ipld-eth-server/vendor/github.com/ethereum/go-ethereum/p2p/discover/udp.go

758 lines
22 KiB
Go
Raw Normal View History

// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package discover
import (
"bytes"
"container/list"
"crypto/ecdsa"
"errors"
"fmt"
"net"
"sync"
"time"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/p2p/enode"
"github.com/ethereum/go-ethereum/p2p/netutil"
"github.com/ethereum/go-ethereum/rlp"
)
// Errors
var (
errPacketTooSmall = errors.New("too small")
errBadHash = errors.New("bad hash")
errExpired = errors.New("expired")
errUnsolicitedReply = errors.New("unsolicited reply")
errUnknownNode = errors.New("unknown node")
errTimeout = errors.New("RPC timeout")
errClockWarp = errors.New("reply deadline too far in the future")
errClosed = errors.New("socket closed")
)
// Timeouts
const (
respTimeout = 500 * time.Millisecond
expiration = 20 * time.Second
bondExpiration = 24 * time.Hour
ntpFailureThreshold = 32 // Continuous timeouts after which to check NTP
ntpWarningCooldown = 10 * time.Minute // Minimum amount of time to pass before repeating NTP warning
driftThreshold = 10 * time.Second // Allowed clock drift before warning user
// Discovery packets are defined to be no larger than 1280 bytes.
// Packets larger than this size will be cut at the end and treated
// as invalid because their hash won't match.
maxPacketSize = 1280
)
// RPC packet types
const (
pingPacket = iota + 1 // zero is 'reserved'
pongPacket
findnodePacket
neighborsPacket
)
// RPC request structures
type (
ping struct {
senderKey *ecdsa.PublicKey // filled in by preverify
Version uint
From, To rpcEndpoint
Expiration uint64
// Ignore additional fields (for forward compatibility).
Rest []rlp.RawValue `rlp:"tail"`
}
// pong is the reply to ping.
pong struct {
// This field should mirror the UDP envelope address
// of the ping packet, which provides a way to discover the
// the external address (after NAT).
To rpcEndpoint
ReplyTok []byte // This contains the hash of the ping packet.
Expiration uint64 // Absolute timestamp at which the packet becomes invalid.
// Ignore additional fields (for forward compatibility).
Rest []rlp.RawValue `rlp:"tail"`
}
// findnode is a query for nodes close to the given target.
findnode struct {
Target encPubkey
Expiration uint64
// Ignore additional fields (for forward compatibility).
Rest []rlp.RawValue `rlp:"tail"`
}
// reply to findnode
neighbors struct {
Nodes []rpcNode
Expiration uint64
// Ignore additional fields (for forward compatibility).
Rest []rlp.RawValue `rlp:"tail"`
}
rpcNode struct {
IP net.IP // len 4 for IPv4 or 16 for IPv6
UDP uint16 // for discovery protocol
TCP uint16 // for RLPx protocol
ID encPubkey
}
rpcEndpoint struct {
IP net.IP // len 4 for IPv4 or 16 for IPv6
UDP uint16 // for discovery protocol
TCP uint16 // for RLPx protocol
}
)
func makeEndpoint(addr *net.UDPAddr, tcpPort uint16) rpcEndpoint {
ip := net.IP{}
if ip4 := addr.IP.To4(); ip4 != nil {
ip = ip4
} else if ip6 := addr.IP.To16(); ip6 != nil {
ip = ip6
}
return rpcEndpoint{IP: ip, UDP: uint16(addr.Port), TCP: tcpPort}
}
func (t *udp) nodeFromRPC(sender *net.UDPAddr, rn rpcNode) (*node, error) {
if rn.UDP <= 1024 {
return nil, errors.New("low port")
}
if err := netutil.CheckRelayIP(sender.IP, rn.IP); err != nil {
return nil, err
}
if t.netrestrict != nil && !t.netrestrict.Contains(rn.IP) {
return nil, errors.New("not contained in netrestrict whitelist")
}
key, err := decodePubkey(rn.ID)
if err != nil {
return nil, err
}
n := wrapNode(enode.NewV4(key, rn.IP, int(rn.TCP), int(rn.UDP)))
err = n.ValidateComplete()
return n, err
}
func nodeToRPC(n *node) rpcNode {
var key ecdsa.PublicKey
var ekey encPubkey
if err := n.Load((*enode.Secp256k1)(&key)); err == nil {
ekey = encodePubkey(&key)
}
return rpcNode{ID: ekey, IP: n.IP(), UDP: uint16(n.UDP()), TCP: uint16(n.TCP())}
}
// packet is implemented by all protocol messages.
