* build: enable unconvert linter - fixes #15453 - update code base for failing cases * cmd/puppeth: replace syscall.Stdin with os.Stdin.Fd() for unconvert linter
		
			
				
	
	
		
			681 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			681 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright 2015 The go-ethereum Authors
 | |
| // This file is part of the go-ethereum library.
 | |
| //
 | |
| // The go-ethereum library is free software: you can redistribute it and/or modify
 | |
| // it under the terms of the GNU Lesser General Public License as published by
 | |
| // the Free Software Foundation, either version 3 of the License, or
 | |
| // (at your option) any later version.
 | |
| //
 | |
| // The go-ethereum library is distributed in the hope that it will be useful,
 | |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 | |
| // GNU Lesser General Public License for more details.
 | |
| //
 | |
| // You should have received a copy of the GNU Lesser General Public License
 | |
| // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
 | |
| 
 | |
| // Package discover implements the Node Discovery Protocol.
 | |
| //
 | |
| // The Node Discovery protocol provides a way to find RLPx nodes that
 | |
| // can be connected to. It uses a Kademlia-like protocol to maintain a
 | |
| // distributed database of the IDs and endpoints of all listening
 | |
| // nodes.
 | |
| package discover
 | |
| 
 | |
| import (
 | |
| 	"crypto/rand"
 | |
| 	"encoding/binary"
 | |
| 	"errors"
 | |
| 	"fmt"
 | |
| 	"net"
 | |
| 	"sort"
 | |
| 	"sync"
 | |
| 	"time"
 | |
| 
 | |
| 	"github.com/ethereum/go-ethereum/common"
 | |
| 	"github.com/ethereum/go-ethereum/crypto"
 | |
| 	"github.com/ethereum/go-ethereum/log"
 | |
| )
 | |
| 
 | |
| const (
 | |
| 	alpha      = 3  // Kademlia concurrency factor
 | |
| 	bucketSize = 16 // Kademlia bucket size
 | |
| 	hashBits   = len(common.Hash{}) * 8
 | |
| 	nBuckets   = hashBits + 1 // Number of buckets
 | |
| 
 | |
| 	maxBondingPingPongs = 16
 | |
| 	maxFindnodeFailures = 5
 | |
| 
 | |
| 	autoRefreshInterval = 1 * time.Hour
 | |
| 	seedCount           = 30
 | |
| 	seedMaxAge          = 5 * 24 * time.Hour
 | |
| )
 | |
| 
 | |
| type Table struct {
 | |
| 	mutex   sync.Mutex        // protects buckets, their content, and nursery
 | |
| 	buckets [nBuckets]*bucket // index of known nodes by distance
 | |
| 	nursery []*Node           // bootstrap nodes
 | |
| 	db      *nodeDB           // database of known nodes
 | |
| 
 | |
| 	refreshReq chan chan struct{}
 | |
| 	closeReq   chan struct{}
 | |
| 	closed     chan struct{}
 | |
| 
 | |
| 	bondmu    sync.Mutex
 | |
| 	bonding   map[NodeID]*bondproc
 | |
| 	bondslots chan struct{} // limits total number of active bonding processes
 | |
| 
 | |
| 	nodeAddedHook func(*Node) // for testing
 | |
| 
 | |
| 	net  transport
 | |
| 	self *Node // metadata of the local node
 | |
| }
 | |
| 
 | |
| type bondproc struct {
 | |
| 	err  error
 | |
| 	n    *Node
 | |
| 	done chan struct{}
 | |
| }
 | |
| 
 | |
| // transport is implemented by the UDP transport.
 | |
| // it is an interface so we can test without opening lots of UDP
 | |
| // sockets and without generating a private key.
 | |
| type transport interface {
 | |
| 	ping(NodeID, *net.UDPAddr) error
 | |
| 	waitping(NodeID) error
 | |
| 	findnode(toid NodeID, addr *net.UDPAddr, target NodeID) ([]*Node, error)
 | |
| 	close()
 | |
| }
 | |
| 
 | |
| // bucket contains nodes, ordered by their last activity. the entry
 | |
| // that was most recently active is the first element in entries.
