560305f601
- uses newer version of go-ethereum required for go1.11
623 lines
16 KiB
Go
623 lines
16 KiB
Go
// Copyright 2017 The go-ethereum Authors
|
|
// This file is part of the go-ethereum library.
|
|
//
|
|
// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU Lesser General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// The go-ethereum library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
package bmt
|
|
|
|
import (
|
|
"bytes"
|
|
crand "crypto/rand"
|
|
"encoding/binary"
|
|
"fmt"
|
|
"io"
|
|
"math/rand"
|
|
"sync"
|
|
"sync/atomic"
|
|
"testing"
|
|
"time"
|
|
|
|
"github.com/ethereum/go-ethereum/crypto/sha3"
|
|
)
|
|
|
|
// the actual data length generated (could be longer than max datalength of the BMT)
|
|
const BufferSize = 4128
|
|
|
|
const (
|
|
// segmentCount is the maximum number of segments of the underlying chunk
|
|
// Should be equal to max-chunk-data-size / hash-size
|
|
// Currently set to 128 == 4096 (default chunk size) / 32 (sha3.keccak256 size)
|
|
segmentCount = 128
|
|
)
|
|
|
|
var counts = []int{1, 2, 3, 4, 5, 8, 9, 15, 16, 17, 32, 37, 42, 53, 63, 64, 65, 111, 127, 128}
|
|
|
|
// calculates the Keccak256 SHA3 hash of the data
|
|
func sha3hash(data ...[]byte) []byte {
|
|
h := sha3.NewKeccak256()
|
|
return doSum(h, nil, data...)
|
|
}
|
|
|
|
// TestRefHasher tests that the RefHasher computes the expected BMT hash for
|
|
// some small data lengths
|
|
func TestRefHasher(t *testing.T) {
|
|
// the test struct is used to specify the expected BMT hash for
|
|
// segment counts between from and to and lengths from 1 to datalength
|
|
type test struct {
|
|
from int
|
|
to int
|
|
expected func([]byte) []byte
|
|
}
|
|
|
|
var tests []*test
|
|
// all lengths in [0,64] should be:
|
|
//
|
|
// sha3hash(data)
|
|
//
|
|
tests = append(tests, &test{
|
|
from: 1,
|
|
to: 2,
|
|
expected: func(d []byte) []byte {
|
|
data := make([]byte, 64)
|
|
copy(data, d)
|
|
return sha3hash(data)
|
|
},
|
|
})
|
|
|
|
// all lengths in [3,4] should be:
|
|
//
|
|
// sha3hash(
|
|
// sha3hash(data[:64])
|
|
// sha3hash(data[64:])
|
|
// )
|
|
//
|
|
tests = append(tests, &test{
|
|
from: 3,
|
|
to: 4,
|
|
expected: func(d []byte) []byte {
|
|
data := make([]byte, 128)
|
|
copy(data, d)
|
|
return sha3hash(sha3hash(data[:64]), sha3hash(data[64:]))
|
|
},
|
|
})
|
|
|
|
// all segmentCounts in [5,8] should be:
|
|
//
|
|
// sha3hash(
|
|
// sha3hash(
|
|
// sha3hash(data[:64])
|
|
// sha3hash(data[64:128])
|
|
// )
|
|
// sha3hash(
|
|
// sha3hash(data[128:192])
|
|
// sha3hash(data[192:])
|
|
// )
|
|
// )
|
|
//
|
|
tests = append(tests, &test{
|
|
from: 5,
|
|
to: 8,
|
|
expected: func(d []byte) []byte {
|
|
data := make([]byte, 256)
|
|
copy(data, d)
|
|
return sha3hash(sha3hash(sha3hash(data[:64]), sha3hash(data[64:128])), sha3hash(sha3hash(data[128:192]), sha3hash(data[192:])))
|
|
},
|
|
})
|
|
|