type packet interface {
// preverify checks whether the packet is valid and should be handled at all.
preverify(t *udp, from *net.UDPAddr, fromID enode.ID, fromKey encPubkey) error
// handle handles the packet.
handle(t *udp, from *net.UDPAddr, fromID enode.ID, mac []byte)
// name returns the name of the packet for logging purposes.
name() string
}
type conn interface {
ReadFromUDP(b []byte) (n int, addr *net.UDPAddr, err error)
WriteToUDP(b []byte, addr *net.UDPAddr) (n int, err error)
Close() error
LocalAddr() net.Addr
}
// udp implements the discovery v4 UDP wire protocol.
type udp struct {
conn conn
netrestrict *netutil.Netlist
priv *ecdsa.PrivateKey
localNode *enode.LocalNode
db *enode.DB
tab *Table
wg sync.WaitGroup
addReplyMatcher chan *replyMatcher
gotreply chan reply
closing chan struct{}
}
// pending represents a pending reply.
//
// Some implementations of the protocol wish to send more than one
// reply packet to findnode. In general, any neighbors packet cannot
// be matched up with a specific findnode packet.
//
// Our implementation handles this by storing a callback function for
// each pending reply. Incoming packets from a node are dispatched
// to all callback functions for that node.
type replyMatcher struct {
// these fields must match in the reply.
from enode.ID
ip net.IP
ptype byte
// time when the request must complete
deadline time.Time
// callback is called when a matching reply arrives. If it returns matched == true, the
// reply was acceptable. The second return value indicates whether the callback should
// be removed from the pending reply queue. If it returns false, the reply is considered
// incomplete and the callback will be invoked again for the next matching reply.
callback replyMatchFunc
// errc receives nil when the callback indicates completion or an
// error if no further reply is received within the timeout.
errc chan<- error
}
type replyMatchFunc func(interface{}) (matched bool, requestDone bool)
type reply struct {
from enode.ID
ip net.IP
ptype byte
data packet
// loop indicates whether there was
// a matching request by sending on this channel.
matched chan<- bool
}
// ReadPacket is sent to the unhandled channel when it could not be processed
type ReadPacket struct {
Data []byte
Addr *net.UDPAddr
}
// Config holds Table-related settings.
type Config struct {
// These settings are required and configure the UDP listener:
PrivateKey *ecdsa.PrivateKey
// These settings are optional:
NetRestrict *netutil.Netlist // network whitelist
Bootnodes []*enode.Node // list of bootstrap nodes
Unhandled chan<- ReadPacket // unhandled packets are sent on this channel
}
// ListenUDP returns a new table that listens for UDP packets on laddr.
func ListenUDP(c conn, ln *enode.LocalNode, cfg Config) (*Table, error) {
tab, _, err := newUDP(c, ln, cfg)
if err != nil {
return nil, err
}
return tab, nil
}
func newUDP(c conn, ln *enode.LocalNode, cfg Config) (*Table, *udp, error) {
udp := &udp{
conn: c,
priv: cfg.PrivateKey,
netrestrict: cfg.NetRestrict,
localNode: ln,
db: ln.Database(),
closing: make(chan struct{}),
gotreply: make(chan reply),
addReplyMatcher: make(chan *replyMatcher),
}
tab, err := newTable(udp, ln.Database(), cfg.Bootnodes)
if err != nil {
return nil, nil, err
}
udp.tab = tab
udp.wg.Add(2)
go udp.loop()
go udp.readLoop(cfg.Unhandled)
return udp.tab, udp, nil
}
func (t *udp) self() *enode.Node {
return t.localNode.Node()
}
func (t *udp) close() {
close(t.closing)
t.conn.Close()
t.wg.Wait()
}
func (t *udp) ourEndpoint() rpcEndpoint {
n := t.self()
a := &net.UDPAddr{IP: n.IP(), Port: n.UDP()}
return makeEndpoint(a, uint16(n.TCP()))
}
// ping sends a ping message to the given node and waits for a reply.