 | |
| type bucket struct{ entries []*Node }
 | |
| 
 | |
| func newTable(t transport, ourID NodeID, ourAddr *net.UDPAddr, nodeDBPath string) (*Table, error) {
 | |
| 	// If no node database was given, use an in-memory one
 | |
| 	db, err := newNodeDB(nodeDBPath, Version, ourID)
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	tab := &Table{
 | |
| 		net:        t,
 | |
| 		db:         db,
 | |
| 		self:       NewNode(ourID, ourAddr.IP, uint16(ourAddr.Port), uint16(ourAddr.Port)),
 | |
| 		bonding:    make(map[NodeID]*bondproc),
 | |
| 		bondslots:  make(chan struct{}, maxBondingPingPongs),
 | |
| 		refreshReq: make(chan chan struct{}),
 | |
| 		closeReq:   make(chan struct{}),
 | |
| 		closed:     make(chan struct{}),
 | |
| 	}
 | |
| 	for i := 0; i < cap(tab.bondslots); i++ {
 | |
| 		tab.bondslots <- struct{}{}
 | |
| 	}
 | |
| 	for i := range tab.buckets {
 | |
| 		tab.buckets[i] = new(bucket)
 | |
| 	}
 | |
| 	go tab.refreshLoop()
 | |
| 	return tab, nil
 | |
| }
 | |
| 
 | |
| // Self returns the local node.
 | |
| // The returned node should not be modified by the caller.
 | |
| func (tab *Table) Self() *Node {
 | |
| 	return tab.self
 | |
| }
 | |
| 
 | |
| // ReadRandomNodes fills the given slice with random nodes from the
 | |
| // table. It will not write the same node more than once. The nodes in
 | |
| // the slice are copies and can be modified by the caller.
 | |
| func (tab *Table) ReadRandomNodes(buf []*Node) (n int) {
 | |
| 	tab.mutex.Lock()
 | |
| 	defer tab.mutex.Unlock()
 | |
| 	// TODO: tree-based buckets would help here
 | |
| 	// Find all non-empty buckets and get a fresh slice of their entries.
 | |
| 	var buckets [][]*Node
 | |
| 	for _, b := range tab.buckets {
 | |
| 		if len(b.entries) > 0 {
 | |
| 			buckets = append(buckets, b.entries[:])
 | |
| 		}
 | |
| 	}
 | |
| 	if len(buckets) == 0 {
 | |
| 		return 0
 | |
| 	}
 | |
| 	// Shuffle the buckets.
 | |
| 	for i := uint32(len(buckets)) - 1; i > 0; i-- {
 | |
| 		j := randUint(i)
 | |
| 		buckets[i], buckets[j] = buckets[j], buckets[i]
 | |
| 	}
 | |
| 	// Move head of each bucket into buf, removing buckets that become empty.
 | |
| 	var i, j int
 | |
| 	for ; i < len(buf); i, j = i+1, (j+1)%len(buckets) {
 | |
| 		b := buckets[j]
 | |
| 		buf[i] = &(*b[0])
 | |
| 		buckets[j] = b[1:]
 | |
| 		if len(b) == 1 {
 | |
| 			buckets = append(buckets[:j], buckets[j+1:]...)
 | |
| 		}
 | |
| 		if len(buckets) == 0 {
 | |
| 			break
 | |
| 		}
 | |
| 	}
 | |
| 	return i + 1
 | |
| }
 | |
| 
 | |
| func randUint(max uint32) uint32 {
 | |
| 	if max == 0 {
 | |
| 		return 0
 | |
| 	}
 | |
| 	var b [4]byte
 | |
| 	rand.Read(b[:])
 | |
| 	return binary.BigEndian.Uint32(b[:]) % max
 | |
| }
 | |
| 
 | |
| // Close terminates the network listener and flushes the node database.
 | |
| func (tab *Table) Close() {
 | |
| 	select {
 | |
| 	case <-tab.closed:
 | |
| 		// already closed.
 | |
| 	case tab.closeReq <- struct{}{}:
 | |
| 		<-tab.closed // wait for refreshLoop to end.
