// Copyright 2016 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. // Package les implements the Light Ethereum Subprotocol. package les import ( "math/big" "sync" "time" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/common/mclock" "github.com/ethereum/go-ethereum/consensus" "github.com/ethereum/go-ethereum/core" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/light" "github.com/ethereum/go-ethereum/log" ) const ( blockDelayTimeout = time.Second * 10 // timeout for a peer to announce a head that has already been confirmed by others maxNodeCount = 20 // maximum number of fetcherTreeNode entries remembered for each peer ) // lightFetcher implements retrieval of newly announced headers. It also provides a peerHasBlock function for the // ODR system to ensure that we only request data related to a certain block from peers who have already processed // and announced that block. type lightFetcher struct { pm *ProtocolManager odr *LesOdr chain *light.LightChain lock sync.Mutex // lock protects access to the fetcher's internal state variables except sent requests maxConfirmedTd *big.Int peers map[*peer]*fetcherPeerInfo lastUpdateStats *updateStatsEntry syncing bool syncDone chan *peer reqMu sync.RWMutex // reqMu protects access to sent header fetch requests requested map[uint64]fetchRequest deliverChn chan fetchResponse timeoutChn chan uint64 requestChn chan bool // true if initiated from outside } // fetcherPeerInfo holds fetcher-specific information about each active peer type fetcherPeerInfo struct { root, lastAnnounced *fetcherTreeNode nodeCnt int confirmedTd *big.Int bestConfirmed *fetcherTreeNode nodeByHash map[common.Hash]*fetcherTreeNode firstUpdateStats *updateStatsEntry } // fetcherTreeNode is a node of a tree that holds information about blocks recently // announced and confirmed by a certain peer. Each new announce message from a peer // adds nodes to the tree, based on the previous announced head and the reorg depth. // There are three possible states for a tree node: // - announced: not downloaded (known) yet, but we know its head, number and td // - intermediate: not known, hash and td are empty, they are filled out when it becomes known // - known: both announced by this peer and downloaded (from any peer). // This structure makes it possible to always know which peer has a certain block, // which is necessary for selecting a suitable peer for ODR requests and also for // canonizing new heads. It also helps to always download the minimum necessary // amount of headers with a single request. type fetcherTreeNode struct { hash common.Hash number uint64 td *big.Int known, requested bool parent *fetcherTreeNode children []*fetcherTreeNode } // fetchRequest represents a header download request type fetchRequest struct { hash common.Hash amount uint64 peer *peer sent mclock.AbsTime timeout bool } // fetchResponse represents a header download response type fetchResponse struct { reqID uint64 headers []*types.Header peer *peer } // newLightFetcher creates a new light fetcher func newLightFetcher(pm *ProtocolManager) *lightFetcher { f := &lightFetcher{ pm: pm, chain: pm.blockchain.(*light.LightChain), odr: pm.odr, peers: make(map[*peer]*fetcherPeerInfo), deliverChn: make(chan fetchResponse, 100), requested: make(map[uint64]fetchRequest), timeoutChn: make(chan uint64), requestChn: make(chan bool, 100), syncDone: make(chan *peer), maxConfirmedTd: big.NewInt(0), } pm.peers.notify(f) f.pm.wg.Add(1) go f.syncLoop() return f } // syncLoop is the main event loop of the light fetcher func (f *lightFetcher) syncLoop() { requesting := false defer f.pm.wg.Done() for { select { case <-f.pm.quitSync: return // when a new announce is received, request loop keeps running until // no further requests are necessary or possible case newAnnounce := <-f.requestChn: f.lock.Lock() s := requesting requesting = false var ( rq *distReq reqID uint64 ) if !f.syncing && !