ipld-eth-server/vendor/github.com/btcsuite/btcd/blockchain/indexers/addrindex.go

964 lines
34 KiB
Go
Raw Normal View History

// Copyright (c) 2016 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package indexers
import (
"errors"
"fmt"
"sync"
"github.com/btcsuite/btcd/blockchain"
"github.com/btcsuite/btcd/chaincfg"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/database"
"github.com/btcsuite/btcd/txscript"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
)
const (
// addrIndexName is the human-readable name for the index.
addrIndexName = "address index"
// level0MaxEntries is the maximum number of transactions that are
// stored in level 0 of an address index entry. Subsequent levels store
// 2^n * level0MaxEntries entries, or in words, double the maximum of
// the previous level.
level0MaxEntries = 8
// addrKeySize is the number of bytes an address key consumes in the
// index. It consists of 1 byte address type + 20 bytes hash160.
addrKeySize = 1 + 20
// levelKeySize is the number of bytes a level key in the address index
// consumes. It consists of the address key + 1 byte for the level.
levelKeySize = addrKeySize + 1
// levelOffset is the offset in the level key which identifes the level.
levelOffset = levelKeySize - 1
// addrKeyTypePubKeyHash is the address type in an address key which
// represents both a pay-to-pubkey-hash and a pay-to-pubkey address.
// This is done because both are identical for the purposes of the
// address index.
addrKeyTypePubKeyHash = 0
// addrKeyTypeScriptHash is the address type in an address key which
// represents a pay-to-script-hash address. This is necessary because
// the hash of a pubkey address might be the same as that of a script
// hash.
addrKeyTypeScriptHash = 1
// addrKeyTypePubKeyHash is the address type in an address key which
// represents a pay-to-witness-pubkey-hash address. This is required
// as the 20-byte data push of a p2wkh witness program may be the same
// data push used a p2pkh address.
addrKeyTypeWitnessPubKeyHash = 2
// addrKeyTypeScriptHash is the address type in an address key which
// represents a pay-to-witness-script-hash address. This is required,
// as p2wsh are distinct from p2sh addresses since they use a new
// script template, as well as a 32-byte data push.
addrKeyTypeWitnessScriptHash = 3
// Size of a transaction entry. It consists of 4 bytes block id + 4
// bytes offset + 4 bytes length.
txEntrySize = 4 + 4 + 4
)
var (
// addrIndexKey is the key of the address index and the db bucket used
// to house it.
addrIndexKey = []byte("txbyaddridx")
// errUnsupportedAddressType is an error that is used to signal an
// unsupported address type has been used.
errUnsupportedAddressType = errors.New("address type is not supported " +
"by the address index")
)
// -----------------------------------------------------------------------------
// The address index maps addresses referenced in the blockchain to a list of
// all the transactions involving that address. Transactions are stored
// according to their order of appearance in the blockchain. That is to say
// first by block height and then by offset inside the block. It is also
// important to note that this implementation requires the transaction index
// since it is needed in order to catch up old blocks due to the fact the spent
// outputs will already be pruned from the utxo set.
//
// The approach used to store the index is similar to a log-structured merge
// tree (LSM tree) and is thus similar to how leveldb works internally.
//
// Every address consists of one or more entries identified by a level starting
// from 0 where each level holds a maximum number of entries such that each
// subsequent level holds double the maximum of the previous one. In equation
// form, the number of entries each level holds is 2^n * firstLevelMaxSize.
//
// New transactions are appended to level 0 until it becomes full at which point
// the entire level 0 entry is appended to the level 1 entry and level 0 is
// cleared. This process continues until level 1 becomes full at which point it
// will be appended to level 2 and cleared and so on.
//
// The result of this is the lower levels contain newer transactions and the
// transactions within each level are ordered from oldest to newest.
//
// The intent of this approach is to provide a balance between space efficiency
// and indexing cost. Storing one entry per transaction would have the lowest
// indexing cost, but would waste a lot of space because the same address hash
// would be duplicated for every transaction key. On the other hand, storing a
// single entry with all transactions would be the most space efficient, but
// would cause indexing cost to grow quadratically with the number of
// transactions involving the same address. The approach used here provides
// logarithmic insertion and retrieval.
