// Copyright (c) 2014-2016 The btcsuite developers // Use of this source code is governed by an ISC // license that can be found in the LICENSE file. package mining import ( "bytes" "container/heap" "fmt" "time" "github.com/btcsuite/btcd/blockchain" "github.com/btcsuite/btcd/chaincfg" "github.com/btcsuite/btcd/chaincfg/chainhash" "github.com/btcsuite/btcd/txscript" "github.com/btcsuite/btcd/wire" "github.com/btcsuite/btcutil" ) const ( // MinHighPriority is the minimum priority value that allows a // transaction to be considered high priority. MinHighPriority = btcutil.SatoshiPerBitcoin * 144.0 / 250 // blockHeaderOverhead is the max number of bytes it takes to serialize // a block header and max possible transaction count. blockHeaderOverhead = wire.MaxBlockHeaderPayload + wire.MaxVarIntPayload // CoinbaseFlags is added to the coinbase script of a generated block // and is used to monitor BIP16 support as well as blocks that are // generated via btcd. CoinbaseFlags = "/P2SH/btcd/" ) // TxDesc is a descriptor about a transaction in a transaction source along with // additional metadata. type TxDesc struct { // Tx is the transaction associated with the entry. Tx *btcutil.Tx // Added is the time when the entry was added to the source pool. Added time.Time // Height is the block height when the entry was added to the the source // pool. Height int32 // Fee is the total fee the transaction associated with the entry pays. Fee int64 // FeePerKB is the fee the transaction pays in Satoshi per 1000 bytes. FeePerKB int64 } // TxSource represents a source of transactions to consider for inclusion in // new blocks. // // The interface contract requires that all of these methods are safe for // concurrent access with respect to the source. type TxSource interface { // LastUpdated returns the last time a transaction was added to or // removed from the source pool. LastUpdated() time.Time // MiningDescs returns a slice of mining descriptors for all the // transactions in the source pool. MiningDescs() []*TxDesc // HaveTransaction returns whether or not the passed transaction hash // exists in the source pool. HaveTransaction(hash *chainhash.Hash) bool } // txPrioItem houses a transaction along with extra information that allows the // transaction to be prioritized and track dependencies on other transactions // which have not been mined into a block yet. type txPrioItem struct { tx *btcutil.Tx fee int64 priority float64 feePerKB int64 // dependsOn holds a map of transaction hashes which this one depends // on. It will only be set when the transaction references other // transactions in the source pool and hence must come after them in // a block. dependsOn map[chainhash.Hash]struct{} } // txPriorityQueueLessFunc describes a function that can be used as a compare // function for a transaction priority queue (txPriorityQueue). type txPriorityQueueLessFunc func(*txPriorityQueue, int, int) bool // txPriorityQueue implements a priority queue of txPrioItem elements that // supports an arbitrary compare function as defined by txPriorityQueueLessFunc. type txPriorityQueue struct { lessFunc txPriorityQueueLessFunc items []*txPrioItem } // Len returns the number of items in the priority queue. It is part of the // heap.Interface implementation. func (pq *txPriorityQueue) Len() int { return len(pq.items) } // Less returns whether the item in the priority queue with index i should sort // before the item with index j by deferring to the assigned less function. It // is part of the heap.Interface implementation. func (pq *txPriorityQueue) Less(i, j int) bool { return pq.lessFunc(pq, i, j) } // Swap swaps the items at the passed indices in the priority queue. It is // part of the heap.Interface implementation. func (pq *txPriorityQueue) Swap(i, j int) { pq.items[i], pq.items[j] = pq.items[j], pq.items[i] } // Push pushes the passed item onto the priority queue. It is part of the // heap.Interface implementation. func (pq *txPriorityQueue) Push(x interface{}) { pq.items = append(pq.items, x.