(newAnnounce && s) { rq, reqID = f.nextRequest() } syncing := f.syncing f.lock.Unlock() if rq != nil { requesting = true _, ok := <-f.pm.reqDist.queue(rq) if !ok { f.requestChn <- false } if !syncing { go func() { time.Sleep(softRequestTimeout) f.reqMu.Lock() req, ok := f.requested[reqID] if ok { req.timeout = true f.requested[reqID] = req } f.reqMu.Unlock() // keep starting new requests while possible f.requestChn <- false }() } } case reqID := <-f.timeoutChn: f.reqMu.Lock() req, ok := f.requested[reqID] if ok { delete(f.requested, reqID) } f.reqMu.Unlock() if ok { f.pm.serverPool.adjustResponseTime(req.peer.poolEntry, time.Duration(mclock.Now()-req.sent), true) req.peer.Log().Debug("Fetching data timed out hard") go f.pm.removePeer(req.peer.id) } case resp := <-f.deliverChn: f.reqMu.Lock() req, ok := f.requested[resp.reqID] if ok && req.peer != resp.peer { ok = false } if ok { delete(f.requested, resp.reqID) } f.reqMu.Unlock() if ok { f.pm.serverPool.adjustResponseTime(req.peer.poolEntry, time.Duration(mclock.Now()-req.sent), req.timeout) } f.lock.Lock() if !ok || !(f.syncing || f.processResponse(req, resp)) { resp.peer.Log().Debug("Failed processing response") go f.pm.removePeer(resp.peer.id) } f.lock.Unlock() case p := <-f.syncDone: f.lock.Lock() p.Log().Debug("Done synchronising with peer") f.checkSyncedHeaders(p) f.syncing = false f.lock.Unlock() } } } // registerPeer adds a new peer to the fetcher's peer set func (f *lightFetcher) registerPeer(p *peer) { p.lock.Lock() p.hasBlock = func(hash common.Hash, number uint64) bool { return f.peerHasBlock(p, hash, number) } p.lock.Unlock() f.lock.Lock() defer f.lock.Unlock() f.peers[p] = &fetcherPeerInfo{nodeByHash: make(map[common.Hash]*fetcherTreeNode)} } // unregisterPeer removes a new peer from the fetcher's peer set func (f *lightFetcher) unregisterPeer(p *peer) { p.lock.Lock() p.hasBlock = nil p.lock.Unlock() f.lock.Lock() defer f.lock.Unlock() // check for potential timed out block delay statistics f.checkUpdateStats(p, nil) delete(f.peers, p) } // announce processes a new announcement message received from a peer, adding new // nodes to the peer's block tree and removing old nodes if necessary func (f *lightFetcher) announce(p *peer, head *announceData) { f.lock.Lock() defer f.lock.Unlock() p.Log().Debug("Received new announcement", "number", head.Number, "hash", head.Hash, "reorg", head.ReorgDepth) fp := f.peers[p] if fp == nil { p.Log().Debug("Announcement from unknown peer") return } if fp.lastAnnounced != nil && head.Td.Cmp(fp.lastAnnounced.td) <= 0 { // announced tds should be strictly monotonic p.Log().Debug("Received non-monotonic td", "current", head.Td, "previous", fp.lastAnnounced.td) go f.pm.removePeer(p.id) return } n := fp.lastAnnounced for i := uint64(0); i < head.ReorgDepth; i++ { if n == nil { break } n = n.parent } if n != nil { // n is now the reorg common ancestor, add a new branch of nodes // check if the node count is too high to add new nodes locked := false for uint64(fp.nodeCnt)+head.Number-n.number > maxNodeCount && fp.root != nil { if !locked { f.chain.LockChain() defer f.chain.UnlockChain() locked = true } // if one of root's children is canonical, keep it, delete other branches and root itself var newRoot *fetcherTreeNode for i, nn := range fp.root.children { if core.GetCanonicalHash(f.pm.chainDb, nn.number) == nn.hash { fp.root.children = append(fp.root.children[:i], fp.root.children[i+1:]...) nn.parent = nil newRoot = nn break } } fp.deleteNode(fp.root) if n == fp.root { n = newRoot } fp.root = newRoot if newRoot == nil || !f.checkKnownNode(p, newRoot) { fp.bestConfirmed = nil fp.confirmedTd = nil } if n == nil { break } } if n != nil { for n.number < head.Number { nn := &fetcherTreeNode{number: n.number + 1, parent: n} n.children = append(n.children, nn) n = nn fp.nodeCnt++ } n.hash = head.Hash n.td = head.Td fp.nodeByHash[n.hash] = n } } if n == nil { // could not find reorg common ancestor or had to delete entire tree, a new root and a resync is needed if fp.root != nil { fp.deleteNode(fp.root) } n = &fetcherTreeNode{hash: head.Hash, number: head.Number, td: head.Td} fp.root = n fp.nodeCnt++ fp.nodeByHash[n.hash] = n fp.bestConfirmed = nil fp.confirmedTd = nil } f.checkKnownNode(p, n) p.lock.Lock() p.headInfo = head fp.lastAnnounced = n p.lock.Unlock() f.checkUpdateStats(p, nil) f.requestChn <- true } // peerHasBlock returns true if we can assume the peer knows the given block // based on its announcements func (f *lightFetcher) peerHasBlock(p *peer, hash common.Hash, number uint64) bool { f.lock.Lock() defer f.lock.Unlock() if