ipld-eth-server/vendor/github.com/ethereum/go-ethereum/les/helper_test.go

446 lines
16 KiB
Go

// Copyright 2016 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// This file contains some shares testing functionality, common to multiple
// different files and modules being tested.
package les
import (
"crypto/rand"
"math/big"
"sync"
"testing"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/consensus/ethash"
"github.com/ethereum/go-ethereum/core"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/core/vm"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/eth"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/event"
"github.com/ethereum/go-ethereum/les/flowcontrol"
"github.com/ethereum/go-ethereum/light"
"github.com/ethereum/go-ethereum/p2p"
"github.com/ethereum/go-ethereum/p2p/enode"
"github.com/ethereum/go-ethereum/params"
)
var (
testBankKey, _ = crypto.HexToECDSA("b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291")
testBankAddress = crypto.PubkeyToAddress(testBankKey.PublicKey)
testBankFunds = big.NewInt(1000000000000000000)
acc1Key, _ = crypto.HexToECDSA("8a1f9a8f95be41cd7ccb6168179afb4504aefe388d1e14474d32c45c72ce7b7a")
acc2Key, _ = crypto.HexToECDSA("49a7b37aa6f6645917e7b807e9d1c00d4fa71f18343b0d4122a4d2df64dd6fee")
acc1Addr = crypto.PubkeyToAddress(acc1Key.PublicKey)
acc2Addr = crypto.PubkeyToAddress(acc2Key.PublicKey)
testContractCode = common.Hex2Bytes("606060405260cc8060106000396000f360606040526000357c01000000000000000000000000000000000000000000000000000000009004806360cd2685146041578063c16431b914606b57603f565b005b6055600480803590602001909190505060a9565b6040518082815260200191505060405180910390f35b60886004808035906020019091908035906020019091905050608a565b005b80600060005083606481101560025790900160005b50819055505b5050565b6000600060005082606481101560025790900160005b5054905060c7565b91905056")
testContractAddr common.Address
testContractCodeDeployed = testContractCode[16:]
testContractDeployed = uint64(2)
testEventEmitterCode = common.Hex2Bytes("60606040523415600e57600080fd5b7f57050ab73f6b9ebdd9f76b8d4997793f48cf956e965ee070551b9ca0bb71584e60405160405180910390a160358060476000396000f3006060604052600080fd00a165627a7a723058203f727efcad8b5811f8cb1fc2620ce5e8c63570d697aef968172de296ea3994140029")
testEventEmitterAddr common.Address
testBufLimit = uint64(100)
)
/*
contract test {
uint256[100] data;
function Put(uint256 addr, uint256 value) {
data[addr] = value;
}
function Get(uint256 addr) constant returns (uint256 value) {
return data[addr];
}
}
*/
func testChainGen(i int, block *core.BlockGen) {
signer := types.HomesteadSigner{}
switch i {
case 0:
// In block 1, the test bank sends account #1 some ether.
tx, _ := types.SignTx(types.NewTransaction(block.TxNonce(testBankAddress), acc1Addr, big.NewInt(10000), params.TxGas, nil, nil), signer, testBankKey)
block.AddTx(tx)
case 1:
// In block 2, the test bank sends some more ether to account #1.
// acc1Addr passes it on to account #2.
// acc1Addr creates a test contract.
// acc1Addr creates a test event.
nonce := block.TxNonce(acc1Addr)
tx1, _ := types.SignTx(types.NewTransaction(block.TxNonce(testBankAddress), acc1Addr, big.NewInt(1000), params.TxGas, nil, nil), signer, testBankKey)
tx2, _ := types.SignTx(types.NewTransaction(nonce, acc2Addr, big.NewInt(1000), params.TxGas, nil, nil), signer, acc1Key)
tx3, _ := types.SignTx(types.NewContractCreation(nonce+1, big.NewInt(0), 200000, big.NewInt(0), testContractCode), signer, acc1Key)
testContractAddr = crypto.CreateAddress(acc1Addr, nonce+1)
tx4, _ := types.SignTx(types.NewContractCreation(nonce+2, big.NewInt(0), 200000, big.NewInt(0), testEventEmitterCode), signer, acc1Key)
testEventEmitterAddr = crypto.CreateAddress(acc1Addr, nonce+2)
block.AddTx(tx1)
block.AddTx(tx2)
block.AddTx(tx3)
block.AddTx(tx4)
case 2:
// Block 3 is empty but was mined by account #2.