func (t *udp) ping(toid enode.ID, toaddr *net.UDPAddr) error {
return <-t.sendPing(toid, toaddr, nil)
}
// sendPing sends a ping message to the given node and invokes the callback
// when the reply arrives.
func (t *udp) sendPing(toid enode.ID, toaddr *net.UDPAddr, callback func()) <-chan error {
req := &ping{
Version: 4,
From: t.ourEndpoint(),
To: makeEndpoint(toaddr, 0), // TODO: maybe use known TCP port from DB
Expiration: uint64(time.Now().Add(expiration).Unix()),
}
packet, hash, err := encodePacket(t.priv, pingPacket, req)
if err != nil {
errc := make(chan error, 1)
errc <- err
return errc
}
// Add a matcher for the reply to the pending reply queue. Pongs are matched if they
// reference the ping we're about to send.
errc := t.pending(toid, toaddr.IP, pongPacket, func(p interface{}) (matched bool, requestDone bool) {
matched = bytes.Equal(p.(*pong).ReplyTok, hash)
if matched && callback != nil {
callback()
}
return matched, matched
})
// Send the packet.
t.localNode.UDPContact(toaddr)
t.write(toaddr, toid, req.name(), packet)
return errc
}
// findnode sends a findnode request to the given node and waits until
// the node has sent up to k neighbors.
func (t *udp) findnode(toid enode.ID, toaddr *net.UDPAddr, target encPubkey) ([]*node, error) {
// If we haven't seen a ping from the destination node for a while, it won't remember
// our endpoint proof and reject findnode. Solicit a ping first.
if time.Since(t.db.LastPingReceived(toid, toaddr.IP)) > bondExpiration {
t.ping(toid, toaddr)
// Wait for them to ping back and process our pong.
time.Sleep(respTimeout)
}
// Add a matcher for 'neighbours' replies to the pending reply queue. The matcher is
// active until enough nodes have been received.
nodes := make([]*node, 0, bucketSize)
nreceived := 0
errc := t.pending(toid, toaddr.IP, neighborsPacket, func(r interface{}) (matched bool, requestDone bool) {
reply := r.(*neighbors)
for _, rn := range reply.Nodes {
nreceived++
n, err := t.nodeFromRPC(toaddr, rn)
if err != nil {
log.Trace("Invalid neighbor node received", "ip", rn.IP, "addr", toaddr, "err", err)
continue
}
nodes = append(nodes, n)
}
return true, nreceived >= bucketSize
})
t.send(toaddr, toid, findnodePacket, &findnode{
Target: target,
Expiration: uint64(time.Now().Add(expiration).Unix()),
})
return nodes, <-errc
}
// pending adds a reply matcher to the pending reply queue.
// see the documentation of type replyMatcher for a detailed explanation.
func (t *udp) pending(id enode.ID, ip net.IP, ptype byte, callback replyMatchFunc) <-chan error {
ch := make(chan error, 1)
p := &replyMatcher{from: id, ip: ip, ptype: ptype, callback: callback, errc: ch}
select {
case t.addReplyMatcher <- p:
// loop will handle it
case <-t.closing:
ch <- errClosed
}
return ch
}
// handleReply dispatches a reply packet, invoking reply matchers. It returns
// whether any matcher considered the packet acceptable.