//
// The serialized key format is:
//
// <addr type><addr hash><level>
//
// Field Type Size
// addr type uint8 1 byte
// addr hash hash160 20 bytes
// level uint8 1 byte
// -----
// Total: 22 bytes
//
// The serialized value format is:
//
// [<block id><start offset><tx length>,...]
//
// Field Type Size
// block id uint32 4 bytes
// start offset uint32 4 bytes
// tx length uint32 4 bytes
// -----
// Total: 12 bytes per indexed tx
// -----------------------------------------------------------------------------
// fetchBlockHashFunc defines a callback function to use in order to convert a
// serialized block ID to an associated block hash.
type fetchBlockHashFunc func(serializedID []byte) (*chainhash.Hash, error)
// serializeAddrIndexEntry serializes the provided block id and transaction
// location according to the format described in detail above.
func serializeAddrIndexEntry(blockID uint32, txLoc wire.TxLoc) []byte {
// Serialize the entry.
serialized := make([]byte, 12)
byteOrder.PutUint32(serialized, blockID)
byteOrder.PutUint32(serialized[4:], uint32(txLoc.TxStart))
byteOrder.PutUint32(serialized[8:], uint32(txLoc.TxLen))
return serialized
}
// deserializeAddrIndexEntry decodes the passed serialized byte slice into the
// provided region struct according to the format described in detail above and
// uses the passed block hash fetching function in order to conver the block ID
// to the associated block hash.
func deserializeAddrIndexEntry(serialized []byte, region *database.BlockRegion, fetchBlockHash fetchBlockHashFunc) error {
// Ensure there are enough bytes to decode.
if len(serialized) < txEntrySize {
return errDeserialize("unexpected end of data")
}
hash, err := fetchBlockHash(serialized[0:4])
if err != nil {
return err
}
region.Hash = hash
region.Offset = byteOrder.Uint32(serialized[4:8])
region.Len = byteOrder.Uint32(serialized[8:12])
return nil
}
// keyForLevel returns the key for a specific address and level in the address
// index entry.
func keyForLevel(addrKey [addrKeySize]byte, level uint8) [levelKeySize]byte {
var key [levelKeySize]byte
copy(key[:], addrKey[:])
key[levelOffset] = level
return key
}
// dbPutAddrIndexEntry updates the address index to include the provided entry
// according to the level-based scheme described in detail above.
func dbPutAddrIndexEntry(bucket internalBucket, addrKey [addrKeySize]byte, blockID uint32, txLoc wire.TxLoc) error {
// Start with level 0 and its initial max number of entries.
curLevel := uint8(0)
maxLevelBytes := level0MaxEntries * txEntrySize
// Simply append the new entry to level 0 and return now when it will
// fit. This is the most common path.
newData := serializeAddrIndexEntry(blockID, txLoc)
level0Key := keyForLevel(addrKey, 0)
level0Data := bucket.Get(level0Key[:])
if len(level0Data)+len(newData) <= maxLevelBytes {
mergedData := newData
if len(level0Data) > 0 {
mergedData = make([]byte, len(level0Data)+len(newData))
copy(mergedData, level0Data)
copy(mergedData[len(level0Data):], newData)
}
return bucket.Put(level0Key[:], mergedData)
}
// At this point, level 0 is full, so merge each level into higher
// levels as many times as needed to free up level 0.
prevLevelData := level0Data
for {
// Each new level holds twice as much as the previous one.
curLevel++
maxLevelBytes *= 2
// Move to the next level as long as the current level is full.
curLevelKey := keyForLevel(addrKey, curLevel)
curLevelData := bucket.Get(curLevelKey[:])
if len(curLevelData) == maxLevelBytes {
prevLevelData = curLevelData
continue
}
// The current level has room for the data in the previous one,
// so merge the data from previous level into it.
mergedData := prevLevelData
if len(curLevelData) > 0 {
mergedData = make([]byte, len(curLevelData)+
len(prevLevelData))
copy(mergedData, curLevelData)
copy(mergedData[len(curLevelData):], prevLevelData)
}
err := bucket.Put(curLevelKey[:], mergedData)
if err != nil {
return err
}
// Move all of the levels before the previous one up a level.