f.syncing { // always return true when syncing // false positives are acceptable, a more sophisticated condition can be implemented later return true } fp := f.peers[p] if fp == nil || fp.root == nil { return false } if number >= fp.root.number { // it is recent enough that if it is known, is should be in the peer's block tree return fp.nodeByHash[hash] != nil } f.chain.LockChain() defer f.chain.UnlockChain() // if it's older than the peer's block tree root but it's in the same canonical chain // as the root, we can still be sure the peer knows it // // when syncing, just check if it is part of the known chain, there is nothing better we // can do since we do not know the most recent block hash yet return core.GetCanonicalHash(f.pm.chainDb, fp.root.number) == fp.root.hash && core.GetCanonicalHash(f.pm.chainDb, number) == hash } // requestAmount calculates the amount of headers to be downloaded starting // from a certain head backwards func (f *lightFetcher) requestAmount(p *peer, n *fetcherTreeNode) uint64 { amount := uint64(0) nn := n for nn != nil && !f.checkKnownNode(p, nn) { nn = nn.parent amount++ } if nn == nil { amount = n.number } return amount } // requestedID tells if a certain reqID has been requested by the fetcher func (f *lightFetcher) requestedID(reqID uint64) bool { f.reqMu.RLock() _, ok := f.requested[reqID] f.reqMu.RUnlock() return ok } // nextRequest selects the peer and announced head to be requested next, amount // to be downloaded starting from the head backwards is also returned func (f *lightFetcher) nextRequest() (*distReq, uint64) { var ( bestHash common.Hash bestAmount uint64 ) bestTd := f.maxConfirmedTd bestSyncing := false for p, fp := range f.peers { for hash, n := range fp.nodeByHash { if !f.checkKnownNode(p, n) && !n.requested && (bestTd == nil || n.td.Cmp(bestTd) >= 0) { amount := f.requestAmount(p, n) if bestTd == nil || n.td.Cmp(bestTd) > 0 || amount < bestAmount { bestHash = hash bestAmount = amount bestTd = n.td bestSyncing = fp.bestConfirmed == nil || fp.root == nil || !f.checkKnownNode(p, fp.root) } } } } if bestTd == f.maxConfirmedTd { return nil, 0 } f.syncing = bestSyncing var rq *distReq reqID := genReqID() if f.syncing { rq = &distReq{ getCost: func(dp distPeer) uint64 { return 0 }, canSend: func(dp distPeer) bool { p := dp.(*peer) f.lock.Lock() defer f.lock.Unlock() fp := f.peers[p] return fp != nil && fp.nodeByHash[bestHash] != nil }, request: func(dp distPeer) func() { go func() { p := dp.(*peer) p.Log().Debug("Synchronisation started") f.pm.synchronise(p) f.syncDone <- p }() return nil }, } } else { rq = &distReq{ getCost: func(dp distPeer) uint64 { p := dp.(*peer) return p.GetRequestCost(GetBlockHeadersMsg, int(bestAmount)) }, canSend: func(dp distPeer) bool { p := dp.(*peer) f.lock.Lock() defer f.lock.Unlock() fp := f.peers[p] if fp == nil { return false } n := fp.nodeByHash[bestHash] return n != nil && !n.requested }, request: func(dp distPeer) func() { p := dp.(*peer) f.lock.Lock() fp := f.peers[p] if fp != nil { n := fp.nodeByHash[bestHash] if n != nil { n.requested = true } } f.lock.Unlock() cost := p.GetRequestCost(GetBlockHeadersMsg, int(bestAmount)) p.fcServer.QueueRequest(reqID, cost) f.reqMu.Lock() f.requested[reqID] = fetchRequest{hash: bestHash, amount: bestAmount, peer: p, sent: mclock.Now()} f.reqMu.Unlock() go func() { time.Sleep(hardRequestTimeout) f.timeoutChn <- reqID }() return func() { p.RequestHeadersByHash(reqID, cost, bestHash, int(bestAmount), 0, true) } }, } } return rq, reqID } // deliverHeaders delivers header download request responses for processing func (f *lightFetcher) deliverHeaders(peer *peer, reqID uint64, headers []*types.Header) { f.deliverChn <- fetchResponse{reqID: reqID, headers: headers, peer: peer} } // processResponse processes header download request responses, returns true if successful func (f *lightFetcher) processResponse(req fetchRequest, resp fetchResponse) bool { if uint64(len(resp.headers)) != req.amount || resp.headers[0].Hash() != req.hash { req.peer.Log().Debug("Response content mismatch", "requested", len(resp.headers), "reqfrom", resp.headers[0], "delivered", req.amount, "delfrom", req.hash) return false } headers := make([]*types.Header, req.amount) for i, header := range