func (t *udp) handleReply(from enode.ID, fromIP net.IP, ptype byte, req packet) bool {
matched := make(chan bool, 1)
select {
case t.gotreply <- reply{from, fromIP, ptype, req, matched}:
// loop will handle it
return <-matched
case <-t.closing:
return false
}
}
// loop runs in its own goroutine. it keeps track of
// the refresh timer and the pending reply queue.
func (t *udp) loop() {
defer t.wg.Done()
var (
plist = list.New()
timeout = time.NewTimer(0)
nextTimeout *replyMatcher // head of plist when timeout was last reset
contTimeouts = 0 // number of continuous timeouts to do NTP checks
ntpWarnTime = time.Unix(0, 0)
)
<-timeout.C // ignore first timeout
defer timeout.Stop()
resetTimeout := func() {
if plist.Front() == nil || nextTimeout == plist.Front().Value {
return
}
// Start the timer so it fires when the next pending reply has expired.
now := time.Now()
for el := plist.Front(); el != nil; el = el.Next() {
nextTimeout = el.Value.(*replyMatcher)
if dist := nextTimeout.deadline.Sub(now); dist < 2*respTimeout {
timeout.Reset(dist)
return
}
// Remove pending replies whose deadline is too far in the
// future. These can occur if the system clock jumped
// backwards after the deadline was assigned.
nextTimeout.errc <- errClockWarp
plist.Remove(el)
}
nextTimeout = nil
timeout.Stop()
}
for {
resetTimeout()
select {
case <-t.closing:
for el := plist.Front(); el != nil; el = el.Next() {
el.Value.(*replyMatcher).errc <- errClosed
}
return
case p := <-t.addReplyMatcher:
p.deadline = time.Now().Add(respTimeout)
plist.PushBack(p)
case r := <-t.gotreply:
var matched bool // whether any replyMatcher considered the reply acceptable.
for el := plist.Front(); el != nil; el = el.Next() {
p := el.Value.(*replyMatcher)
if p.from == r.from && p.ptype == r.ptype && p.ip.Equal(r.ip) {
ok, requestDone := p.callback(r.data)
matched = matched || ok
// Remove the matcher if callback indicates that all replies have been received.
if requestDone {
p.errc <- nil
plist.Remove(el)
}
// Reset the continuous timeout counter (time drift detection)
contTimeouts = 0
}
}
r.matched <- matched
case now := <-timeout.C:
nextTimeout = nil
// Notify and remove callbacks whose deadline is in the past.
for el := plist.Front(); el != nil; el = el.Next() {
p := el.Value.(*replyMatcher)
if now.After(p.deadline) || now.Equal(p.deadline) {
p.errc <- errTimeout
plist.Remove(el)
contTimeouts++
}
}
// If we've accumulated too many timeouts, do an NTP time sync check
if contTimeouts > ntpFailureThreshold {
if time.Since(ntpWarnTime) >= ntpWarningCooldown {
ntpWarnTime = time.Now()
go checkClockDrift()
}
contTimeouts = 0
}
}
}
}
const (
macSize = 256 / 8
sigSize = 520 / 8
headSize = macSize + sigSize // space of packet frame data
)
var (
headSpace = make([]byte, headSize)
// Neighbors replies are sent across multiple packets to
// stay below the packet size limit. We compute the maximum number
// of entries by stuffing a packet until it grows too large.
maxNeighbors int
)
func init() {
p := neighbors{Expiration: ^uint64(0)}
maxSizeNode := rpcNode{IP: make(net.IP, 16), UDP: ^uint16(0), TCP: ^uint16(0)}
for n := 0; ; n++ {
p.Nodes = append(p.Nodes, maxSizeNode)
size, _, err := rlp.EncodeToReader(p)
if err != nil {
// If this ever happens, it will be caught by the unit tests.