for mergeLevel := curLevel - 1; mergeLevel > 0; mergeLevel-- {
mergeLevelKey := keyForLevel(addrKey, mergeLevel)
prevLevelKey := keyForLevel(addrKey, mergeLevel-1)
prevData := bucket.Get(prevLevelKey[:])
err := bucket.Put(mergeLevelKey[:], prevData)
if err != nil {
return err
}
}
break
}
// Finally, insert the new entry into level 0 now that it is empty.
return bucket.Put(level0Key[:], newData)
}
// dbFetchAddrIndexEntries returns block regions for transactions referenced by
// the given address key and the number of entries skipped since it could have
// been less in the case where there are less total entries than the requested
// number of entries to skip.
func dbFetchAddrIndexEntries(bucket internalBucket, addrKey [addrKeySize]byte, numToSkip, numRequested uint32, reverse bool, fetchBlockHash fetchBlockHashFunc) ([]database.BlockRegion, uint32, error) {
// When the reverse flag is not set, all levels need to be fetched
// because numToSkip and numRequested are counted from the oldest
// transactions (highest level) and thus the total count is needed.
// However, when the reverse flag is set, only enough records to satisfy
// the requested amount are needed.
var level uint8
var serialized []byte
for !reverse || len(serialized) < int(numToSkip+numRequested)*txEntrySize {
curLevelKey := keyForLevel(addrKey, level)
levelData := bucket.Get(curLevelKey[:])
if levelData == nil {
// Stop when there are no more levels.
break
}
// Higher levels contain older transactions, so prepend them.
prepended := make([]byte, len(serialized)+len(levelData))
copy(prepended, levelData)
copy(prepended[len(levelData):], serialized)
serialized = prepended
level++
}
// When the requested number of entries to skip is larger than the
// number available, skip them all and return now with the actual number
// skipped.
numEntries := uint32(len(serialized) / txEntrySize)
if numToSkip >= numEntries {
return nil, numEntries, nil
}
// Nothing more to do when there are no requested entries.
if numRequested == 0 {
return nil, numToSkip, nil
}
// Limit the number to load based on the number of available entries,
// the number to skip, and the number requested.
numToLoad := numEntries - numToSkip
if numToLoad > numRequested {
numToLoad = numRequested
}
// Start the offset after all skipped entries and load the calculated
// number.
results := make([]database.BlockRegion, numToLoad)
for i := uint32(0); i < numToLoad; i++ {
// Calculate the read offset according to the reverse flag.
var offset uint32
if reverse {
offset = (numEntries - numToSkip - i - 1) * txEntrySize
} else {
offset = (numToSkip + i) * txEntrySize
}
// Deserialize and populate the result.
err := deserializeAddrIndexEntry(serialized[offset:],
&results[i], fetchBlockHash)
if err != nil {
// Ensure any deserialization errors are returned as
// database corruption errors.
if isDeserializeErr(err) {
err = database.Error{
ErrorCode: database.ErrCorruption,
Description: fmt.Sprintf("failed to "+
"deserialized address index "+
"for key %x: %v", addrKey, err),
}
}
return nil, 0, err
}
}
return results, numToSkip, nil
}
// minEntriesToReachLevel returns the minimum number of entries that are
// required to reach the given address index level.
func minEntriesToReachLevel(level uint8) int {
maxEntriesForLevel := level0MaxEntries
minRequired := 1
for l := uint8(1); l <= level; l++ {
minRequired += maxEntriesForLevel
maxEntriesForLevel *= 2
}
return minRequired
}
// maxEntriesForLevel returns the maximum number of entries allowed for the
// given address index level.
func maxEntriesForLevel(level uint8) int {
numEntries := level0MaxEntries
for l := level; l > 0; l-- {
numEntries *= 2
}
return numEntries
}
// dbRemoveAddrIndexEntries removes the specified number of entries from from
// the address index for the provided key. An assertion error will be returned
// if the count exceeds the total number of entries in the index.
func dbRemoveAddrIndexEntries(bucket internalBucket, addrKey [addrKeySize]byte, count int) error {
// Nothing to do if no entries are being deleted.