(*txPrioItem)) } // Pop removes the highest priority item (according to Less) from the priority // queue and returns it. It is part of the heap.Interface implementation. func (pq *txPriorityQueue) Pop() interface{} { n := len(pq.items) item := pq.items[n-1] pq.items[n-1] = nil pq.items = pq.items[0 : n-1] return item } // SetLessFunc sets the compare function for the priority queue to the provided // function. It also invokes heap.Init on the priority queue using the new // function so it can immediately be used with heap.Push/Pop. func (pq *txPriorityQueue) SetLessFunc(lessFunc txPriorityQueueLessFunc) { pq.lessFunc = lessFunc heap.Init(pq) } // txPQByPriority sorts a txPriorityQueue by transaction priority and then fees // per kilobyte. func txPQByPriority(pq *txPriorityQueue, i, j int) bool { // Using > here so that pop gives the highest priority item as opposed // to the lowest. Sort by priority first, then fee. if pq.items[i].priority == pq.items[j].priority { return pq.items[i].feePerKB > pq.items[j].feePerKB } return pq.items[i].priority > pq.items[j].priority } // txPQByFee sorts a txPriorityQueue by fees per kilobyte and then transaction // priority. func txPQByFee(pq *txPriorityQueue, i, j int) bool { // Using > here so that pop gives the highest fee item as opposed // to the lowest. Sort by fee first, then priority. if pq.items[i].feePerKB == pq.items[j].feePerKB { return pq.items[i].priority > pq.items[j].priority } return pq.items[i].feePerKB > pq.items[j].feePerKB } // newTxPriorityQueue returns a new transaction priority queue that reserves the // passed amount of space for the elements. The new priority queue uses either // the txPQByPriority or the txPQByFee compare function depending on the // sortByFee parameter and is already initialized for use with heap.Push/Pop. // The priority queue can grow larger than the reserved space, but extra copies // of the underlying array can be avoided by reserving a sane value. func newTxPriorityQueue(reserve int, sortByFee bool) *txPriorityQueue { pq := &txPriorityQueue{ items: make([]*txPrioItem, 0, reserve), } if sortByFee { pq.SetLessFunc(txPQByFee) } else { pq.SetLessFunc(txPQByPriority) } return pq } // BlockTemplate houses a block that has yet to be solved along with additional // details about the fees and the number of signature operations for each // transaction in the block. type BlockTemplate struct { // Block is a block that is ready to be solved by miners. Thus, it is // completely valid with the exception of satisfying the proof-of-work // requirement. Block *wire.MsgBlock // Fees contains the amount of fees each transaction in the generated // template pays in base units. Since the first transaction is the // coinbase, the first entry (offset 0) will contain the negative of the // sum of the fees of all other transactions. Fees []int64 // SigOpCosts contains the number of signature operations each // transaction in the generated template performs. SigOpCosts []int64 // Height is the height at which the block template connects to the main // chain. Height int32 // ValidPayAddress indicates whether or not the template coinbase pays // to an address or is redeemable by anyone. See the documentation on // NewBlockTemplate for details on which this can be useful to generate // templates without a coinbase payment address. ValidPayAddress bool // WitnessCommitment is a commitment to the witness data (if any) // within the block. This field will only be populted once segregated // witness has been activated, and the block contains a transaction // which has witness data. WitnessCommitment []byte } // mergeUtxoView adds all of the entries in view to viewA. The result is that // viewA will contain all of its original entries plus all of the entries // in viewB. It will replace any entries in viewB which also exist in viewA // if the entry in viewA is fully spent. func mergeUtxoView(viewA *blockchain.UtxoViewpoint, viewB *blockchain.UtxoViewpoint) { viewAEntries := viewA.Entries() for hash, entryB := range viewB.Entries() { if entryA, exists := viewAEntries[hash]; !exists || entryA == nil || entryA.IsFullySpent() { viewAEntries[hash] = entryB } } } // standardCoinbaseScript returns a standard script suitable for use as the // signature script of the coinbase transaction of a new block. In particular, // it starts with the block height that is required by version 2 blocks and adds // the extra nonce as well as additional coinbase flags. func standardCoinbaseScript(nextBlockHeight int32, extraNonce uint64) ([]byte, error) { return txscript.NewScriptBuilder().AddInt64(int64(nextBlockHeight)). AddInt64(int64(extraNonce)).AddData([]byte(CoinbaseFlags)). Script() } // createCoinbaseTx returns a coinbase transaction paying an appropriate subsidy // based on the passed block height to the provided address. When the address // is