panic("cannot encode: " + err.Error())
}
if headSize+size+1 >= maxPacketSize {
maxNeighbors = n
break
}
}
}
func (t *udp) send(toaddr *net.UDPAddr, toid enode.ID, ptype byte, req packet) ([]byte, error) {
packet, hash, err := encodePacket(t.priv, ptype, req)
if err != nil {
return hash, err
}
return hash, t.write(toaddr, toid, req.name(), packet)
}
func (t *udp) write(toaddr *net.UDPAddr, toid enode.ID, what string, packet []byte) error {
_, err := t.conn.WriteToUDP(packet, toaddr)
log.Trace(">> "+what, "id", toid, "addr", toaddr, "err", err)
return err
}
func encodePacket(priv *ecdsa.PrivateKey, ptype byte, req interface{}) (packet, hash []byte, err error) {
b := new(bytes.Buffer)
b.Write(headSpace)
b.WriteByte(ptype)
if err := rlp.Encode(b, req); err != nil {
log.Error("Can't encode discv4 packet", "err", err)
return nil, nil, err
}
packet = b.Bytes()
sig, err := crypto.Sign(crypto.Keccak256(packet[headSize:]), priv)
if err != nil {
log.Error("Can't sign discv4 packet", "err", err)
return nil, nil, err
}
copy(packet[macSize:], sig)
// add the hash to the front. Note: this doesn't protect the
// packet in any way. Our public key will be part of this hash in
// The future.
hash = crypto.Keccak256(packet[macSize:])
copy(packet, hash)
return packet, hash, nil
}
// readLoop runs in its own goroutine. it handles incoming UDP packets.
func (t *udp) readLoop(unhandled chan<- ReadPacket) {
defer t.wg.Done()
if unhandled != nil {
defer close(unhandled)
}
buf := make([]byte, maxPacketSize)
for {
nbytes, from, err := t.conn.ReadFromUDP(buf)
if netutil.IsTemporaryError(err) {
// Ignore temporary read errors.
log.Debug("Temporary UDP read error", "err", err)
continue
} else if err != nil {
// Shut down the loop for permament errors.
log.Debug("UDP read error", "err", err)
return
}
if t.handlePacket(from, buf[:nbytes]) != nil && unhandled != nil {
select {
case unhandled <- ReadPacket{buf[:nbytes], from}:
default:
}
}
}
}
func (t *udp) handlePacket(from *net.UDPAddr, buf []byte) error {
packet, fromKey, hash, err := decodePacket(buf)
if err != nil {
log.Debug("Bad discv4 packet", "addr", from, "err", err)
return err
}
fromID := fromKey.id()
if err == nil {
err = packet.preverify(t, from, fromID, fromKey)
}
log.Trace("<< "+packet.name(), "id", fromID, "addr", from, "err", err)
if err == nil {
packet.handle(t, from, fromID, hash)
}
return err
}
func decodePacket(buf []byte) (packet, encPubkey, []byte, error) {
if len(buf) < headSize+1 {
return nil, encPubkey{}, nil, errPacketTooSmall
}
hash, sig, sigdata := buf[:macSize], buf[macSize:headSize], buf[headSize:]
shouldhash := crypto.Keccak256(buf[macSize:])
if !bytes.Equal(hash, shouldhash) {
return nil, encPubkey{}, nil, errBadHash
}
fromKey, err := recoverNodeKey(crypto.Keccak256(buf[headSize:]), sig)
if err != nil {
return nil, fromKey, hash, err
}
var req packet
switch ptype := sigdata[0]; ptype {
case pingPacket:
req = new(ping)
case pongPacket:
req = new(pong)
case findnodePacket:
req = new(findnode)
case neighborsPacket:
req = new(neighbors)
default:
return nil, fromKey, hash, fmt.Errorf("unknown type: %d", ptype)
}
s := rlp.NewStream(bytes.NewReader(sigdata[1:]), 0)
err = s.Decode(req)
return req, fromKey, hash, err
}
// Packet Handlers
func (req *ping) preverify(t *udp, from *net.UDPAddr, fromID enode.ID, fromKey encPubkey) error {
if expired(req.Expiration) {
return errExpired
}
key, err := decodePubkey(fromKey)
if err != nil {
return errors.New("invalid public key")
}
req.senderKey = key
return nil
}
func (req *ping) handle(t *udp, from *net.UDPAddr, fromID enode.ID, mac []byte) {
// Reply.