if count <= 0 {
return nil
}
// Make use of a local map to track pending updates and define a closure
// to apply it to the database. This is done in order to reduce the
// number of database reads and because there is more than one exit
// path that needs to apply the updates.
pendingUpdates := make(map[uint8][]byte)
applyPending := func() error {
for level, data := range pendingUpdates {
curLevelKey := keyForLevel(addrKey, level)
if len(data) == 0 {
err := bucket.Delete(curLevelKey[:])
if err != nil {
return err
}
continue
}
err := bucket.Put(curLevelKey[:], data)
if err != nil {
return err
}
}
return nil
}
// Loop forwards through the levels while removing entries until the
// specified number has been removed. This will potentially result in
// entirely empty lower levels which will be backfilled below.
var highestLoadedLevel uint8
numRemaining := count
for level := uint8(0); numRemaining > 0; level++ {
// Load the data for the level from the database.
curLevelKey := keyForLevel(addrKey, level)
curLevelData := bucket.Get(curLevelKey[:])
if len(curLevelData) == 0 && numRemaining > 0 {
return AssertError(fmt.Sprintf("dbRemoveAddrIndexEntries "+
"not enough entries for address key %x to "+
"delete %d entries", addrKey, count))
}
pendingUpdates[level] = curLevelData
highestLoadedLevel = level
// Delete the entire level as needed.
numEntries := len(curLevelData) / txEntrySize
if numRemaining >= numEntries {
pendingUpdates[level] = nil
numRemaining -= numEntries
continue
}
// Remove remaining entries to delete from the level.
offsetEnd := len(curLevelData) - (numRemaining * txEntrySize)
pendingUpdates[level] = curLevelData[:offsetEnd]
break
}
// When all elements in level 0 were not removed there is nothing left
// to do other than updating the database.
if len(pendingUpdates[0]) != 0 {
return applyPending()
}
// At this point there are one or more empty levels before the current
// level which need to be backfilled and the current level might have
// had some entries deleted from it as well. Since all levels after
// level 0 are required to either be empty, half full, or completely
// full, the current level must be adjusted accordingly by backfilling
// each previous levels in a way which satisfies the requirements. Any
// entries that are left are assigned to level 0 after the loop as they
// are guaranteed to fit by the logic in the loop. In other words, this
// effectively squashes all remaining entries in the current level into
// the lowest possible levels while following the level rules.
//
// Note that the level after the current level might also have entries
// and gaps are not allowed, so this also keeps track of the lowest
// empty level so the code below knows how far to backfill in case it is
// required.
lowestEmptyLevel := uint8(255)
curLevelData := pendingUpdates[highestLoadedLevel]
curLevelMaxEntries := maxEntriesForLevel(highestLoadedLevel)
for level := highestLoadedLevel; level > 0; level-- {
// When there are not enough entries left in the current level
// for the number that would be required to reach it, clear the
// the current level which effectively moves them all up to the
// previous level on the next iteration. Otherwise, there are
// are sufficient entries, so update the current level to
// contain as many entries as possible while still leaving
// enough remaining entries required to reach the level.
numEntries := len(curLevelData) / txEntrySize
prevLevelMaxEntries := curLevelMaxEntries / 2
minPrevRequired := minEntriesToReachLevel(level - 1)
if numEntries < prevLevelMaxEntries+minPrevRequired {
lowestEmptyLevel = level
pendingUpdates[level] = nil
} else {
// This level can only be completely full or half full,
// so choose the appropriate offset to ensure enough
// entries remain to reach the level.
var offset int
if numEntries-curLevelMaxEntries >= minPrevRequired {
offset = curLevelMaxEntries * txEntrySize
} else {
offset = prevLevelMaxEntries * txEntrySize
}
pendingUpdates[level] = curLevelData[:offset]
curLevelData = curLevelData[offset:]
}
curLevelMaxEntries = prevLevelMaxEntries
}
pendingUpdates[0] = curLevelData
if len(curLevelData) == 0 {
lowestEmptyLevel = 0
}
// When the highest loaded level is empty, it's possible the level after
// it still has data and thus that data needs to be backfilled as well.
for len(pendingUpdates[highestLoadedLevel]) == 0 {
// When the next level is empty too, the is no data left to
// continue backfilling, so there is nothing left to do.