nil, the coinbase transaction will instead be redeemable by anyone. // // See the comment for NewBlockTemplate for more information about why the nil // address handling is useful. func createCoinbaseTx(params *chaincfg.Params, coinbaseScript []byte, nextBlockHeight int32, addr btcutil.Address) (*btcutil.Tx, error) { // Create the script to pay to the provided payment address if one was // specified. Otherwise create a script that allows the coinbase to be // redeemable by anyone. var pkScript []byte if addr != nil { var err error pkScript, err = txscript.PayToAddrScript(addr) if err != nil { return nil, err } } else { var err error scriptBuilder := txscript.NewScriptBuilder() pkScript, err = scriptBuilder.AddOp(txscript.OP_TRUE).Script() if err != nil { return nil, err } } tx := wire.NewMsgTx(wire.TxVersion) tx.AddTxIn(&wire.TxIn{ // Coinbase transactions have no inputs, so previous outpoint is // zero hash and max index. PreviousOutPoint: *wire.NewOutPoint(&chainhash.Hash{}, wire.MaxPrevOutIndex), SignatureScript: coinbaseScript, Sequence: wire.MaxTxInSequenceNum, }) tx.AddTxOut(&wire.TxOut{ Value: blockchain.CalcBlockSubsidy(nextBlockHeight, params), PkScript: pkScript, }) return btcutil.NewTx(tx), nil } // spendTransaction updates the passed view by marking the inputs to the passed // transaction as spent. It also adds all outputs in the passed transaction // which are not provably unspendable as available unspent transaction outputs. func spendTransaction(utxoView *blockchain.UtxoViewpoint, tx *btcutil.Tx, height int32) error { for _, txIn := range tx.MsgTx().TxIn { originHash := &txIn.PreviousOutPoint.Hash originIndex := txIn.PreviousOutPoint.Index entry := utxoView.LookupEntry(originHash) if entry != nil { entry.SpendOutput(originIndex) } } utxoView.AddTxOuts(tx, height) return nil } // logSkippedDeps logs any dependencies which are also skipped as a result of // skipping a transaction while generating a block template at the trace level. func logSkippedDeps(tx *btcutil.Tx, deps map[chainhash.Hash]*txPrioItem) { if deps == nil { return } for _, item := range deps { log.Tracef("Skipping tx %s since it depends on %s\n", item.tx.Hash(), tx.Hash()) } } // MinimumMedianTime returns the minimum allowed timestamp for a block building // on the end of the provided best chain. In particular, it is one second after // the median timestamp of the last several blocks per the chain consensus // rules. func MinimumMedianTime(chainState *blockchain.BestState) time.Time { return chainState.MedianTime.Add(time.Second) } // medianAdjustedTime returns the current time adjusted to ensure it is at least // one second after the median timestamp of the last several blocks per the // chain consensus rules. func medianAdjustedTime(chainState *blockchain.BestState, timeSource blockchain.MedianTimeSource) time.Time { // The timestamp for the block must not be before the median timestamp // of the last several blocks. Thus, choose the maximum between the // current time and one second after the past median time. The current // timestamp is truncated to a second boundary before comparison since a // block timestamp does not supported a precision greater than one // second. newTimestamp := timeSource.AdjustedTime() minTimestamp := MinimumMedianTime(chainState) if newTimestamp.Before(minTimestamp) { newTimestamp = minTimestamp } return newTimestamp } // BlkTmplGenerator provides a type that can be used to generate block templates // based on a given mining policy and source of transactions to choose from. // It also houses additional state required in order to ensure the templates // are built on top of the current best chain and adhere to the consensus rules. type BlkTmplGenerator struct { policy *Policy chainParams *chaincfg.Params txSource TxSource chain *blockchain.BlockChain timeSource blockchain.MedianTimeSource sigCache *txscript.SigCache hashCache *txscript.HashCache } // NewBlkTmplGenerator returns a new block template generator for the given // policy using transactions from the provided transaction source. // // The additional state-related fields are required in order to ensure the // templates are built on top of the current best chain and adhere to the // consensus rules. func NewBlkTmplGenerator(policy *Policy, params *chaincfg.Params, txSource TxSource, chain *blockchain.BlockChain, timeSource blockchain.MedianTimeSource, sigCache *txscript.SigCache, hashCache *txscript.HashCache) *BlkTmplGenerator { return &BlkTmplGenerator{ policy: policy, chainParams: params, txSource: txSource, chain: chain, timeSource: timeSource, sigCache: sigCache, hashCache: hashCache, } } // NewBlockTemplate returns a new block template that is ready to be solved // using the transactions from the passed transaction source pool and a coinbase // that either pays to the passed address if it is not nil, or a coinbase that // is redeemable by anyone if the passed address is nil. The nil address // functionality is useful since there are cases such as the getblocktemplate // RPC where external mining software is responsible for creating their own // coinbase which will replace the one generated for the block template. Thus // the need to have configured address can be avoided. // // The transactions selected and included are prioritized according to several // factors. First, each transaction has a priority calculated based on its // value, age of inputs, and size. Transactions which consist of larger // amounts, older inputs, and small sizes have the highest priority. Second, a // fee per kilobyte is calculated for each transaction. Transactions with a // higher fee per kilobyte are preferred. Finally, the block generation related // policy settings are all taken into account. // // Transactions which only spend outputs from other transactions already in the // block chain are immediately added to a priority queue which either // prioritizes based on the priority (then fee per kilobyte) or the fee per // kilobyte (then priority) depending on whether or not the BlockPrioritySize // policy setting allots space for high-priority transactions. Transactions // which spend outputs from other transactions in the source pool are added to a // dependency map so they can be added to the priority queue once the // transactions they depend on have been included. // // Once the high-priority area (if configured) has been filled with // transactions, or the priority falls below what is considered high-priority, // the priority queue is updated to prioritize by fees per kilobyte (then // priority). // // When the fees per kilobyte drop below the TxMinFreeFee policy setting, the // transaction will be skipped unless the BlockMinSize policy setting is // nonzero, in which case the block will be filled with the low-fee/free // transactions until the block size reaches that minimum size. // // Any transactions which would cause the block to exceed the BlockMaxSize // policy setting, exceed the maximum allowed signature operations per block, or // otherwise cause the block to be invalid are skipped. // // Given the above, a block generated by this function is of the following form: // // ----------------------------------- -- -- // | Coinbase Transaction | | | // |-----------------------------------| | | // | | | | ----- policy.BlockPrioritySize // | High-priority Transactions | | | // | | | | // |-----------------------------------| | -- // | | | // | | | // | | |--- policy.BlockMaxSize // | Transactions prioritized by fee | | // | until <= policy.TxMinFreeFee | | // | | | // | | | // | | | // |-----------------------------------| | // | Low-fee/Non high-priority (free) | | // | transactions (while block size | | // | <= policy.BlockMinSize) | | // ----------------------------------- -- func (g *BlkTmplGenerator) NewBlockTemplate(payToAddress btcutil.Address) (*BlockTemplate, error) { // Extend the most recently known best block. best := g.chain.BestSnapshot() nextBlockHeight := best.Height + 1 // Create a standard coinbase transaction paying to the provided // address. NOTE: The coinbase value will be updated to include the // fees from the selected transactions later after they have actually // been selected. It is created here to detect any errors early // before potentially doing a lot of work below. The extra nonce helps // ensure the transaction is not a duplicate transaction (paying the // same value to the same public key address would otherwise be an // identical transaction for block version 1). extraNonce := uint64(0) coinbaseScript, err := standardCoinbaseScript(nextBlockHeight, extraNonce) if err != nil { return nil, err } coinbaseTx, err := createCoinbaseTx(g.chainParams, coinbaseScript, nextBlockHeight, payToAddress) if err != nil { return nil, err } coinbaseSigOpCost := int64(blockchain.CountSigOps(coinbaseTx)) * blockchain.WitnessScaleFactor // Get the current source transactions