block.SetCoinbase(acc2Addr)
block.SetExtra([]byte("yeehaw"))
data := common.Hex2Bytes("C16431B900000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000001")
tx, _ := types.SignTx(types.NewTransaction(block.TxNonce(testBankAddress), testContractAddr, big.NewInt(0), 100000, nil, data), signer, testBankKey)
block.AddTx(tx)
case 3:
// Block 4 includes blocks 2 and 3 as uncle headers (with modified extra data).
b2 := block.PrevBlock(1).Header()
b2.Extra = []byte("foo")
block.AddUncle(b2)
b3 := block.PrevBlock(2).Header()
b3.Extra = []byte("foo")
block.AddUncle(b3)
data := common.Hex2Bytes("C16431B900000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000002")
tx, _ := types.SignTx(types.NewTransaction(block.TxNonce(testBankAddress), testContractAddr, big.NewInt(0), 100000, nil, data), signer, testBankKey)
block.AddTx(tx)
}
}
// testIndexers creates a set of indexers with specified params for testing purpose.
func testIndexers(db ethdb.Database, odr light.OdrBackend, iConfig *light.IndexerConfig) (*core.ChainIndexer, *core.ChainIndexer, *core.ChainIndexer) {
chtIndexer := light.NewChtIndexer(db, odr, iConfig.ChtSize, iConfig.ChtConfirms)
bloomIndexer := eth.NewBloomIndexer(db, iConfig.BloomSize, iConfig.BloomConfirms)
bloomTrieIndexer := light.NewBloomTrieIndexer(db, odr, iConfig.BloomSize, iConfig.BloomTrieSize)
bloomIndexer.AddChildIndexer(bloomTrieIndexer)
return chtIndexer, bloomIndexer, bloomTrieIndexer
}
func testRCL() RequestCostList {
cl := make(RequestCostList, len(reqList))
for i, code := range reqList {
cl[i].MsgCode = code
cl[i].BaseCost = 0
cl[i].ReqCost = 0
}
return cl
}
// newTestProtocolManager creates a new protocol manager for testing purposes,
// with the given number of blocks already known, potential notification
// channels for different events and relative chain indexers array.
func newTestProtocolManager(lightSync bool, blocks int, generator func(int, *core.BlockGen), odr *LesOdr, peers *peerSet, db ethdb.Database) (*ProtocolManager, error) {
var (
evmux = new(event.TypeMux)
engine = ethash.NewFaker()
gspec = core.Genesis{
Config: params.TestChainConfig,
Alloc: core.GenesisAlloc{testBankAddress: {Balance: testBankFunds}},
}
genesis = gspec.MustCommit(db)
chain BlockChain
)
if peers == nil {
peers = newPeerSet()
}
if lightSync {
chain, _ = light.NewLightChain(odr, gspec.Config, engine)
} else {
blockchain, _ := core.NewBlockChain(db, nil, gspec.Config, engine, vm.Config{}, nil)
gchain, _ := core.GenerateChain(gspec.Config, genesis, ethash.NewFaker(), db, blocks, generator)
if _, err := blockchain.InsertChain(gchain); err != nil {
panic(err)
}
chain = blockchain
}
indexConfig := light.TestServerIndexerConfig
if lightSync {
indexConfig = light.TestClientIndexerConfig
}
pm, err := NewProtocolManager(gspec.Config, indexConfig, lightSync, NetworkId, evmux, engine, peers, chain, nil, db, odr, nil, nil, make(chan struct{}), new(sync.WaitGroup))
if err != nil {
return nil, err
}
if !lightSync {
srv := &LesServer{lesCommons: lesCommons{protocolManager: pm}}
pm.server = srv
srv.defParams = &flowcontrol.ServerParams{
BufLimit: testBufLimit,
MinRecharge: 1,
}
srv.fcManager = flowcontrol.NewClientManager(50, 10, 1000000000)
srv.fcCostStats = newCostStats(nil)
}
pm.Start(1000)
return pm, nil
}
// newTestProtocolManagerMust creates a new protocol manager for testing purposes,
// with the given number of blocks already known, potential notification
// channels for different events and relative chain indexers array. In case of an error, the constructor force-
// fails the test.