// Otherwise, populate the pending updates map with the newly
// loaded data and update the highest loaded level accordingly.
level := highestLoadedLevel + 1
curLevelKey := keyForLevel(addrKey, level)
levelData := bucket.Get(curLevelKey[:])
if len(levelData) == 0 {
break
}
pendingUpdates[level] = levelData
highestLoadedLevel = level
// At this point the highest level is not empty, but it might
// be half full. When that is the case, move it up a level to
// simplify the code below which backfills all lower levels that
// are still empty. This also means the current level will be
// empty, so the loop will perform another another iteration to
// potentially backfill this level with data from the next one.
curLevelMaxEntries := maxEntriesForLevel(level)
if len(levelData)/txEntrySize != curLevelMaxEntries {
pendingUpdates[level] = nil
pendingUpdates[level-1] = levelData
level--
curLevelMaxEntries /= 2
}
// Backfill all lower levels that are still empty by iteratively
// halfing the data until the lowest empty level is filled.
for level > lowestEmptyLevel {
offset := (curLevelMaxEntries / 2) * txEntrySize
pendingUpdates[level] = levelData[:offset]
levelData = levelData[offset:]
pendingUpdates[level-1] = levelData
level--
curLevelMaxEntries /= 2
}
// The lowest possible empty level is now the highest loaded
// level.
lowestEmptyLevel = highestLoadedLevel
}
// Apply the pending updates.
return applyPending()
}
// addrToKey converts known address types to an addrindex key. An error is
// returned for unsupported types.
func addrToKey(addr btcutil.Address) ([addrKeySize]byte, error) {
switch addr := addr.(type) {
case *btcutil.AddressPubKeyHash:
var result [addrKeySize]byte
result[0] = addrKeyTypePubKeyHash
copy(result[1:], addr.Hash160()[:])
return result, nil
case *btcutil.AddressScriptHash:
var result [addrKeySize]byte
result[0] = addrKeyTypeScriptHash
copy(result[1:], addr.Hash160()[:])
return result, nil
case *btcutil.AddressPubKey:
var result [addrKeySize]byte
result[0] = addrKeyTypePubKeyHash
copy(result[1:], addr.AddressPubKeyHash().Hash160()[:])
return result, nil
case *btcutil.AddressWitnessScriptHash:
var result [addrKeySize]byte
result[0] = addrKeyTypeWitnessScriptHash
// P2WSH outputs utilize a 32-byte data push created by hashing
// the script with sha256 instead of hash160. In order to keep
// all address entries within the database uniform and compact,
// we use a hash160 here to reduce the size of the salient data
// push to 20-bytes.
copy(result[1:], btcutil.Hash160(addr.ScriptAddress()))
return result, nil
case *btcutil.AddressWitnessPubKeyHash:
var result [addrKeySize]byte
result[0] = addrKeyTypeWitnessPubKeyHash
copy(result[1:], addr.Hash160()[:])
return result, nil
}
return [addrKeySize]byte{}, errUnsupportedAddressType
}
// AddrIndex implements a transaction by address index. That is to say, it
// supports querying all transactions that reference a given address because
// they are either crediting or debiting the address. The returned transactions
// are ordered according to their order of appearance in the blockchain. In
// other words, first by block height and then by offset inside the block.
//
// In addition, support is provided for a memory-only index of unconfirmed
// transactions such as those which are kept in the memory pool before inclusion
// in a block.
type AddrIndex struct {
// The following fields are set when the instance is created and can't
// be changed afterwards, so there is no need to protect them with a
// separate mutex.
db database.DB
chainParams *chaincfg.Params
// The following fields are used to quickly link transactions and
// addresses that have not been included into a block yet when an
// address index is being maintained. The are protected by the
// unconfirmedLock field.
//
// The txnsByAddr field is used to keep an index of all transactions
// which either create an output to a given address or spend from a
// previous output to it keyed by the address.
//
// The addrsByTx field is essentially the reverse and is used to
// keep an index of all addresses which a given transaction involves.