|
// run the tests
|
|
for _, x := range tests {
|
|
for segmentCount := x.from; segmentCount <= x.to; segmentCount++ {
|
|
for length := 1; length <= segmentCount*32; length++ {
|
|
t.Run(fmt.Sprintf("%d_segments_%d_bytes", segmentCount, length), func(t *testing.T) {
|
|
data := make([]byte, length)
|
|
if _, err := io.ReadFull(crand.Reader, data); err != nil && err != io.EOF {
|
|
t.Fatal(err)
|
|
}
|
|
expected := x.expected(data)
|
|
actual := NewRefHasher(sha3.NewKeccak256, segmentCount).Hash(data)
|
|
if !bytes.Equal(actual, expected) {
|
|
t.Fatalf("expected %x, got %x", expected, actual)
|
|
}
|
|
})
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// tests if hasher responds with correct hash comparing the reference implementation return value
|
|
func TestHasherEmptyData(t *testing.T) {
|
|
hasher := sha3.NewKeccak256
|
|
var data []byte
|
|
for _, count := range counts {
|
|
t.Run(fmt.Sprintf("%d_segments", count), func(t *testing.T) {
|
|
pool := NewTreePool(hasher, count, PoolSize)
|
|
defer pool.Drain(0)
|
|
bmt := New(pool)
|
|
rbmt := NewRefHasher(hasher, count)
|
|
refHash := rbmt.Hash(data)
|
|
expHash := syncHash(bmt, nil, data)
|
|
if !bytes.Equal(expHash, refHash) {
|
|
t.Fatalf("hash mismatch with reference. expected %x, got %x", refHash, expHash)
|
|
}
|
|
})
|
|
}
|
|
}
|
|
|
|
// tests sequential write with entire max size written in one go
|
|
func TestSyncHasherCorrectness(t *testing.T) {
|
|
data := newData(BufferSize)
|
|
hasher := sha3.NewKeccak256
|
|
size := hasher().Size()
|
|
|
|
var err error
|
|
for _, count := range counts {
|
|
t.Run(fmt.Sprintf("segments_%v", count), func(t *testing.T) {
|
|
max := count * size
|
|
var incr int
|
|
capacity := 1
|
|
pool := NewTreePool(hasher, count, capacity)
|
|
defer pool.Drain(0)
|
|
for n := 0; n <= max; n += incr {
|
|
incr = 1 + rand.Intn(5)
|
|
bmt := New(pool)
|
|
err = testHasherCorrectness(bmt, hasher, data, n, count)
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
}
|
|
})
|
|
}
|
|
}
|
|
|
|
// tests order-neutral concurrent writes with entire max size written in one go
|
|
func TestAsyncCorrectness(t *testing.T) {
|
|
data := newData(BufferSize)
|
|
hasher := sha3.NewKeccak256
|
|
size := hasher().Size()
|
|
whs := []whenHash{first, last, random}
|
|
|
|
for _, double := range []bool{false, true} {
|
|
for _, wh := range whs {
|
|
for _, count := range counts {
|
|
t.Run(fmt.Sprintf("double_%v_hash_when_%v_segments_%v", double, wh, count), func(t *testing.T) {
|
|
max := count * size
|
|
var incr int
|
|
capacity := 1
|
|
pool := NewTreePool(hasher, count, capacity)
|
|
defer pool.Drain(0)
|
|
for n := 1; n <= max; n += incr {
|
|
incr = 1 + rand.Intn(5)
|
|
bmt := New(pool)
|
|
d := data[:n]
|
|
rbmt := NewRefHasher(hasher, count)
|
|
exp := rbmt.Hash(d)
|
|
got := syncHash(bmt, nil, d)
|
|
if !bytes.Equal(got, exp) {
|
|