func newTestProtocolManagerMust(t *testing.T, lightSync bool, blocks int, generator func(int, *core.BlockGen), odr *LesOdr, peers *peerSet, db ethdb.Database) *ProtocolManager {
pm, err := newTestProtocolManager(lightSync, blocks, generator, odr, peers, db)
if err != nil {
t.Fatalf("Failed to create protocol manager: %v", err)
}
return pm
}
// testPeer is a simulated peer to allow testing direct network calls.
type testPeer struct {
net p2p.MsgReadWriter // Network layer reader/writer to simulate remote messaging
app *p2p.MsgPipeRW // Application layer reader/writer to simulate the local side
*peer
}
// newTestPeer creates a new peer registered at the given protocol manager.
func newTestPeer(t *testing.T, name string, version int, pm *ProtocolManager, shake bool) (*testPeer, <-chan error) {
// Create a message pipe to communicate through
app, net := p2p.MsgPipe()
// Generate a random id and create the peer
var id enode.ID
rand.Read(id[:])
peer := pm.newPeer(version, NetworkId, p2p.NewPeer(id, name, nil), net)
// Start the peer on a new thread
errc := make(chan error, 1)
go func() {
select {
case pm.newPeerCh <- peer:
errc <- pm.handle(peer)
case <-pm.quitSync:
errc <- p2p.DiscQuitting
}
}()
tp := &testPeer{
app: app,
net: net,
peer: peer,
}
// Execute any implicitly requested handshakes and return
if shake {
var (
genesis = pm.blockchain.Genesis()
head = pm.blockchain.CurrentHeader()
td = pm.blockchain.GetTd(head.Hash(), head.Number.Uint64())
)
tp.handshake(t, td, head.Hash(), head.Number.Uint64(), genesis.Hash())
}
return tp, errc
}
func newTestPeerPair(name string, version int, pm, pm2 *ProtocolManager) (*peer, <-chan error, *peer, <-chan error) {
// Create a message pipe to communicate through
app, net := p2p.MsgPipe()
// Generate a random id and create the peer
var id enode.ID
rand.Read(id[:])
peer := pm.newPeer(version, NetworkId, p2p.NewPeer(id, name, nil), net)
peer2 := pm2.newPeer(version, NetworkId, p2p.NewPeer(id, name, nil), app)
// Start the peer on a new thread
errc := make(chan error, 1)
errc2 := make(chan error, 1)
go func() {
select {
case pm.newPeerCh <- peer:
errc <- pm.handle(peer)
case <-pm.quitSync:
errc <- p2p.DiscQuitting
}
}()
go func() {
select {
case pm2.newPeerCh <- peer2:
errc2 <- pm2.handle(peer2)
case <-pm2.quitSync:
errc2 <- p2p.DiscQuitting
}
}()
return peer, errc, peer2, errc2
}
// handshake simulates a trivial handshake that expects the same state from the
// remote side as we are simulating locally.
func (p *testPeer) handshake(t *testing.T, td *big.Int, head common.Hash, headNum uint64, genesis common.Hash) {
var expList keyValueList
expList = expList.add("protocolVersion", uint64(p.version))
expList = expList.add("networkId", uint64(NetworkId))
expList = expList.add("headTd", td)
expList = expList.add("headHash", head)
expList = expList.add("headNum", headNum)
expList = expList.add("genesisHash", genesis)
sendList := make(keyValueList, len(expList))
copy(sendList, expList)
expList = expList.add("serveHeaders", nil)
expList = expList.add("serveChainSince", uint64(0))
expList = expList.add("serveStateSince", uint64(0))
expList = expList.add("txRelay", nil)
expList = expList.add("flowControl/BL", testBufLimit)
expList = expList.add("flowControl/MRR", uint64(1))
expList = expList.add("flowControl/MRC", testRCL())
if err := p2p.ExpectMsg(p.app, StatusMsg, expList); err != nil {
t.Fatalf("status recv: %v", err)
}
if err := p2p.Send(p.app, StatusMsg, sendList); err != nil {
t.Fatalf("status send: %v", err)
}
p.fcServerParams = &flowcontrol.ServerParams{
BufLimit: testBufLimit,
MinRecharge: 1,
}
}
// close terminates the local side of the peer, notifying the remote protocol
// manager of termination.
func (p *testPeer) close() {
p.app.Close()
}
// TestEntity represents a network entity for testing with necessary auxiliary fields.