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // SetFallbackNodes sets the initial points of contact. These nodes
 | |
| // are used to connect to the network if the table is empty and there
 | |
| // are no known nodes in the database.
 | |
| func (tab *Table) SetFallbackNodes(nodes []*Node) error {
 | |
| 	for _, n := range nodes {
 | |
| 		if err := n.validateComplete(); err != nil {
 | |
| 			return fmt.Errorf("bad bootstrap/fallback node %q (%v)", n, err)
 | |
| 		}
 | |
| 	}
 | |
| 	tab.mutex.Lock()
 | |
| 	tab.nursery = make([]*Node, 0, len(nodes))
 | |
| 	for _, n := range nodes {
 | |
| 		cpy := *n
 | |
| 		// Recompute cpy.sha because the node might not have been
 | |
| 		// created by NewNode or ParseNode.
 | |
| 		cpy.sha = crypto.Keccak256Hash(n.ID[:])
 | |
| 		tab.nursery = append(tab.nursery, &cpy)
 | |
| 	}
 | |
| 	tab.mutex.Unlock()
 | |
| 	tab.refresh()
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| // Resolve searches for a specific node with the given ID.
 | |
| // It returns nil if the node could not be found.
 | |
| func (tab *Table) Resolve(targetID NodeID) *Node {
 | |
| 	// If the node is present in the local table, no
 | |
| 	// network interaction is required.
 | |
| 	hash := crypto.Keccak256Hash(targetID[:])
 | |
| 	tab.mutex.Lock()
 | |
| 	cl := tab.closest(hash, 1)
 | |
| 	tab.mutex.Unlock()
 | |
| 	if len(cl.entries) > 0 && cl.entries[0].ID == targetID {
 | |
| 		return cl.entries[0]
 | |
| 	}
 | |
| 	// Otherwise, do a network lookup.
 | |
| 	result := tab.Lookup(targetID)
 | |
| 	for _, n := range result {
 | |
| 		if n.ID == targetID {
 | |
| 			return n
 | |
| 		}
 | |
| 	}
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| // Lookup performs a network search for nodes close
 | |
| // to the given target. It approaches the target by querying
 | |
| // nodes that are closer to it on each iteration.
 | |
| // The given target does not need to be an actual node
 | |
| // identifier.
 | |
| func (tab *Table) Lookup(targetID NodeID) []*Node {
 | |
| 	return tab.lookup(targetID, true)
 | |
| }
 | |
| 
 | |
| func (tab *Table) lookup(targetID NodeID, refreshIfEmpty bool) []*Node {
 | |
| 	var (
 | |
| 		target         = crypto.Keccak256Hash(targetID[:])
 | |
| 		asked          = make(map[NodeID]bool)
 | |
| 		seen           = make(map[NodeID]bool)
 | |
| 		reply          = make(chan []*Node, alpha)
 | |
| 		pendingQueries = 0
 | |
| 		result         *nodesByDistance
 | |
| 	)
 | |
| 	// don't query further if we hit ourself.
 | |
| 	// unlikely to happen often in practice.
 | |
| 	asked[tab.self.ID] = true
 | |
| 
 | |
| 	for {
 | |
| 		tab.mutex.Lock()
 | |
| 		// generate initial result set
 | |
| 		result = tab.closest(target, bucketSize)
 | |
| 		tab.mutex.Unlock()
 | |
| 		if len(result.entries) > 0 || !refreshIfEmpty {
 | |
| 			break
 | |
| 		}
 | |
| 		// The result set is empty, all nodes were dropped, refresh.
 | |
| 		// We actually wait for the refresh to complete here. The very
 | |
| 		// first query will hit this case and run the bootstrapping
 | |
| 		// logic.
 | |
| 		<-tab.refresh()
 | |
| 		refreshIfEmpty = false
 | |
| 	}
 | |
| 
 | |
| 	for {
 | |
| 		// ask the alpha closest nodes that we haven't asked yet
 | |
| 		for i := 0; i < len(result.entries) && pendingQueries < alpha; i++ {
 | |
| 			n := result.entries[i]
 | |
| 			if !asked[n.ID] {
 | |
| 				asked[n.ID] = true
 | |
| 				pendingQueries++
 | |
| 				go func() {
 | |
| 					// Find potential neighbors to bond with
 | |
| 					r, err := tab.net.findnode(n.ID, n.addr(), targetID)
 | |
| 					if err != nil {
 | |
| 						// Bump the failure counter to detect and evacuate non-bonded entries
 | |
| 						fails := tab.db.findFails(n.ID) + 1
 | |
| 						tab.db.updateFindFails(n.ID, fails)
 | |
| 						log.Trace("Bumping findnode failure counter", "id", n.ID, "failcount", fails)
 | |
| 
 | |
| 						if fails >= maxFindnodeFailures {
 | |
| 							log.Trace("Too many findnode failures, dropping", "id", n.ID, "failcount", fails)
 | |
| 							tab.delete(n)
 | |
| 						}
 | |
| 					}
 | |
| 					reply <- tab.bondall(r)
 | |
| 				}()
 | |
| 			}
 | |
| 		}
 | |
| 		if pendingQueries == 0 {
 | |
| 			// we have asked all closest nodes, stop the search
 | |
| 			break
 | |
| 		}
 | |
| 		// wait for the next reply
 | |
| 		for _, n := range <-reply {
 | |
| 			if n != nil && !seen[n.ID] {
 | |
| 				seen[n.ID] = true
 | |
| 				result.push(n, bucketSize)
 | |
| 			}
 | |
| 		}
 | |
| 		pendingQueries--
 | |
| 	}
 | |
| 	return result.entries
 | |
| }
 | |
| 
 | |
| func (tab *Table) refresh() <-chan struct{} {
 | |
| 	done := make(chan struct{})
 | |
| 	select {
 | |
| 	case tab.refreshReq <- done:
 | |
| 	case <-tab.closed:
 | |
| 		close(done)
 | |
| 	}
 | |
| 	return done
 | |
| }
 | |
| 
 | |
| // refreshLoop schedules doRefresh runs and coordinates shutdown.