and create a priority queue to // hold the transactions which are ready for inclusion into a block // along with some priority related and fee metadata. Reserve the same // number of items that are available for the priority queue. Also, // choose the initial sort order for the priority queue based on whether // or not there is an area allocated for high-priority transactions. sourceTxns := g.txSource.MiningDescs() sortedByFee := g.policy.BlockPrioritySize == 0 priorityQueue := newTxPriorityQueue(len(sourceTxns), sortedByFee) // Create a slice to hold the transactions to be included in the // generated block with reserved space. Also create a utxo view to // house all of the input transactions so multiple lookups can be // avoided. blockTxns := make([]*btcutil.Tx, 0, len(sourceTxns)) blockTxns = append(blockTxns, coinbaseTx) blockUtxos := blockchain.NewUtxoViewpoint() // dependers is used to track transactions which depend on another // transaction in the source pool. This, in conjunction with the // dependsOn map kept with each dependent transaction helps quickly // determine which dependent transactions are now eligible for inclusion // in the block once each transaction has been included. dependers := make(map[chainhash.Hash]map[chainhash.Hash]*txPrioItem) // Create slices to hold the fees and number of signature operations // for each of the selected transactions and add an entry for the // coinbase. This allows the code below to simply append details about // a transaction as it is selected for inclusion in the final block. // However, since the total fees aren't known yet, use a dummy value for // the coinbase fee which will be updated later. txFees := make([]int64, 0, len(sourceTxns)) txSigOpCosts := make([]int64, 0, len(sourceTxns)) txFees = append(txFees, -1) // Updated once known txSigOpCosts = append(txSigOpCosts, coinbaseSigOpCost) log.Debugf("Considering %d transactions for inclusion to new block", len(sourceTxns)) mempoolLoop: for _, txDesc := range sourceTxns { // A block can't have more than one coinbase or contain // non-finalized transactions. tx := txDesc.Tx if blockchain.IsCoinBase(tx) { log.Tracef("Skipping coinbase tx %s", tx.Hash()) continue } if !blockchain.IsFinalizedTransaction(tx, nextBlockHeight, g.timeSource.AdjustedTime()) { log.Tracef("Skipping non-finalized tx %s", tx.Hash()) continue } // Fetch all of the utxos referenced by the this transaction. // NOTE: This intentionally does not fetch inputs from the // mempool since a transaction which depends on other // transactions in the mempool must come after those // dependencies in the final generated block. utxos, err := g.chain.FetchUtxoView(tx) if err != nil { log.Warnf("Unable to fetch utxo view for tx %s: %v", tx.Hash(), err) continue } // Setup dependencies for any transactions which reference // other transactions in the mempool so they can be properly // ordered below. prioItem := &txPrioItem{tx: tx} for _, txIn := range tx.MsgTx().TxIn { originHash := &txIn.PreviousOutPoint.Hash originIndex := txIn.PreviousOutPoint.Index utxoEntry := utxos.LookupEntry(originHash) if utxoEntry == nil || utxoEntry.IsOutputSpent(originIndex) { if !g.txSource.HaveTransaction(originHash) { log.Tracef("Skipping tx %s because it "+ "references unspent output %s "+ "which is not available", tx.Hash(), txIn.PreviousOutPoint) continue mempoolLoop } // The transaction is referencing another // transaction in the source pool, so setup an // ordering dependency. deps, exists := dependers[*originHash] if !exists { deps = make(map[chainhash.Hash]*txPrioItem) dependers[*originHash] = deps } deps[*prioItem.tx.Hash()] = prioItem if prioItem.dependsOn == nil { prioItem.dependsOn = make( map[chainhash.Hash]struct{}) } prioItem.dependsOn[*originHash] = struct{}{} // Skip the check below. We already know the // referenced transaction is available. continue } } // Calculate the final transaction priority using the input // value age sum as well as the adjusted transaction size. The // formula is: sum(inputValue * inputAge) / adjustedTxSize prioItem.priority = CalcPriority(tx.MsgTx(), utxos, nextBlockHeight) // Calculate the fee in Satoshi/kB. prioItem.feePerKB = txDesc.FeePerKB prioItem.fee = txDesc.Fee // Add the transaction to the priority queue to mark it ready // for inclusion in the block unless it has dependencies. if prioItem.dependsOn == nil { heap.Push(priorityQueue, prioItem) } // Merge the referenced outputs