) copyLiveNodes() {
|
|
tab.mutex.Lock()
|
|
defer tab.mutex.Unlock()
|
|
|
|
now := time.Now()
|
|
for _, b := range &tab.buckets {
|
|
for _, n := range b.entries {
|
|
if now.Sub(n.addedAt) >= seedMinTableTime {
|
|
tab.db.UpdateNode(unwrapNode(n))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// closest returns the n nodes in the table that are closest to the
|
|
// given id. The caller must hold tab.mutex.
|
|
func (tab *Table) closest(target enode.ID, nresults int) *nodesByDistance {
|
|
// This is a very wasteful way to find the closest nodes but
|
|
// obviously correct. I believe that tree-based buckets would make
|
|
// this easier to implement efficiently.
|
|
close := &nodesByDistance{target: target}
|
|
for _, b := range &tab.buckets {
|
|
for _, n := range b.entries {
|
|
close.push(n, nresults)
|
|
}
|
|
}
|
|
return close
|
|
}
|
|
|
|
func (tab *Table) len() (n int) {
|
|
for _, b := range &tab.buckets {
|
|
n += len(b.entries)
|
|
}
|
|
return n
|
|
}
|
|
|
|
// bucket returns the bucket for the given node ID hash.
|
|
func (tab *Table) bucket(id enode.ID) *bucket {
|
|
d := enode.LogDist(tab.self().ID(), id)
|
|
if d <= bucketMinDistance {
|
|
return tab.buckets[0]
|
|
}
|
|
return tab.buckets[d-bucketMinDistance-1]
|
|
}
|
|
|
|
// add attempts to add the given node to its corresponding bucket. If the bucket has space
|
|
// available, adding the node succeeds immediately. Otherwise, the node is added if the
|
|
// least recently active node in the bucket does not respond to a ping packet.
|
|
//
|
|
// The caller must not hold tab.mutex.
|
|
func (tab *Table) add(n *node) {
|
|
if n.ID() == tab.self().ID() {
|
|
return
|
|
}
|
|
|
|
tab.mutex.Lock()
|
|
defer tab.mutex.Unlock()
|
|
b := tab.bucket(n.ID())
|
|
if !tab.bumpOrAdd(b, n) {
|
|
// Node is not in table. Add it to the replacement list.
|
|
tab.addReplacement(b, n)
|
|
}
|
|
}
|
|
|
|
// addThroughPing adds the given node to the table. Compared to plain
|
|
// 'add' there is an additional safety measure: if the table is still
|
|
// initializing the node is not added. This prevents an attack where the
|
|
// table could be filled by just sending ping repeatedly.
|
|
//
|
|
// The caller must not hold tab.mutex.
|
|
func (tab *Table) addThroughPing(n *node) {
|
|
if !tab.isInitDone() {
|
|
return
|
|
}
|
|
tab.add(n)
|
|
}
|
|
|
|
// stuff adds nodes the table to the end of their corresponding bucket
|
|
// if the bucket is not full. The caller must not hold tab.mutex.
|
|
func (tab *Table) stuff(nodes []*node) {
|
|
tab.mutex.Lock()
|
|
defer tab.mutex.Unlock()
|
|
|
|
for _, n := range nodes {
|
|
if n.ID() == tab.self().ID() {
|
|
continue // don't add self
|
|
}
|
|
b := tab.bucket(n.ID())
|
|
if len(b.entries) < bucketSize {
|
|
tab.bumpOrAdd(b, n)
|
|
}
|
|
}
|
|
}
|
|
|
|
// delete removes an entry from the node table. It is used to evacuate dead nodes.
|
|
func (tab *Table) delete(node *node) {
|
|
tab.mutex.Lock()
|
|
defer tab.mutex.Unlock()
|
|
|
|
tab.deleteInBucket(tab.bucket(node.ID()), node)
|
|
}
|
|
|
|
func (tab *Table) addIP(b *bucket, ip net.IP) bool {
|
|
if netutil.IsLAN(ip) {
|
|
return true
|
|
}
|
|
if !tab.ips.Add(ip) {
|
|
log.Debug("IP exceeds table limit", "ip", ip)
|
|
return false
|
|
}
|
|
if !b.ips.Add(ip) {
|
|
log.Debug("IP exceeds bucket limit", "ip", ip)
|
|
tab.ips.Remove(ip)
|
|
return false
|
|
}
|
|
return true
|
|
}
|
|
|
|
func (tab *Table) removeIP(b *bucket, ip net.IP) {
|
|
if netutil.IsLAN(ip) {
|
|
return
|
|
}
|
|
tab.ips.Remove(ip)
|
|
b.ips.Remove(ip)
|
|
}
|
|
|
|
func (tab *Table) addReplacement(b *bucket, n *node) {
|
|
for _, e := range b.replacements {
|
|
if e.ID() == n.ID() {
|
|
return // already in list
|
|
}
|
|
}
|
|
if !tab.addIP(b, n.IP()) {
|
|
return
|
|
}
|
|
var removed *node
|
|
b.replacements, removed = pushNode(b.replacements, n, maxReplacements)
|
|
if removed != nil {
|
|
tab.removeIP(b, removed.IP())
|
|
}
|
|
}
|
|
|
|
// replace removes n from the replacement list and replaces 'last' with it if it is the
|
|
// last entry in the bucket. If 'last' isn't the last entry, it has either been replaced
|
|
// with someone else or became active.