 | |
| func (tab *Table) refreshLoop() {
 | |
| 	var (
 | |
| 		timer   = time.NewTicker(autoRefreshInterval)
 | |
| 		waiting []chan struct{} // accumulates waiting callers while doRefresh runs
 | |
| 		done    chan struct{}   // where doRefresh reports completion
 | |
| 	)
 | |
| loop:
 | |
| 	for {
 | |
| 		select {
 | |
| 		case <-timer.C:
 | |
| 			if done == nil {
 | |
| 				done = make(chan struct{})
 | |
| 				go tab.doRefresh(done)
 | |
| 			}
 | |
| 		case req := <-tab.refreshReq:
 | |
| 			waiting = append(waiting, req)
 | |
| 			if done == nil {
 | |
| 				done = make(chan struct{})
 | |
| 				go tab.doRefresh(done)
 | |
| 			}
 | |
| 		case <-done:
 | |
| 			for _, ch := range waiting {
 | |
| 				close(ch)
 | |
| 			}
 | |
| 			waiting = nil
 | |
| 			done = nil
 | |
| 		case <-tab.closeReq:
 | |
| 			break loop
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if tab.net != nil {
 | |
| 		tab.net.close()
 | |
| 	}
 | |
| 	if done != nil {
 | |
| 		<-done
 | |
| 	}
 | |
| 	for _, ch := range waiting {
 | |
| 		close(ch)
 | |
| 	}
 | |
| 	tab.db.close()
 | |
| 	close(tab.closed)
 | |
| }
 | |
| 
 | |
| // doRefresh performs a lookup for a random target to keep buckets
 | |
| // full. seed nodes are inserted if the table is empty (initial
 | |
| // bootstrap or discarded faulty peers).
 | |
| func (tab *Table) doRefresh(done chan struct{}) {
 | |
| 	defer close(done)
 | |
| 
 | |
| 	// The Kademlia paper specifies that the bucket refresh should
 | |
| 	// perform a lookup in the least recently used bucket. We cannot
 | |
| 	// adhere to this because the findnode target is a 512bit value
 | |
| 	// (not hash-sized) and it is not easily possible to generate a
 | |
| 	// sha3 preimage that falls into a chosen bucket.
 | |
| 	// We perform a lookup with a random target instead.
 | |
| 	var target NodeID
 | |
| 	rand.Read(target[:])
 | |
| 	result := tab.lookup(target, false)
 | |
| 	if len(result) > 0 {
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	// The table is empty. Load nodes from the database and insert
 | |
| 	// them. This should yield a few previously seen nodes that are
 | |
| 	// (hopefully) still alive.
 | |
| 	seeds := tab.db.querySeeds(seedCount, seedMaxAge)
 | |
| 	seeds = tab.bondall(append(seeds, tab.nursery...))
 | |
| 
 | |
| 	if len(seeds) == 0 {
 | |
| 		log.Debug("No discv4 seed nodes found")
 | |
| 	}
 | |
| 	for _, n := range seeds {
 | |
| 		age := log.Lazy{Fn: func() time.Duration { return time.Since(tab.db.lastPong(n.ID)) }}
 | |
| 		log.Trace("Found seed node in database", "id", n.ID, "addr", n.addr(), "age", age)
 | |
| 	}
 | |
| 	tab.mutex.Lock()
 | |
| 	tab.stuff(seeds)
 | |
| 	tab.mutex.Unlock()
 | |
| 
 | |
| 	// Finally, do a self lookup to fill up the buckets.