t.Fatalf("wrong sync hash for datalength %v: expected %x (ref), got %x", n, exp, got)
|
|
}
|
|
sw := bmt.NewAsyncWriter(double)
|
|
got = asyncHashRandom(sw, nil, d, wh)
|
|
if !bytes.Equal(got, exp) {
|
|
t.Fatalf("wrong async hash for datalength %v: expected %x, got %x", n, exp, got)
|
|
}
|
|
}
|
|
})
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Tests that the BMT hasher can be synchronously reused with poolsizes 1 and PoolSize
|
|
func TestHasherReuse(t *testing.T) {
|
|
t.Run(fmt.Sprintf("poolsize_%d", 1), func(t *testing.T) {
|
|
testHasherReuse(1, t)
|
|
})
|
|
t.Run(fmt.Sprintf("poolsize_%d", PoolSize), func(t *testing.T) {
|
|
testHasherReuse(PoolSize, t)
|
|
})
|
|
}
|
|
|
|
// tests if bmt reuse is not corrupting result
|
|
func testHasherReuse(poolsize int, t *testing.T) {
|
|
hasher := sha3.NewKeccak256
|
|
pool := NewTreePool(hasher, segmentCount, poolsize)
|
|
defer pool.Drain(0)
|
|
bmt := New(pool)
|
|
|
|
for i := 0; i < 100; i++ {
|
|
data := newData(BufferSize)
|
|
n := rand.Intn(bmt.Size())
|
|
err := testHasherCorrectness(bmt, hasher, data, n, segmentCount)
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
}
|
|
}
|
|
|
|
// Tests if pool can be cleanly reused even in concurrent use by several hasher
|
|
func TestBMTConcurrentUse(t *testing.T) {
|
|
hasher := sha3.NewKeccak256
|
|
pool := NewTreePool(hasher, segmentCount, PoolSize)
|
|
defer pool.Drain(0)
|
|
cycles := 100
|
|
errc := make(chan error)
|
|
|
|
for i := 0; i < cycles; i++ {
|
|
go func() {
|
|
bmt := New(pool)
|
|
data := newData(BufferSize)
|
|
n := rand.Intn(bmt.Size())
|
|
errc <- testHasherCorrectness(bmt, hasher, data, n, 128)
|
|
}()
|
|
}
|
|
LOOP:
|
|
for {
|
|
select {
|
|
case <-time.NewTimer(5 * time.Second).C:
|
|
t.Fatal("timed out")
|
|
case err := <-errc:
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
cycles--
|
|
if cycles == 0 {
|
|
break LOOP
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Tests BMT Hasher io.Writer interface is working correctly
|
|
// even multiple short random write buffers
|
|
func TestBMTWriterBuffers(t *testing.T) {
|
|
hasher := sha3.NewKeccak256
|
|
|
|
for _, count := range counts {
|
|
t.Run(fmt.Sprintf("%d_segments", count), func(t *testing.T) {
|
|
errc := make(chan error)
|
|
pool := NewTreePool(hasher, count, PoolSize)
|
|
defer pool.Drain(0)
|
|
n := count * 32
|
|
bmt := New(pool)
|
|
data := newData(n)
|
|
rbmt := NewRefHasher(hasher, count)
|
|
refHash := rbmt.Hash(data)
|
|
expHash := syncHash(bmt, nil, data)
|
|
if !bytes.Equal(expHash, refHash) {
|
|
t.Fatalf("hash mismatch with reference. expected %x, got %x", refHash, expHash)
|
|
}
|
|
attempts := 10
|
|
f := func() error {
|
|
bmt := New(pool)
|
|
bmt.Reset()
|
|
var buflen int
|
|
for offset := 0; offset < n; offset += buflen {
|
|
buflen = rand.Intn(n-offset) + 1
|
|
read, err := bmt.Write(data[offset : offset+buflen])
|
|