resp.headers { headers[int(req.amount)-1-i] = header } if _, err := f.chain.InsertHeaderChain(headers, 1); err != nil { if err == consensus.ErrFutureBlock { return true } log.Debug("Failed to insert header chain", "err", err) return false } tds := make([]*big.Int, len(headers)) for i, header := range headers { td := f.chain.GetTd(header.Hash(), header.Number.Uint64()) if td == nil { log.Debug("Total difficulty not found for header", "index", i+1, "number", header.Number, "hash", header.Hash()) return false } tds[i] = td } f.newHeaders(headers, tds) return true } // newHeaders updates the block trees of all active peers according to a newly // downloaded and validated batch or headers func (f *lightFetcher) newHeaders(headers []*types.Header, tds []*big.Int) { var maxTd *big.Int for p, fp := range f.peers { if !f.checkAnnouncedHeaders(fp, headers, tds) { p.Log().Debug("Inconsistent announcement") go f.pm.removePeer(p.id) } if fp.confirmedTd != nil && (maxTd == nil || maxTd.Cmp(fp.confirmedTd) > 0) { maxTd = fp.confirmedTd } } if maxTd != nil { f.updateMaxConfirmedTd(maxTd) } } // checkAnnouncedHeaders updates peer's block tree if necessary after validating // a batch of headers. It searches for the latest header in the batch that has a // matching tree node (if any), and if it has not been marked as known already, // sets it and its parents to known (even those which are older than the currently // validated ones). Return value shows if all hashes, numbers and Tds matched // correctly to the announced values (otherwise the peer should be dropped). func (f *lightFetcher) checkAnnouncedHeaders(fp *fetcherPeerInfo, headers []*types.Header, tds []*big.Int) bool { var ( n *fetcherTreeNode header *types.Header td *big.Int ) for i := len(headers) - 1; ; i-- { if i < 0 { if n == nil { // no more headers and nothing to match return true } // we ran out of recently delivered headers but have not reached a node known by this peer yet, continue matching hash, number := header.ParentHash, header.Number.Uint64()-1 td = f.chain.GetTd(hash, number) header = f.chain.GetHeader(hash, number) if header == nil || td == nil { log.Error("Missing parent of validated header", "hash", hash, "number", number) return false } } else { header = headers[i] td = tds[i] } hash := header.Hash() number := header.Number.Uint64() if n == nil { n = fp.nodeByHash[hash] } if n != nil { if n.td == nil { // node was unannounced if nn := fp.nodeByHash[hash]; nn != nil { // if there was already a node with the same hash, continue there and drop this one nn.children = append(nn.children, n.children...) n.children = nil fp.deleteNode(n) n = nn } else { n.hash = hash n.td = td fp.nodeByHash[hash] = n } } // check if it matches the header if n.hash != hash || n.number != number || n.td.Cmp(td) != 0 { // peer has previously made an invalid announcement return false } if n.known { // we reached a known node that matched our expectations, return with success return true } n.known = true if fp.confirmedTd == nil || td.Cmp(fp.confirmedTd) > 0 { fp.confirmedTd = td fp.bestConfirmed = n } n = n.parent if n == nil { return true } } } } // checkSyncedHeaders updates peer's block tree after synchronisation by marking // downloaded headers as known. If none of the announced headers are found after // syncing, the peer is dropped. func (f *lightFetcher) checkSyncedHeaders(p *peer) { fp := f.peers[p] if fp == nil { p.Log().Debug("Unknown peer to check sync headers") return } n := fp.lastAnnounced var td *big.Int for n != nil { if td = f.chain.GetTd(n.hash, n.number); td != nil { break } n = n.parent } // now n is the latest downloaded header after syncing if n == nil { p.Log().Debug("Synchronisation failed") go f.pm.removePeer(p.id) } else { header := f.chain.GetHeader(n.hash, n.number) f.newHeaders([]*types.Header{header}, []*big.Int{td}) } } // checkKnownNode checks if a block tree node is known (downloaded and validated) // If it was not known previously but found in the database, sets its known flag func (f *lightFetcher) checkKnownNode(p *peer, n *fetcherTreeNode) bool { if n.known { return true } td := f.chain.GetTd(n.hash, n.number) if td == nil { return false } header := f.chain.GetHeader(n.hash, n.number) // check the availability of