 | |
| 	tab.lookup(tab.self.ID, false)
 | |
| }
 | |
| 
 | |
| // closest returns the n nodes in the table that are closest to the
 | |
| // given id. The caller must hold tab.mutex.
 | |
| func (tab *Table) closest(target common.Hash, nresults int) *nodesByDistance {
 | |
| 	// This is a very wasteful way to find the closest nodes but
 | |
| 	// obviously correct. I believe that tree-based buckets would make
 | |
| 	// this easier to implement efficiently.
 | |
| 	close := &nodesByDistance{target: target}
 | |
| 	for _, b := range tab.buckets {
 | |
| 		for _, n := range b.entries {
 | |
| 			close.push(n, nresults)
 | |
| 		}
 | |
| 	}
 | |
| 	return close
 | |
| }
 | |
| 
 | |
| func (tab *Table) len() (n int) {
 | |
| 	for _, b := range tab.buckets {
 | |
| 		n += len(b.entries)
 | |
| 	}
 | |
| 	return n
 | |
| }
 | |
| 
 | |
| // bondall bonds with all given nodes concurrently and returns
 | |
| // those nodes for which bonding has probably succeeded.
 | |
| func (tab *Table) bondall(nodes []*Node) (result []*Node) {
 | |
| 	rc := make(chan *Node, len(nodes))
 | |
| 	for i := range nodes {
 | |
| 		go func(n *Node) {
 | |
| 			nn, _ := tab.bond(false, n.ID, n.addr(), n.TCP)
 | |
| 			rc <- nn
 | |
| 		}(nodes[i])
 | |
| 	}
 | |
| 	for range nodes {
 | |
| 		if n := <-rc; n != nil {
 | |
| 			result = append(result, n)
 | |
| 		}
 | |
| 	}
 | |
| 	return result
 | |
| }
 | |
| 
 | |
| // bond ensures the local node has a bond with the given remote node.
 | |
| // It also attempts to insert the node into the table if bonding succeeds.
 | |
| // The caller must not hold tab.mutex.
 | |
| //
 | |
| // A bond is must be established before sending findnode requests.
 | |
| // Both sides must have completed a ping/pong exchange for a bond to
 | |
| // exist. The total number of active bonding processes is limited in
 | |
| // order to restrain network use.
 | |
| //
 | |
| // bond is meant to operate idempotently in that bonding with a remote
 | |
| // node which still remembers a previously established bond will work.
 | |
| // The remote node will simply not send a ping back, causing waitping
 | |
| // to time out.
 | |
| //
 | |
| // If pinged is true, the remote node has just pinged us and one half
 | |
| // of the process can be skipped.
 | |
| func (tab *Table) bond(pinged bool, id NodeID, addr *net.UDPAddr, tcpPort uint16) (*Node, error) {
 | |
| 	if id == tab.self.ID {
 | |
| 		return nil, errors.New("is self")
 | |
| 	}
 | |
| 	// Retrieve a previously known node and any recent findnode failures
 | |
| 	node, fails := tab.db.node(id), 0
 | |
| 	if node != nil {
 | |
| 		fails = tab.db.findFails(id)
 | |
| 	}
 | |
| 	// If the node is unknown (non-bonded) or failed (remotely unknown), bond from scratch
 | |
| 	var result error
 | |
| 	age := time.Since(tab.db.lastPong(id))
 | |
| 	if node == nil || fails > 0 || age > nodeDBNodeExpiration {
 | |
| 		log.Trace("Starting bonding ping/pong", "id", id, "known", node != nil, "failcount", fails, "age", age)
 | |
| 
 | |
| 		tab.bondmu.Lock()
 | |
| 		w := tab.bonding[id]
 | |
| 		if w != nil {
 | |
| 			// Wait for an existing bonding process to complete.
 | |
| 			tab.bondmu.Unlock()
 | |
| 			<-w.done
 | |
| 		} else {
 | |
| 			// Register a new bonding process.
 | |
| 			w = &bondproc{done: make(chan struct{})}
 | |
| 			tab.bonding[id] = w
 | |
| 			tab.bondmu.Unlock()
 | |
| 			// Do the ping/pong. The result goes into w.