// This allows fairly efficient updates when transactions are removed
// once they are included into a block.
unconfirmedLock sync.RWMutex
txnsByAddr map[[addrKeySize]byte]map[chainhash.Hash]*btcutil.Tx
addrsByTx map[chainhash.Hash]map[[addrKeySize]byte]struct{}
}
// Ensure the AddrIndex type implements the Indexer interface.
var _ Indexer = (*AddrIndex)(nil)
// Ensure the AddrIndex type implements the NeedsInputser interface.
var _ NeedsInputser = (*AddrIndex)(nil)
// NeedsInputs signals that the index requires the referenced inputs in order
// to properly create the index.
//
// This implements the NeedsInputser interface.
func (idx *AddrIndex) NeedsInputs() bool {
return true
}
// Init is only provided to satisfy the Indexer interface as there is nothing to
// initialize for this index.
//
// This is part of the Indexer interface.
func (idx *AddrIndex) Init() error {
// Nothing to do.
return nil
}
// Key returns the database key to use for the index as a byte slice.
//
// This is part of the Indexer interface.
func (idx *AddrIndex) Key() []byte {
return addrIndexKey
}
// Name returns the human-readable name of the index.
//
// This is part of the Indexer interface.
func (idx *AddrIndex) Name() string {
return addrIndexName
}
// Create is invoked when the indexer manager determines the index needs
// to be created for the first time. It creates the bucket for the address
// index.
//
// This is part of the Indexer interface.
func (idx *AddrIndex) Create(dbTx database.Tx) error {
_, err := dbTx.Metadata().CreateBucket(addrIndexKey)
return err
}
// writeIndexData represents the address index data to be written for one block.
// It consistens of the address mapped to an ordered list of the transactions
// that involve the address in block. It is ordered so the transactions can be
// stored in the order they appear in the block.
type writeIndexData map[[addrKeySize]byte][]int
// indexPkScript extracts all standard addresses from the passed public key
// script and maps each of them to the associated transaction using the passed
// map.
func (idx *AddrIndex) indexPkScript(data writeIndexData, pkScript []byte, txIdx int) {
// Nothing to index if the script is non-standard or otherwise doesn't
// contain any addresses.
_, addrs, _, err := txscript.ExtractPkScriptAddrs(pkScript,
idx.chainParams)
if err != nil || len(addrs) == 0 {
return
}
for _, addr := range addrs {
addrKey, err := addrToKey(addr)
if err != nil {
// Ignore unsupported address types.
continue
}
// Avoid inserting the transaction more than once. Since the
// transactions are indexed serially any duplicates will be
// indexed in a row, so checking the most recent entry for the
// address is enough to detect duplicates.
indexedTxns := data[addrKey]
numTxns := len(indexedTxns)
if numTxns > 0 && indexedTxns[numTxns-1] == txIdx {
continue
}
indexedTxns = append(indexedTxns, txIdx)
data[addrKey] = indexedTxns
}
}
// indexBlock extract all of the standard addresses from all of the transactions
// in the passed block and maps each of them to the assocaited transaction using
// the passed map.
func (idx *AddrIndex) indexBlock(data writeIndexData, block *btcutil.Block, view *blockchain.UtxoViewpoint) {
for txIdx, tx := range block.Transactions() {
// Coinbases do not reference any inputs. Since the block is
// required to have already gone through full validation, it has
// already been proven on the first transaction in the block is
// a coinbase.
if txIdx != 0 {
for _, txIn := range tx.MsgTx().TxIn {
// The view should always have the input since
// the index contract requires it, however, be
// safe and simply ignore any missing entries.
origin := &txIn.PreviousOutPoint
entry := view.LookupEntry(&origin.Hash)
if entry == nil {
continue
}
pkScript := entry.PkScriptByIndex(origin.Index)
idx.indexPkScript(data, pkScript, txIdx)
}
}
for _, txOut := range tx.MsgTx().TxOut {
idx.indexPkScript(data, txOut.PkScript, txIdx)
}
}
}
// ConnectBlock is invoked by the index manager when a new block has been
// connected to the main chain. This indexer adds a mapping for each address
// the transactions in the block involve.