type TestEntity struct {
db ethdb.Database
rPeer *peer
tPeer *testPeer
peers *peerSet
pm *ProtocolManager
// Indexers
chtIndexer *core.ChainIndexer
bloomIndexer *core.ChainIndexer
bloomTrieIndexer *core.ChainIndexer
}
// newServerEnv creates a server testing environment with a connected test peer for testing purpose.
func newServerEnv(t *testing.T, blocks int, protocol int, waitIndexers func(*core.ChainIndexer, *core.ChainIndexer, *core.ChainIndexer)) (*TestEntity, func()) {
db := ethdb.NewMemDatabase()
cIndexer, bIndexer, btIndexer := testIndexers(db, nil, light.TestServerIndexerConfig)
pm := newTestProtocolManagerMust(t, false, blocks, testChainGen, nil, nil, db)
peer, _ := newTestPeer(t, "peer", protocol, pm, true)
cIndexer.Start(pm.blockchain.(*core.BlockChain))
bIndexer.Start(pm.blockchain.(*core.BlockChain))
// Wait until indexers generate enough index data.
if waitIndexers != nil {
waitIndexers(cIndexer, bIndexer, btIndexer)
}
return &TestEntity{
db: db,
tPeer: peer,
pm: pm,
chtIndexer: cIndexer,
bloomIndexer: bIndexer,
bloomTrieIndexer: btIndexer,
}, func() {
peer.close()
// Note bloom trie indexer will be closed by it parent recursively.
cIndexer.Close()
bIndexer.Close()
}
}
// newClientServerEnv creates a client/server arch environment with a connected les server and light client pair
// for testing purpose.
func newClientServerEnv(t *testing.T, blocks int, protocol int, waitIndexers func(*core.ChainIndexer, *core.ChainIndexer, *core.ChainIndexer), newPeer bool) (*TestEntity, *TestEntity, func()) {
db, ldb := ethdb.NewMemDatabase(), ethdb.NewMemDatabase()
peers, lPeers := newPeerSet(), newPeerSet()
dist := newRequestDistributor(lPeers, make(chan struct{}))
rm := newRetrieveManager(lPeers, dist, nil)
odr := NewLesOdr(ldb, light.TestClientIndexerConfig, rm)
cIndexer, bIndexer, btIndexer := testIndexers(db, nil, light.TestServerIndexerConfig)
lcIndexer, lbIndexer, lbtIndexer := testIndexers(ldb, odr, light.TestClientIndexerConfig)
odr.SetIndexers(lcIndexer, lbtIndexer, lbIndexer)
pm := newTestProtocolManagerMust(t, false, blocks, testChainGen, nil, peers, db)
lpm := newTestProtocolManagerMust(t, true, 0, nil, odr, lPeers, ldb)
startIndexers := func(clientMode bool, pm *ProtocolManager) {
if clientMode {
lcIndexer.Start(pm.blockchain.(*light.LightChain))
lbIndexer.Start(pm.blockchain.(*light.LightChain))
} else {
cIndexer.Start(pm.blockchain.(*core.BlockChain))
bIndexer.Start(pm.blockchain.(*core.BlockChain))
}
}
startIndexers(false, pm)
startIndexers(true, lpm)
// Execute wait until function if it is specified.
if waitIndexers != nil {
waitIndexers(cIndexer, bIndexer, btIndexer)
}
var (
peer, lPeer *peer
err1, err2 <-chan error
)
if newPeer {
peer, err1, lPeer, err2 = newTestPeerPair("peer", protocol, pm, lpm)
select {
case <-time.After(time.Millisecond * 100):
case err := <-err1:
t.Fatalf("peer 1 handshake error: %v", err)
case err := <-err2:
t.Fatalf("peer 2 handshake error: %v", err)
}
}
return &TestEntity{
db: db,
pm: pm,
rPeer: peer,
peers: peers,
chtIndexer: cIndexer,
bloomIndexer: bIndexer,
bloomTrieIndexer: btIndexer,
}, &TestEntity{
db: ldb,
pm: lpm,
rPeer: lPeer,
peers: lPeers,
chtIndexer: lcIndexer,
bloomIndexer: lbIndexer,
bloomTrieIndexer: lbtIndexer,
}, func() {
// Note bloom trie indexers will be closed by their parents recursively.
cIndexer.Close()
bIndexer.Close()
lcIndexer.Close()
lbIndexer.Close()
}
}