 | |
| 			tab.pingpong(w, pinged, id, addr, tcpPort)
 | |
| 			// Unregister the process after it's done.
 | |
| 			tab.bondmu.Lock()
 | |
| 			delete(tab.bonding, id)
 | |
| 			tab.bondmu.Unlock()
 | |
| 		}
 | |
| 		// Retrieve the bonding results
 | |
| 		result = w.err
 | |
| 		if result == nil {
 | |
| 			node = w.n
 | |
| 		}
 | |
| 	}
 | |
| 	if node != nil {
 | |
| 		// Add the node to the table even if the bonding ping/pong
 | |
| 		// fails. It will be relaced quickly if it continues to be
 | |
| 		// unresponsive.
 | |
| 		tab.add(node)
 | |
| 		tab.db.updateFindFails(id, 0)
 | |
| 	}
 | |
| 	return node, result
 | |
| }
 | |
| 
 | |
| func (tab *Table) pingpong(w *bondproc, pinged bool, id NodeID, addr *net.UDPAddr, tcpPort uint16) {
 | |
| 	// Request a bonding slot to limit network usage
 | |
| 	<-tab.bondslots
 | |
| 	defer func() { tab.bondslots <- struct{}{} }()
 | |
| 
 | |
| 	// Ping the remote side and wait for a pong.
 | |
| 	if w.err = tab.ping(id, addr); w.err != nil {
 | |
| 		close(w.done)
 | |
| 		return
 | |
| 	}
 | |
| 	if !pinged {
 | |
| 		// Give the remote node a chance to ping us before we start
 | |
| 		// sending findnode requests. If they still remember us,
 | |
| 		// waitping will simply time out.
 | |
| 		tab.net.waitping(id)
 | |
| 	}
 | |
| 	// Bonding succeeded, update the node database.
 | |
| 	w.n = NewNode(id, addr.IP, uint16(addr.Port), tcpPort)
 | |
| 	tab.db.updateNode(w.n)
 | |
| 	close(w.done)
 | |
| }
 | |
| 
 | |
| // ping a remote endpoint and wait for a reply, also updating the node
 | |
| // database accordingly.
 | |
| func (tab *Table) ping(id NodeID, addr *net.UDPAddr) error {
 | |
| 	tab.db.updateLastPing(id, time.Now())
 | |
| 	if err := tab.net.ping(id, addr); err != nil {
 | |
| 		return err
 | |
| 	}
 | |
| 	tab.db.updateLastPong(id, time.Now())
 | |
| 
 | |
| 	// Start the background expiration goroutine after the first
 | |
| 	// successful communication. Subsequent calls have no effect if it
 | |
| 	// is already running. We do this here instead of somewhere else
 | |
| 	// so that the search for seed nodes also considers older nodes
 | |
| 	// that would otherwise be removed by the expiration.
 | |
| 	tab.db.ensureExpirer()
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| // add attempts to add the given node its corresponding bucket. If the
 | |
| // bucket has space available, adding the node succeeds immediately.
 | |
| // Otherwise, the node is added if the least recently active node in
 | |
| // the bucket does not respond to a ping packet.
 | |
| //
 | |
| // The caller must not hold tab.mutex.
 | |
| func (tab *Table) add(new *Node) {
 | |
| 	b := tab.buckets[logdist(tab.self.sha, new.sha)]
 | |
| 	tab.mutex.Lock()
 | |
| 	defer tab.mutex.Unlock()
 | |
| 	if b.bump(new) {
 | |
| 		return
 | |
| 	}
 | |
| 	var oldest *Node
 | |
| 	if len(b.entries) == bucketSize {
 | |
| 		oldest = b.entries[bucketSize-1]
 | |
| 		if oldest.contested {
 | |
| 			// The node is already being replaced, don't attempt
 | |
| 			// to replace it.
 | |
| 			return
 | |
| 		}
 | |
| 		oldest.contested = true
 | |
| 		// Let go of the mutex so other goroutines can access
 | |
| 		// the table while we ping the least recently active node.
 | |
| 		tab.mutex.Unlock()
 | |
| 		err := tab.ping(oldest.ID, oldest.addr())
 | |
| 		tab.mutex.Lock()
 | |
| 		oldest.contested = false
 | |
| 		if err == nil {
 | |
| 			// The node responded, don't replace it.