//
// This is part of the Indexer interface.
func (idx *AddrIndex) ConnectBlock(dbTx database.Tx, block *btcutil.Block, view *blockchain.UtxoViewpoint) error {
// The offset and length of the transactions within the serialized
// block.
txLocs, err := block.TxLoc()
if err != nil {
return err
}
// Get the internal block ID associated with the block.
blockID, err := dbFetchBlockIDByHash(dbTx, block.Hash())
if err != nil {
return err
}
// Build all of the address to transaction mappings in a local map.
addrsToTxns := make(writeIndexData)
idx.indexBlock(addrsToTxns, block, view)
// Add all of the index entries for each address.
addrIdxBucket := dbTx.Metadata().Bucket(addrIndexKey)
for addrKey, txIdxs := range addrsToTxns {
for _, txIdx := range txIdxs {
err := dbPutAddrIndexEntry(addrIdxBucket, addrKey,
blockID, txLocs[txIdx])
if err != nil {
return err
}
}
}
return nil
}
// DisconnectBlock is invoked by the index manager when a block has been
// disconnected from the main chain. This indexer removes the address mappings
// each transaction in the block involve.
//
// This is part of the Indexer interface.
func (idx *AddrIndex) DisconnectBlock(dbTx database.Tx, block *btcutil.Block, view *blockchain.UtxoViewpoint) error {
// Build all of the address to transaction mappings in a local map.
addrsToTxns := make(writeIndexData)
idx.indexBlock(addrsToTxns, block, view)
// Remove all of the index entries for each address.
bucket := dbTx.Metadata().Bucket(addrIndexKey)
for addrKey, txIdxs := range addrsToTxns {
err := dbRemoveAddrIndexEntries(bucket, addrKey, len(txIdxs))
if err != nil {
return err
}
}
return nil
}
// TxRegionsForAddress returns a slice of block regions which identify each
// transaction that involves the passed address according to the specified
// number to skip, number requested, and whether or not the results should be
// reversed. It also returns the number actually skipped since it could be less
// in the case where there are not enough entries.
//
// NOTE: These results only include transactions confirmed in blocks. See the
// UnconfirmedTxnsForAddress method for obtaining unconfirmed transactions
// that involve a given address.
//
// This function is safe for concurrent access.
func (idx *AddrIndex) TxRegionsForAddress(dbTx database.Tx, addr btcutil.Address, numToSkip, numRequested uint32, reverse bool) ([]database.BlockRegion, uint32, error) {
addrKey, err := addrToKey(addr)
if err != nil {
return nil, 0, err
}
var regions []database.BlockRegion
var skipped uint32
err = idx.db.View(func(dbTx database.Tx) error {
// Create closure to lookup the block hash given the ID using
// the database transaction.
fetchBlockHash := func(id []byte) (*chainhash.Hash, error) {
// Deserialize and populate the result.
return dbFetchBlockHashBySerializedID(dbTx, id)
}
var err error
addrIdxBucket := dbTx.Metadata().Bucket(addrIndexKey)
regions, skipped, err = dbFetchAddrIndexEntries(addrIdxBucket,
addrKey, numToSkip, numRequested, reverse,
fetchBlockHash)
return err
})
return regions, skipped, err
}
// indexUnconfirmedAddresses modifies the unconfirmed (memory-only) address
// index to include mappings for the addresses encoded by the passed public key
// script to the transaction.
//
// This function is safe for concurrent access.
func (idx *AddrIndex) indexUnconfirmedAddresses(pkScript []byte, tx *btcutil.Tx) {
// The error is ignored here since the only reason it can fail is if the
// script fails to parse and it was already validated before being
// admitted to the mempool.
_, addresses, _, _ := txscript.ExtractPkScriptAddrs(pkScript,
idx.chainParams)
for _, addr := range addresses {
// Ignore unsupported address types.
addrKey, err := addrToKey(addr)
if err != nil {
continue
}
// Add a mapping from the address to the transaction.
idx.unconfirmedLock.Lock()
addrIndexEntry := idx.txnsByAddr[addrKey]
if addrIndexEntry == nil {
addrIndexEntry = make(map[chainhash.Hash]*btcutil.Tx)
idx.txnsByAddr[addrKey] = addrIndexEntry
}
addrIndexEntry[*tx.Hash()] = tx
// Add a mapping from the transaction to the address.
addrsByTxEntry := idx.addrsByTx[*tx.Hash()]
if addrsByTxEntry == nil {
addrsByTxEntry = make(map[[addrKeySize]byte]struct{})
idx.addrsByTx[*tx.Hash()] = addrsByTxEntry
}
addrsByTxEntry[addrKey] = struct{}{}
idx.unconfirmedLock.Unlock()
}
}
// AddUnconfirmedTx adds all addresses related to the transaction to the
// unconfirmed (memory-only) address index.