if err != nil {
|
|
return err
|
|
}
|
|
if read != buflen {
|
|
return fmt.Errorf("incorrect read. expected %v bytes, got %v", buflen, read)
|
|
}
|
|
}
|
|
hash := bmt.Sum(nil)
|
|
if !bytes.Equal(hash, expHash) {
|
|
return fmt.Errorf("hash mismatch. expected %x, got %x", hash, expHash)
|
|
}
|
|
return nil
|
|
}
|
|
|
|
for j := 0; j < attempts; j++ {
|
|
go func() {
|
|
errc <- f()
|
|
}()
|
|
}
|
|
timeout := time.NewTimer(2 * time.Second)
|
|
for {
|
|
select {
|
|
case err := <-errc:
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
attempts--
|
|
if attempts == 0 {
|
|
return
|
|
}
|
|
case <-timeout.C:
|
|
t.Fatalf("timeout")
|
|
}
|
|
}
|
|
})
|
|
}
|
|
}
|
|
|
|
// helper function that compares reference and optimised implementations on
|
|
// correctness
|
|
func testHasherCorrectness(bmt *Hasher, hasher BaseHasherFunc, d []byte, n, count int) (err error) {
|
|
span := make([]byte, 8)
|
|
if len(d) < n {
|
|
n = len(d)
|
|
}
|
|
binary.BigEndian.PutUint64(span, uint64(n))
|
|
data := d[:n]
|
|
rbmt := NewRefHasher(hasher, count)
|
|
exp := sha3hash(span, rbmt.Hash(data))
|
|
got := syncHash(bmt, span, data)
|
|
if !bytes.Equal(got, exp) {
|
|
return fmt.Errorf("wrong hash: expected %x, got %x", exp, got)
|
|
}
|
|
return err
|
|
}
|
|
|
|
//
|
|
func BenchmarkBMT(t *testing.B) {
|
|
for size := 4096; size >= 128; size /= 2 {
|
|
t.Run(fmt.Sprintf("%v_size_%v", "SHA3", size), func(t *testing.B) {
|
|
benchmarkSHA3(t, size)
|
|
})
|
|
t.Run(fmt.Sprintf("%v_size_%v", "Baseline", size), func(t *testing.B) {
|
|
benchmarkBMTBaseline(t, size)
|
|
})
|
|
t.Run(fmt.Sprintf("%v_size_%v", "REF", size), func(t *testing.B) {
|
|
benchmarkRefHasher(t, size)
|
|
})
|
|
t.Run(fmt.Sprintf("%v_size_%v", "BMT", size), func(t *testing.B) {
|
|
benchmarkBMT(t, size)
|
|
})
|
|
}
|
|
}
|
|
|
|
type whenHash = int
|
|
|
|
const (
|
|
first whenHash = iota
|
|
last
|
|
random
|
|
)
|
|
|
|
func BenchmarkBMTAsync(t *testing.B) {
|
|
whs := []whenHash{first, last, random}
|
|
for size := 4096; size >= 128; size /= 2 {
|
|
for _, wh := range whs {
|
|
for _, double := range []bool{false, true} {
|
|
t.Run(fmt.Sprintf("double_%v_hash_when_%v_size_%v", double, wh, size), func(t *testing.B) {
|
|
benchmarkBMTAsync(t, size, wh, double)
|
|
})
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
func BenchmarkPool(t *testing.B) {
|
|
caps := []int{1, PoolSize}
|
|
for size := 4096; size >= 128; size /= 2 {
|
|
for _, c := range caps {
|
|
t.Run(fmt.Sprintf("poolsize_%v_size_%v", c, size), func(t *testing.B) {
|
|
benchmarkPool(t, c, size)
|
|
})
|
|
}
|
|
}
|
|
}
|
|
|
|
// benchmarks simple sha3 hash on chunks
|
|
func benchmarkSHA3(t *testing.B, n int) {
|
|
data := newData(n)
|
|
hasher := sha3.NewKeccak256
|
|
h := hasher()
|
|
|
|
t.ReportAllocs()
|
|
t.ResetTimer()
|
|
for i := 0; i < t.N; i++ {
|
|
doSum(h, nil, data)
|
|
}
|
|
}
|
|
|
|