both header and td because reads are not protected by chain db mutex // Note: returning false is always safe here if header == nil { return false } fp := f.peers[p] if fp == nil { p.Log().Debug("Unknown peer to check known nodes") return false } if !f.checkAnnouncedHeaders(fp, []*types.Header{header}, []*big.Int{td}) { p.Log().Debug("Inconsistent announcement") go f.pm.removePeer(p.id) } if fp.confirmedTd != nil { f.updateMaxConfirmedTd(fp.confirmedTd) } return n.known } // deleteNode deletes a node and its child subtrees from a peer's block tree func (fp *fetcherPeerInfo) deleteNode(n *fetcherTreeNode) { if n.parent != nil { for i, nn := range n.parent.children { if nn == n { n.parent.children = append(n.parent.children[:i], n.parent.children[i+1:]...) break } } } for { if n.td != nil { delete(fp.nodeByHash, n.hash) } fp.nodeCnt-- if len(n.children) == 0 { return } for i, nn := range n.children { if i == 0 { n = nn } else { fp.deleteNode(nn) } } } } // updateStatsEntry items form a linked list that is expanded with a new item every time a new head with a higher Td // than the previous one has been downloaded and validated. The list contains a series of maximum confirmed Td values // and the time these values have been confirmed, both increasing monotonically. A maximum confirmed Td is calculated // both globally for all peers and also for each individual peer (meaning that the given peer has announced the head // and it has also been downloaded from any peer, either before or after the given announcement). // The linked list has a global tail where new confirmed Td entries are added and a separate head for each peer, // pointing to the next Td entry that is higher than the peer's max confirmed Td (nil if it has already confirmed // the current global head). type updateStatsEntry struct { time mclock.AbsTime td *big.Int next *updateStatsEntry } // updateMaxConfirmedTd updates the block delay statistics of active peers. Whenever a new highest Td is confirmed, // adds it to the end of a linked list together with the time it has been confirmed. Then checks which peers have // already confirmed a head with the same or higher Td (which counts as zero block delay) and updates their statistics. // Those who have not confirmed such a head by now will be updated by a subsequent checkUpdateStats call with a // positive block delay value. func (f *lightFetcher) updateMaxConfirmedTd(td *big.Int) { if f.maxConfirmedTd == nil || td.Cmp(f.maxConfirmedTd) > 0 { f.maxConfirmedTd = td newEntry := &updateStatsEntry{ time: mclock.Now(), td: td, } if f.lastUpdateStats != nil { f.lastUpdateStats.next = newEntry } f.lastUpdateStats = newEntry for p := range f.peers { f.checkUpdateStats(p, newEntry) } } } // checkUpdateStats checks those peers who have not confirmed a certain highest Td (or a larger one) by the time it // has been confirmed by another peer. If they have confirmed such a head by now, their stats are updated with the // block delay which is (this peer's confirmation time)-(first confirmation time). After blockDelayTimeout has passed, // the stats are updated with blockDelayTimeout value. In either case, the confirmed or timed out updateStatsEntry // items are removed from the head of the linked list. // If a new entry has been added to the global tail, it is passed as a parameter here even though this function // assumes that it has already been added, so that if the peer's list is empty (all heads confirmed, head is nil), // it can set the new head to newEntry. func (f *lightFetcher) checkUpdateStats(p *peer, newEntry *updateStatsEntry) { now := mclock.Now() fp := f.peers[p] if fp == nil { p.Log().Debug("Unknown peer to check update stats") return } if newEntry != nil && fp.firstUpdateStats == nil { fp.firstUpdateStats = newEntry } for fp.firstUpdateStats != nil && fp.firstUpdateStats.time <= now-mclock.AbsTime(blockDelayTimeout) { f.pm.serverPool.adjustBlockDelay(p.poolEntry, blockDelayTimeout) fp.firstUpdateStats = fp.firstUpdateStats.next } if fp.confirmedTd != nil { for fp.firstUpdateStats != nil && fp.firstUpdateStats.td.Cmp(fp.confirmedTd) <= 0 { f.pm.serverPool.adjustBlockDelay(p.poolEntry, time.Duration(now-fp.firstUpdateStats.time)) fp.firstUpdateStats = fp.firstUpdateStats.next } } }