 | |
| 			return
 | |
| 		}
 | |
| 	}
 | |
| 	added := b.replace(new, oldest)
 | |
| 	if added && tab.nodeAddedHook != nil {
 | |
| 		tab.nodeAddedHook(new)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // stuff adds nodes the table to the end of their corresponding bucket
 | |
| // if the bucket is not full. The caller must hold tab.mutex.
 | |
| func (tab *Table) stuff(nodes []*Node) {
 | |
| outer:
 | |
| 	for _, n := range nodes {
 | |
| 		if n.ID == tab.self.ID {
 | |
| 			continue // don't add self
 | |
| 		}
 | |
| 		bucket := tab.buckets[logdist(tab.self.sha, n.sha)]
 | |
| 		for i := range bucket.entries {
 | |
| 			if bucket.entries[i].ID == n.ID {
 | |
| 				continue outer // already in bucket
 | |
| 			}
 | |
| 		}
 | |
| 		if len(bucket.entries) < bucketSize {
 | |
| 			bucket.entries = append(bucket.entries, n)
 | |
| 			if tab.nodeAddedHook != nil {
 | |
| 				tab.nodeAddedHook(n)
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // delete removes an entry from the node table (used to evacuate
 | |
| // failed/non-bonded discovery peers).
 | |
| func (tab *Table) delete(node *Node) {
 | |
| 	tab.mutex.Lock()
 | |
| 	defer tab.mutex.Unlock()
 | |
| 	bucket := tab.buckets[logdist(tab.self.sha, node.sha)]
 | |
| 	for i := range bucket.entries {
 | |
| 		if bucket.entries[i].ID == node.ID {
 | |
| 			bucket.entries = append(bucket.entries[:i], bucket.entries[i+1:]...)
 | |
| 			return
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (b *bucket) replace(n *Node, last *Node) bool {
 | |
| 	// Don't add if b already contains n.
 | |
| 	for i := range b.entries {
 | |
| 		if b.entries[i].ID == n.ID {
 | |
| 			return false
 | |
| 		}
 | |
| 	}
 | |
| 	// Replace last if it is still the last entry or just add n if b
 | |
| 	// isn't full. If is no longer the last entry, it has either been
 | |
| 	// replaced with someone else or became active.
 | |
| 	if len(b.entries) == bucketSize && (last == nil || b.entries[bucketSize-1].ID != last.ID) {
 | |
| 		return false
 | |
| 	}
 | |
| 	if len(b.entries) < bucketSize {
 | |
| 		b.entries = append(b.entries, nil)
 | |
| 	}
 | |
| 	copy(b.entries[1:], b.entries)
 | |
| 	b.entries[0] = n
 | |
| 	return true
 | |
| }
 | |
| 
 | |
| func (b *bucket) bump(n *Node) bool {
 | |
| 	for i := range b.entries {
 | |
| 		if b.entries[i].ID == n.ID {
 | |
| 			// move it to the front
 | |
| 			copy(b.entries[1:], b.entries[:i])
 | |
| 			b.entries[0] = n
 | |
| 			return true
 | |
| 		}
 | |
| 	}
 | |
| 	return false
 | |
| }
 | |
| 
 | |
| // nodesByDistance is a list of nodes, ordered by
 | |
| // distance to target.
 | |
| type nodesByDistance struct {
 | |
| 	entries []*Node
 | |
| 	target  common.Hash
 | |
| }
 | |
| 
 | |
| // push adds the given node to the list, keeping the total size below maxElems.
 | |
| func (h *nodesByDistance) push(n *Node, maxElems int) {
 | |
| 	ix := sort.Search(len(h.entries), func(i int) bool {
 | |
| 		return distcmp(h.target, h.entries[i].sha, n.sha) > 0
 | |
| 	})
 | |
| 	if len(h.entries) < maxElems {
 | |
| 		h.entries = append(h.entries, n)
 | |
| 	}
 | |
| 	if ix == len(h.entries) {
 | |
| 		// farther away than all nodes we already have.
 | |
| 		// if there was room for it, the node is now the last element.
 | |
| 	} else {
 | |
| 		// slide existing entries down to make room
 | |
| 		// this will overwrite the entry we just appended.
 | |
| 		copy(h.entries[ix+1:], h.entries[ix:])
 | |
| 		h.entries[ix] = n
 | |
| 	}
 | |
| }
 |