// benchmarks the minimum hashing time for a balanced (for simplicity) BMT
|
|
// by doing count/segmentsize parallel hashings of 2*segmentsize bytes
|
|
// doing it on n PoolSize each reusing the base hasher
|
|
// the premise is that this is the minimum computation needed for a BMT
|
|
// therefore this serves as a theoretical optimum for concurrent implementations
|
|
func benchmarkBMTBaseline(t *testing.B, n int) {
|
|
hasher := sha3.NewKeccak256
|
|
hashSize := hasher().Size()
|
|
data := newData(hashSize)
|
|
|
|
t.ReportAllocs()
|
|
t.ResetTimer()
|
|
for i := 0; i < t.N; i++ {
|
|
count := int32((n-1)/hashSize + 1)
|
|
wg := sync.WaitGroup{}
|
|
wg.Add(PoolSize)
|
|
var i int32
|
|
for j := 0; j < PoolSize; j++ {
|
|
go func() {
|
|
defer wg.Done()
|
|
h := hasher()
|
|
for atomic.AddInt32(&i, 1) < count {
|
|
doSum(h, nil, data)
|
|
}
|
|
}()
|
|
}
|
|
wg.Wait()
|
|
}
|
|
}
|
|
|
|
// benchmarks BMT Hasher
|
|
func benchmarkBMT(t *testing.B, n int) {
|
|
data := newData(n)
|
|
hasher := sha3.NewKeccak256
|
|
pool := NewTreePool(hasher, segmentCount, PoolSize)
|
|
bmt := New(pool)
|
|
|
|
t.ReportAllocs()
|
|
t.ResetTimer()
|
|
for i := 0; i < t.N; i++ {
|
|
syncHash(bmt, nil, data)
|
|
}
|
|
}
|
|
|
|
// benchmarks BMT hasher with asynchronous concurrent segment/section writes
|
|
func benchmarkBMTAsync(t *testing.B, n int, wh whenHash, double bool) {
|
|
data := newData(n)
|
|
hasher := sha3.NewKeccak256
|
|
pool := NewTreePool(hasher, segmentCount, PoolSize)
|
|
bmt := New(pool).NewAsyncWriter(double)
|
|
idxs, segments := splitAndShuffle(bmt.SectionSize(), data)
|
|
shuffle(len(idxs), func(i int, j int) {
|
|
idxs[i], idxs[j] = idxs[j], idxs[i]
|
|
})
|
|
|
|
t.ReportAllocs()
|
|
t.ResetTimer()
|
|
for i := 0; i < t.N; i++ {
|
|
asyncHash(bmt, nil, n, wh, idxs, segments)
|
|
}
|
|
}
|
|
|
|
// benchmarks 100 concurrent bmt hashes with pool capacity
|
|
func benchmarkPool(t *testing.B, poolsize, n int) {
|
|
data := newData(n)
|
|
hasher := sha3.NewKeccak256
|
|
pool := NewTreePool(hasher, segmentCount, poolsize)
|
|
cycles := 100
|
|
|
|
t.ReportAllocs()
|
|
t.ResetTimer()
|
|
wg := sync.WaitGroup{}
|
|
for i := 0; i < t.N; i++ {
|
|
wg.Add(cycles)
|
|
for j := 0; j < cycles; j++ {
|
|
go func() {
|
|
defer wg.Done()
|
|
bmt := New(pool)
|
|
syncHash(bmt, nil, data)
|
|
}()
|
|
}
|
|
wg.Wait()
|
|
}
|
|
}
|
|
|
|
// benchmarks the reference hasher
|
|
func benchmarkRefHasher(t *testing.B, n int) {
|
|
data := newData(n)
|
|
hasher := sha3.NewKeccak256
|
|
rbmt := NewRefHasher(hasher, 128)
|
|
|
|
t.ReportAllocs()
|
|
t.ResetTimer()
|
|
for i := 0; i < t.N; i++ {
|
|
rbmt.Hash(data)
|
|
}
|
|
}
|
|
|
|
func newData(bufferSize int) []byte {
|
|
data := make([]byte, bufferSize)
|
|
_, err := io.ReadFull(crand.Reader, data)
|
|
if err != nil {
|
|
panic(err.Error())
|
|
}
|
|
return data
|
|
}
|
|
|
|
// Hash hashes the data and the span using the bmt hasher