from the input transactions to // this transaction into the block utxo view. This allows the // code below to avoid a second lookup. mergeUtxoView(blockUtxos, utxos) } log.Tracef("Priority queue len %d, dependers len %d", priorityQueue.Len(), len(dependers)) // The starting block size is the size of the block header plus the max // possible transaction count size, plus the size of the coinbase // transaction. blockWeight := uint32((blockHeaderOverhead * blockchain.WitnessScaleFactor) + blockchain.GetTransactionWeight(coinbaseTx)) blockSigOpCost := coinbaseSigOpCost totalFees := int64(0) // Query the version bits state to see if segwit has been activated, if // so then this means that we'll include any transactions with witness // data in the mempool, and also add the witness commitment as an // OP_RETURN output in the coinbase transaction. segwitState, err := g.chain.ThresholdState(chaincfg.DeploymentSegwit) if err != nil { return nil, err } segwitActive := segwitState == blockchain.ThresholdActive witnessIncluded := false // Choose which transactions make it into the block. for priorityQueue.Len() > 0 { // Grab the highest priority (or highest fee per kilobyte // depending on the sort order) transaction. prioItem := heap.Pop(priorityQueue).(*txPrioItem) tx := prioItem.tx switch { // If segregated witness has not been activated yet, then we // shouldn't include any witness transactions in the block. case !segwitActive && tx.HasWitness(): continue // Otherwise, Keep track of if we've included a transaction // with witness data or not. If so, then we'll need to include // the witness commitment as the last output in the coinbase // transaction. case segwitActive && !witnessIncluded && tx.HasWitness(): // If we're about to include a transaction bearing // witness data, then we'll also need to include a // witness commitment in the coinbase transaction. // Therefore, we account for the additional weight // within the block with a model coinbase tx with a // witness commitment. coinbaseCopy := btcutil.NewTx(coinbaseTx.MsgTx().Copy()) coinbaseCopy.MsgTx().TxIn[0].Witness = [][]byte{ bytes.Repeat([]byte("a"), blockchain.CoinbaseWitnessDataLen), } coinbaseCopy.MsgTx().AddTxOut(&wire.TxOut{ PkScript: bytes.Repeat([]byte("a"), blockchain.CoinbaseWitnessPkScriptLength), }) // In order to accurately account for the weight // addition due to this coinbase transaction, we'll add // the difference of the transaction before and after // the addition of the commitment to the block weight. weightDiff := blockchain.GetTransactionWeight(coinbaseCopy) - blockchain.GetTransactionWeight(coinbaseTx) blockWeight += uint32(weightDiff) witnessIncluded = true } // Grab any transactions which depend on this one. deps := dependers[*tx.Hash()] // Enforce maximum block size. Also check for overflow. txWeight := uint32(blockchain.GetTransactionWeight(tx)) blockPlusTxWeight := blockWeight + txWeight if blockPlusTxWeight < blockWeight || blockPlusTxWeight >= g.policy.BlockMaxWeight { log.Tracef("Skipping tx %s because it would exceed "+ "the max block weight", tx.Hash()) logSkippedDeps(tx, deps) continue } // Enforce maximum signature operation cost per block. Also // check for overflow. sigOpCost, err := blockchain.GetSigOpCost(tx, false, blockUtxos, true, segwitActive) if err != nil { log.Tracef("Skipping tx %s due to error in "+ "GetSigOpCost: %v", tx.Hash(), err) logSkippedDeps(tx, deps) continue } if blockSigOpCost+int64(sigOpCost) < blockSigOpCost || blockSigOpCost+int64(sigOpCost) > blockchain.MaxBlockSigOpsCost { log.Tracef("Skipping tx %s because it would "+ "exceed the maximum sigops per block", tx.Hash()) logSkippedDeps(tx, deps) continue } // Skip free transactions once the block is larger than the // minimum block size. if sortedByFee && prioItem.feePerKB < int64(g.policy.TxMinFreeFee) && blockPlusTxWeight >= g.policy.BlockMinWeight { log.Tracef("Skipping tx %s with feePerKB %d "+ "< TxMinFreeFee %d and block weight %d >= "+ "minBlockWeight %d", tx.Hash(), prioItem.feePerKB, g.policy.TxMinFreeFee, blockPlusTxWeight, g.policy.BlockMinWeight) logSkippedDeps(tx, deps) continue } // Prioritize by fee per kilobyte once the block is larger than // the priority size or there are no more high-priority // transactions. if !sortedByFee && (blockPlusTxWeight >= g.policy.BlockPrioritySize || prioItem.priority <= MinHighPriority) { log.Tracef("Switching to sort by fees per "+ "kilobyte blockSize %d >= BlockPrioritySize "+ "%d || priority %.2f <= minHighPriority %.2f", blockPlusTxWeight, g.policy.BlockPrioritySize, prioItem.priority, MinHighPriority) sortedByFee = true priorityQueue.SetLessFunc(txPQByFee) // Put the transaction back into the priority queue and // skip it so it is re-priortized by fees if it won't // fit into the high-priority section or the priority // is too low. Otherwise this transaction will be the // final one in the high-priority section, so just fall // though to the code below so it is added now. if blockPlusTxWeight > g.policy.BlockPrioritySize || prioItem.priority < MinHighPriority { heap.Push(priorityQueue, prioItem) continue } } // Ensure the transaction inputs pass all of the necessary // preconditions before allowing it to be added to the block. _, err = blockchain.CheckTransactionInputs(tx, nextBlockHeight, blockUtxos, g.chainParams) if err != nil { log.Tracef("Skipping tx %s due to error in "+ "CheckTransactionInputs: %v", tx.Hash(), err) logSkippedDeps(tx, deps) continue } err = blockchain.ValidateTransactionScripts(tx, blockUtxos, txscript.StandardVerifyFlags, g.sigCache, g.hashCache) if err != nil { log.Tracef("Skipping tx %s due to error in "+ "ValidateTransactionScripts: %v", tx.Hash(), err) logSkippedDeps(tx, deps) continue } // Spend the transaction inputs in the block utxo view and add // an entry for it to ensure any transactions which reference // this one have it available as an input and can ensure they // aren't double spending. spendTransaction(blockUtxos, tx, nextBlockHeight) // Add the transaction to the block, increment counters, and // save the fees and signature operation counts to the block // template. blockTxns = append(blockTxns, tx) blockWeight += txWeight blockSigOpCost += int64(sigOpCost) totalFees += prioItem.fee txFees = append(txFees, prioItem.fee) txSigOpCosts = append(txSigOpCosts, int64(sigOpCost)) log.Tracef("Adding tx %s (priority %.2f, feePerKB %.2f)", prioItem.tx.Hash(), prioItem.priority, prioItem.feePerKB) // Add transactions which depend on this one (and also do not // have any other unsatisified dependencies) to the priority // queue. for _, item := range deps { // Add the transaction to the priority queue if there // are no more dependencies after this one. delete(item.dependsOn, *tx.Hash()) if len(item.dependsOn) == 0 { heap.Push(priorityQueue, item) } } } // Now that the actual transactions have been selected, update the // block weight for the real transaction count and coinbase value with // the total fees accordingly. blockWeight -= wire.MaxVarIntPayload - (uint32(wire.VarIntSerializeSize(uint64(len(blockTxns)))) * blockchain.WitnessScaleFactor) coinbaseTx.MsgTx().TxOut[0].Value += totalFees txFees[0] = -totalFees // If segwit is active and we included transactions with witness data, // then we'll need to include a commitment to the witness data in an // OP_RETURN output within the coinbase transaction. var witnessCommitment []byte if witnessIncluded { // The witness of the coinbase transaction MUST be exactly 32-bytes // of all zeroes. var witnessNonce [blockchain.CoinbaseWitnessDataLen]byte coinbaseTx.MsgTx().TxIn[0].Witness = wire.TxWitness{witnessNonce[:]} // Next, obtain the merkle root of a tree which consists of the // wtxid of all transactions in the block. The coinbase // transaction will have a special wtxid of all zeroes. witnessMerkleTree := blockchain.BuildMerkleTreeStore(blockTxns, true) witnessMerkleRoot := witnessMerkleTree[len(witnessMerkleTree)-1] // The preimage to the witness commitment is: // witnessRoot || coinbaseWitness var witnessPreimage [64]byte copy(witnessPreimage[:32], witnessMerkleRoot[:]) copy(witnessPreimage[32:], witnessNonce[:]) // The witness commitment itself is the double-sha256 of the // witness preimage generated above. With the commitment // generated, the witness script for the output is: OP_RETURN // OP_DATA_36 {0xaa21a9ed || witnessCommitment}. The leading // prefix is refered to as the "witness magic bytes". witnessCommitment = chainhash.DoubleHashB(witnessPreimage[:]) witnessScript := append(blockchain.WitnessMagicBytes, witnessCommitment...) // Finally, create the OP_RETURN carrying witness commitment // output as an additional output within the coinbase. commitmentOutput := &wire.TxOut{ Value: 0, PkScript: witnessScript, } coinbaseTx.MsgTx().TxOut = append(coinbaseTx.MsgTx().TxOut, commitmentOutput) } // Calculate the required difficulty for the