//
// NOTE: This transaction MUST have already been validated by the memory pool
// before calling this function with it and have all of the inputs available in
// the provided utxo view. Failure to do so could result in some or all
// addresses not being indexed.
//
// This function is safe for concurrent access.
func (idx *AddrIndex) AddUnconfirmedTx(tx *btcutil.Tx, utxoView *blockchain.UtxoViewpoint) {
// Index addresses of all referenced previous transaction outputs.
//
// The existence checks are elided since this is only called after the
// transaction has already been validated and thus all inputs are
// already known to exist.
for _, txIn := range tx.MsgTx().TxIn {
entry := utxoView.LookupEntry(&txIn.PreviousOutPoint.Hash)
if entry == nil {
// Ignore missing entries. This should never happen
// in practice since the function comments specifically
// call out all inputs must be available.
continue
}
pkScript := entry.PkScriptByIndex(txIn.PreviousOutPoint.Index)
idx.indexUnconfirmedAddresses(pkScript, tx)
}
// Index addresses of all created outputs.
for _, txOut := range tx.MsgTx().TxOut {
idx.indexUnconfirmedAddresses(txOut.PkScript, tx)
}
}
// RemoveUnconfirmedTx removes the passed transaction from the unconfirmed
// (memory-only) address index.
//
// This function is safe for concurrent access.
func (idx *AddrIndex) RemoveUnconfirmedTx(hash *chainhash.Hash) {
idx.unconfirmedLock.Lock()
defer idx.unconfirmedLock.Unlock()
// Remove all address references to the transaction from the address
// index and remove the entry for the address altogether if it no longer
// references any transactions.
for addrKey := range idx.addrsByTx[*hash] {
delete(idx.txnsByAddr[addrKey], *hash)
if len(idx.txnsByAddr[addrKey]) == 0 {
delete(idx.txnsByAddr, addrKey)
}
}
// Remove the entry from the transaction to address lookup map as well.
delete(idx.addrsByTx, *hash)
}
// UnconfirmedTxnsForAddress returns all transactions currently in the
// unconfirmed (memory-only) address index that involve the passed address.
// Unsupported address types are ignored and will result in no results.
//
// This function is safe for concurrent access.
func (idx *AddrIndex) UnconfirmedTxnsForAddress(addr btcutil.Address) []*btcutil.Tx {
// Ignore unsupported address types.
addrKey, err := addrToKey(addr)
if err != nil {
return nil
}
// Protect concurrent access.
idx.unconfirmedLock.RLock()
defer idx.unconfirmedLock.RUnlock()
// Return a new slice with the results if there are any. This ensures
// safe concurrency.
if txns, exists := idx.txnsByAddr[addrKey]; exists {
addressTxns := make([]*btcutil.Tx, 0, len(txns))
for _, tx := range txns {
addressTxns = append(addressTxns, tx)
}
return addressTxns
}
return nil
}
// NewAddrIndex returns a new instance of an indexer that is used to create a
// mapping of all addresses in the blockchain to the respective transactions
// that involve them.
//
// It implements the Indexer interface which plugs into the IndexManager that in
// turn is used by the blockchain package. This allows the index to be
// seamlessly maintained along with the chain.
func NewAddrIndex(db database.DB, chainParams *chaincfg.Params) *AddrIndex {
return &AddrIndex{
db: db,
chainParams: chainParams,
txnsByAddr: make(map[[addrKeySize]byte]map[chainhash.Hash]*btcutil.Tx),
addrsByTx: make(map[chainhash.Hash]map[[addrKeySize]byte]struct{}),
}
}
// DropAddrIndex drops the address index from the provided database if it
// exists.
func DropAddrIndex(db database.DB, interrupt <-chan struct{}) error {
return dropIndex(db, addrIndexKey, addrIndexName, interrupt)
}