6.2. [Licensing of Contributions](#Licensing)<br/>
<aname="Overview"/>
### 1. Overview
Developing cryptocurrencies is an exciting endeavor that touches a wide variety
of areas such as wire protocols, peer-to-peer networking, databases,
cryptography, language interpretation (transaction scripts), RPC, and
websockets. They also represent a radical shift to the current fiscal system
and as a result provide an opportunity to help reshape the entire financial
system. There are few projects that offer this level of diversity and impact
all in one code base.
However, as exciting as it is, one must keep in mind that cryptocurrencies
represent real money and introducing bugs and security vulnerabilities can have
far more dire consequences than in typical projects where having a small bug is
minimal by comparison. In the world of cryptocurrencies, even the smallest bug
in the wrong area can cost people a significant amount of money. For this
reason, the btcd suite has a formalized and rigorous development process which
is outlined on this page.
We highly encourage code contributions, however it is imperative that you adhere
to the guidelines established on this page.
<aname="MinSkillset"/>
### 2. Minimum Recommended Skillset
The following list is a set of core competencies that we recommend you possess
before you really start attempting to contribute code to the project. These are
not hard requirements as we will gladly accept code contributions as long as
they follow the guidelines set forth on this page. That said, if you don't have
the following basic qualifications you will likely find it quite difficult to
contribute.
- A reasonable understanding of bitcoin at a high level (see the
[Required Reading](#ReqReading) section for the original white paper)
- Experience in some type of C-like language
- An understanding of data structures and their performance implications
- Familiarity with unit testing
- Debugging experience
- Ability to understand not only the area you are making a change in, but also
the code your change relies on, and the code which relies on your changed code
Building on top of those core competencies, the recommended skill set largely
depends on the specific areas you are looking to contribute to. For example,
if you wish to contribute to the cryptography code, you should have a good
understanding of the various aspects involved with cryptography such as the
security and performance implications.
<aname="ReqReading"/>
### 3. Required Reading
- [Effective Go](http://golang.org/doc/effective_go.html) - The entire btcd
suite follows the guidelines in this document. For your code to be accepted,
it must follow the guidelines therein.
- [Original Satoshi Whitepaper](http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CCkQFjAA&url=http%3A%2F%2Fbitcoin.org%2Fbitcoin.pdf&ei=os3VUuH8G4SlsASV74GoAg&usg=AFQjCNEipPLigou_1MfB7DQjXCNdlylrBg&sig2=FaHDuT5z36GMWDEnybDJLg&bvm=bv.59378465,d.b2I) - This is the white paper that started it all. Having a solid
foundation to build on will make the code much more comprehensible.
<aname="DevelopmentPractices"/>
### 4. Development Practices
Developers are expected to work in their own trees and submit pull requests when
they feel their feature or bug fix is ready for integration into the master
branch.
<aname="ShareEarly"/>
### 4.1 Share Early, Share Often
We firmly believe in the share early, share often approach. The basic premise
of the approach is to announce your plans **before** you start work, and once
you have started working, craft your changes into a stream of small and easily
reviewable commits.
This approach has several benefits:
- Announcing your plans to work on a feature **before** you begin work avoids
duplicate work
- It permits discussions which can help you achieve your goals in a way that is
consistent with the existing architecture
- It minimizes the chances of you spending time and energy on a change that
might not fit with the consensus of the community or existing architecture and
potentially be rejected as a result
- Incremental development helps ensure you are on the right track with regards
to the rest of the community
- The quicker your changes are merged to master, the less time you will need to
spend rebasing and otherwise trying to keep up with the main code base
<aname="Testing"/>
### 4.2 Testing
One of the major design goals of all core btcd packages is to aim for complete
test coverage. This is financial software so bugs and regressions can cost
people real money. For this reason every effort must be taken to ensure the
code is as accurate and bug-free as possible. Thorough testing is a good way to
help achieve that goal.
Unless a new feature you submit is completely trivial, it will probably be
rejected unless it is also accompanied by adequate test coverage for both
positive and negative conditions. That is to say, the tests must ensure your
code works correctly when it is fed correct data as well as incorrect data
(error paths).
Go provides an excellent test framework that makes writing test code and
checking coverage statistics straight forward. For more information about the
test coverage tools, see the [golang cover blog post](http://blog.golang.org/cover).
A quick summary of test practices follows:
- All new code should be accompanied by tests that ensure the code behaves
correctly when given expected values, and, perhaps even more importantly, that
it handles errors gracefully
- When you fix a bug, it should be accompanied by tests which exercise the bug
to both prove it has been resolved and to prevent future regressions
<aname="CodeDocumentation"/>
### 4.3 Code Documentation and Commenting
- At a minimum every function must be commented with its intended purpose and
any assumptions that it makes
- Function comments must always begin with the name of the function per