block. The timestamp // is potentially adjusted to ensure it comes after the median time of // the last several blocks per the chain consensus rules. ts := medianAdjustedTime(best, g.timeSource) reqDifficulty, err := g.chain.CalcNextRequiredDifficulty(ts) if err != nil { return nil, err } // Calculate the next expected block version based on the state of the // rule change deployments. nextBlockVersion, err := g.chain.CalcNextBlockVersion() if err != nil { return nil, err } // Create a new block ready to be solved. merkles := blockchain.BuildMerkleTreeStore(blockTxns, false) var msgBlock wire.MsgBlock msgBlock.Header = wire.BlockHeader{ Version: nextBlockVersion, PrevBlock: best.Hash, MerkleRoot: *merkles[len(merkles)-1], Timestamp: ts, Bits: reqDifficulty, } for _, tx := range blockTxns { if err := msgBlock.AddTransaction(tx.MsgTx()); err != nil { return nil, err } } // Finally, perform a full check on the created block against the chain // consensus rules to ensure it properly connects to the current best // chain with no issues. block := btcutil.NewBlock(&msgBlock) block.SetHeight(nextBlockHeight) if err := g.chain.CheckConnectBlockTemplate(block); err != nil { return nil, err } log.Debugf("Created new block template (%d transactions, %d in "+ "fees, %d signature operations cost, %d weight, target difficulty "+ "%064x)", len(msgBlock.Transactions), totalFees, blockSigOpCost, blockWeight, blockchain.CompactToBig(msgBlock.Header.Bits)) return &BlockTemplate{ Block: &msgBlock, Fees: txFees, SigOpCosts: txSigOpCosts, Height: nextBlockHeight, ValidPayAddress: payToAddress != nil, WitnessCommitment: witnessCommitment, }, nil } // UpdateBlockTime updates the timestamp in the header of the passed block to // the current time while taking into account the median time of the last // several blocks to ensure the new time is after that time per the chain // consensus rules. Finally, it will update the target difficulty if needed // based on the new time for the test networks since their target difficulty can // change based upon time. func (g *BlkTmplGenerator) UpdateBlockTime(msgBlock *wire.MsgBlock) error { // The new timestamp is potentially adjusted to ensure it comes after // the median time of the last several blocks per the chain consensus // rules. newTime := medianAdjustedTime(g.chain.BestSnapshot(), g.timeSource) msgBlock.Header.Timestamp = newTime // Recalculate the difficulty if running on a network that requires it. if g.chainParams.ReduceMinDifficulty { difficulty, err := g.chain.CalcNextRequiredDifficulty(newTime) if err != nil { return err } msgBlock.Header.Bits = difficulty } return nil } // UpdateExtraNonce updates the extra nonce in the coinbase script of the passed // block by regenerating the coinbase script with the passed value and block // height. It also recalculates and updates the new merkle root that results // from changing the coinbase script. func (g *BlkTmplGenerator) UpdateExtraNonce(msgBlock *wire.MsgBlock, blockHeight int32, extraNonce uint64) error { coinbaseScript, err := standardCoinbaseScript(blockHeight, extraNonce) if err != nil { return err } if len(coinbaseScript) > blockchain.MaxCoinbaseScriptLen { return fmt.Errorf("coinbase transaction script length "+ "of %d is out of range (min: %d, max: %d)", len(coinbaseScript), blockchain.MinCoinbaseScriptLen, blockchain.MaxCoinbaseScriptLen) } msgBlock.Transactions[0].TxIn[0].SignatureScript = coinbaseScript // TODO(davec): A btcutil.Block should use saved in the state to avoid // recalculating all of the other transaction hashes. // block.Transactions[0].InvalidateCache() // Recalculate the merkle root with the updated extra nonce. block := btcutil.NewBlock(msgBlock) merkles := blockchain.BuildMerkleTreeStore(block.Transactions(), false) msgBlock.Header.MerkleRoot = *merkles[len(merkles)-1] return nil } // BestSnapshot returns information about the current best chain block and // related state as of the current point in time using the chain instance // associated with the block template generator. The returned state must be // treated as immutable since it is shared by all callers. // // This function is safe for concurrent access. func (g *BlkTmplGenerator) BestSnapshot() *blockchain.BestState { return g.chain.BestSnapshot() } // TxSource returns the associated transaction source. // // This function is safe for concurrent access. func (g *BlkTmplGenerator) TxSource() TxSource { return g.txSource }