|
|
func (tab *Table) replace(b *bucket, last *node) *node {
|
|
if len(b.entries) == 0 || b.entries[len(b.entries)-1].ID() != last.ID() {
|
|
// Entry has moved, don't replace it.
|
|
return nil
|
|
}
|
|
// Still the last entry.
|
|
if len(b.replacements) == 0 {
|
|
tab.deleteInBucket(b, last)
|
|
return nil
|
|
}
|
|
r := b.replacements[tab.rand.Intn(len(b.replacements))]
|
|
b.replacements = deleteNode(b.replacements, r)
|
|
b.entries[len(b.entries)-1] = r
|
|
tab.removeIP(b, last.IP())
|
|
return r
|
|
}
|
|
|
|
// bump moves the given node to the front of the bucket entry list
|
|
// if it is contained in that list.
|
|
func (b *bucket) bump(n *node) bool {
|
|
for i := range b.entries {
|
|
if b.entries[i].ID() == n.ID() {
|
|
// move it to the front
|
|
copy(b.entries[1:], b.entries[:i])
|
|
b.entries[0] = n
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
// bumpOrAdd moves n to the front of the bucket entry list or adds it if the list isn't
|
|
// full. The return value is true if n is in the bucket.
|
|
func (tab *Table) bumpOrAdd(b *bucket, n *node) bool {
|
|
if b.bump(n) {
|
|
return true
|
|
}
|
|
if len(b.entries) >= bucketSize || !tab.addIP(b, n.IP()) {
|
|
return false
|
|
}
|
|
b.entries, _ = pushNode(b.entries, n, bucketSize)
|
|
b.replacements = deleteNode(b.replacements, n)
|
|
n.addedAt = time.Now()
|
|
if tab.nodeAddedHook != nil {
|
|
tab.nodeAddedHook(n)
|
|
}
|
|
return true
|
|
}
|
|
|
|
func (tab *Table) deleteInBucket(b *bucket, n *node) {
|
|
b.entries = deleteNode(b.entries, n)
|
|
tab.removeIP(b, n.IP())
|
|
}
|
|
|
|
// pushNode adds n to the front of list, keeping at most max items.
|
|
func pushNode(list []*node, n *node, max int) ([]*node, *node) {
|
|
if len(list) < max {
|
|
list = append(list, nil)
|
|
}
|
|
removed := list[len(list)-1]
|
|
copy(list[1:], list)
|
|
list[0] = n
|
|
return list, removed
|
|
}
|
|
|
|
// deleteNode removes n from list.
|
|
func deleteNode(list []*node, n *node) []*node {
|
|
for i := range list {
|
|
if list[i].ID() == n.ID() {
|
|
return append(list[:i], list[i+1:]...)
|
|
}
|
|
}
|
|
return list
|
|
}
|
|
|
|
// nodesByDistance is a list of nodes, ordered by
|
|
// distance to target.
|
|
type nodesByDistance struct {
|
|
entries []*node
|
|
target enode.ID
|
|
}
|
|
|
|
// push adds the given node to the list, keeping the total size below maxElems.
|
|
func (h *nodesByDistance) push(n *node, maxElems int) {
|
|
ix := sort.Search(len(h.entries), func(i int) bool {
|
|
return enode.DistCmp(h.target, h.entries[i].ID(), n.ID()) > 0
|
|
})
|
|
if len(h.entries) < maxElems {
|
|
h.entries = append(h.entries, n)
|
|
}
|
|
if ix == len(h.entries) {
|
|
// farther away than all nodes we already have.
|
|
// if there was room for it, the node is now the last element.
|
|
} else {
|
|
// slide existing entries down to make room
|
|
// this will overwrite the entry we just appended.
|
|
copy(h.entries[ix+1:], h.entries[ix:])
|
|
h.entries[ix] = n
|
|
}
|
|
}
|