|
|
func syncHash(h *Hasher, span, data []byte) []byte {
|
|
h.ResetWithLength(span)
|
|
h.Write(data)
|
|
return h.Sum(nil)
|
|
}
|
|
|
|
func splitAndShuffle(secsize int, data []byte) (idxs []int, segments [][]byte) {
|
|
l := len(data)
|
|
n := l / secsize
|
|
if l%secsize > 0 {
|
|
n++
|
|
}
|
|
for i := 0; i < n; i++ {
|
|
idxs = append(idxs, i)
|
|
end := (i + 1) * secsize
|
|
if end > l {
|
|
end = l
|
|
}
|
|
section := data[i*secsize : end]
|
|
segments = append(segments, section)
|
|
}
|
|
shuffle(n, func(i int, j int) {
|
|
idxs[i], idxs[j] = idxs[j], idxs[i]
|
|
})
|
|
return idxs, segments
|
|
}
|
|
|
|
// splits the input data performs a random shuffle to mock async section writes
|
|
func asyncHashRandom(bmt SectionWriter, span []byte, data []byte, wh whenHash) (s []byte) {
|
|
idxs, segments := splitAndShuffle(bmt.SectionSize(), data)
|
|
return asyncHash(bmt, span, len(data), wh, idxs, segments)
|
|
}
|
|
|
|
// mock for async section writes for BMT SectionWriter
|
|
// requires a permutation (a random shuffle) of list of all indexes of segments
|
|
// and writes them in order to the appropriate section
|
|
// the Sum function is called according to the wh parameter (first, last, random [relative to segment writes])
|
|
func asyncHash(bmt SectionWriter, span []byte, l int, wh whenHash, idxs []int, segments [][]byte) (s []byte) {
|
|
bmt.Reset()
|
|
if l == 0 {
|
|
return bmt.Sum(nil, l, span)
|
|
}
|
|
c := make(chan []byte, 1)
|
|
hashf := func() {
|
|
c <- bmt.Sum(nil, l, span)
|
|
}
|
|
maxsize := len(idxs)
|
|
var r int
|
|
if wh == random {
|
|
r = rand.Intn(maxsize)
|
|
}
|
|
for i, idx := range idxs {
|
|
bmt.Write(idx, segments[idx])
|
|
if (wh == first || wh == random) && i == r {
|
|
go hashf()
|
|
}
|
|
}
|
|
if wh == last {
|
|
return bmt.Sum(nil, l, span)
|
|
}
|
|
return <-c
|
|
}
|
|
|
|
// this is also in swarm/network_test.go
|
|
// shuffle pseudo-randomizes the order of elements.
|
|
// n is the number of elements. Shuffle panics if n < 0.
|
|
// swap swaps the elements with indexes i and j.
|
|
func shuffle(n int, swap func(i, j int)) {
|
|
if n < 0 {
|
|
panic("invalid argument to Shuffle")
|
|
}
|
|
|
|
// Fisher-Yates shuffle: https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle
|
|
// Shuffle really ought not be called with n that doesn't fit in 32 bits.
|
|
// Not only will it take a very long time, but with 2³¹! possible permutations,
|
|
// there's no way that any PRNG can have a big enough internal state to
|
|
// generate even a minuscule percentage of the possible permutations.
|
|
// Nevertheless, the right API signature accepts an int n, so handle it as best we can.
|
|
i := n - 1
|
|
for ; i > 1<<31-1-1; i-- {
|
|
j := int(rand.Int63n(int64(i + 1)))
|
|
swap(i, j)
|
|
}
|
|
for ; i > 0; i-- {
|
|
j := int(rand.Int31n(int32(i + 1)))
|
|
swap(i, j)
|
|
}
|
|
}
|