t.send(from, fromID, pongPacket, &pong{
To: makeEndpoint(from, req.From.TCP),
ReplyTok: mac,
Expiration: uint64(time.Now().Add(expiration).Unix()),
})
// Ping back if our last pong on file is too far in the past.
n := wrapNode(enode.NewV4(req.senderKey, from.IP, int(req.From.TCP), from.Port))
if time.Since(t.db.LastPongReceived(n.ID(), from.IP)) > bondExpiration {
t.sendPing(fromID, from, func() {
t.tab.addVerifiedNode(n)
})
} else {
t.tab.addVerifiedNode(n)
}
// Update node database and endpoint predictor.
t.db.UpdateLastPingReceived(n.ID(), from.IP, time.Now())
t.localNode.UDPEndpointStatement(from, &net.UDPAddr{IP: req.To.IP, Port: int(req.To.UDP)})
}
func (req *ping) name() string { return "PING/v4" }
func (req *pong) preverify(t *udp, from *net.UDPAddr, fromID enode.ID, fromKey encPubkey) error {
if expired(req.Expiration) {
return errExpired
}
if !t.handleReply(fromID, from.IP, pongPacket, req) {
return errUnsolicitedReply
}
return nil
}
func (req *pong) handle(t *udp, from *net.UDPAddr, fromID enode.ID, mac []byte) {
t.localNode.UDPEndpointStatement(from, &net.UDPAddr{IP: req.To.IP, Port: int(req.To.UDP)})
t.db.UpdateLastPongReceived(fromID, from.IP, time.Now())
}
func (req *pong) name() string { return "PONG/v4" }
func (req *findnode) preverify(t *udp, from *net.UDPAddr, fromID enode.ID, fromKey encPubkey) error {
if expired(req.Expiration) {
return errExpired
}
if time.Since(t.db.LastPongReceived(fromID, from.IP)) > bondExpiration {
// No endpoint proof pong exists, we don't process the packet. This prevents an
// attack vector where the discovery protocol could be used to amplify traffic in a
// DDOS attack. A malicious actor would send a findnode request with the IP address
// and UDP port of the target as the source address. The recipient of the findnode
// packet would then send a neighbors packet (which is a much bigger packet than
// findnode) to the victim.
return errUnknownNode
}
return nil
}
func (req *findnode) handle(t *udp, from *net.UDPAddr, fromID enode.ID, mac []byte) {
// Determine closest nodes.
target := enode.ID(crypto.Keccak256Hash(req.Target[:]))
t.tab.mutex.Lock()
closest := t.tab.closest(target, bucketSize).entries
t.tab.mutex.Unlock()
// Send neighbors in chunks with at most maxNeighbors per packet
// to stay below the packet size limit.
p := neighbors{Expiration: uint64(time.Now().Add(expiration).Unix())}
var sent bool
for _, n := range closest {
if netutil.CheckRelayIP(from.IP, n.IP()) == nil {
p.Nodes = append(p.Nodes, nodeToRPC(n))
}
if len(p.Nodes) == maxNeighbors {
t.send(from, fromID, neighborsPacket, &p)
p.Nodes = p.Nodes[:0]
sent = true
}
}
if len(p.Nodes) > 0 || !sent {
t.send(from, fromID, neighborsPacket, &p)
}
}
func (req *findnode) name() string { return "FINDNODE/v4" }
func (req *neighbors) preverify(t *udp, from *net.UDPAddr, fromID enode.ID, fromKey encPubkey) error {
if expired(req.Expiration) {
return errExpired
}
if !t.handleReply(fromID, from.IP, neighborsPacket, req) {
return errUnsolicitedReply
}
return nil
}
func (req *neighbors) handle(t *udp, from *net.UDPAddr, fromID enode.ID, mac []byte) {
}
func (req *neighbors) name() string { return "NEIGHBORS/v4" }
func expired(ts uint64) bool {
return time.Unix(int64(ts), 0).Before(time.Now())
}