* common, core, eth, les, trie: make prque generic * les/vflux/server: fixed issues in priorityPool * common, core, eth, les, trie: make priority also generic in prque * les/flowcontrol: add test case for priority accumulator overflow * les/flowcontrol: avoid priority value overflow * common/prque: use int priority in some tests No need to convert to int64 when we can just change the type used by the queue. * common/prque: remove comment about int64 range --------- Co-authored-by: Zsolt Felfoldi <zsfelfoldi@gmail.com> Co-authored-by: Felix Lange <fjl@twurst.com>
		
			
				
	
	
		
			196 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			196 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright 2019 The go-ethereum Authors
 | |
| // This file is part of the go-ethereum library.
 | |
| //
 | |
| // The go-ethereum library is free software: you can redistribute it and/or modify
 | |
| // it under the terms of the GNU Lesser General Public License as published by
 | |
| // the Free Software Foundation, either version 3 of the License, or
 | |
| // (at your option) any later version.
 | |
| //
 | |
| // The go-ethereum library is distributed in the hope that it will be useful,
 | |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 | |
| // GNU Lesser General Public License for more details.
 | |
| //
 | |
| // You should have received a copy of the GNU Lesser General Public License
 | |
| // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
 | |
| 
 | |
| package prque
 | |
| 
 | |
| import (
 | |
| 	"container/heap"
 | |
| 	"time"
 | |
| 
 | |
| 	"github.com/ethereum/go-ethereum/common/mclock"
 | |
| 	"golang.org/x/exp/constraints"
 | |
| )
 | |
| 
 | |
| // LazyQueue is a priority queue data structure where priorities can change over
 | |
| // time and are only evaluated on demand.
 | |
| // Two callbacks are required:
 | |
| //   - priority evaluates the actual priority of an item
 | |
| //   - maxPriority gives an upper estimate for the priority in any moment between
 | |
| //     now and the given absolute time
 | |
| //
 | |
| // If the upper estimate is exceeded then Update should be called for that item.
 | |
| // A global Refresh function should also be called periodically.
 | |
| type LazyQueue[P constraints.Ordered, V any] struct {
 | |
| 	clock mclock.Clock
 | |
| 	// Items are stored in one of two internal queues ordered by estimated max
 | |
| 	// priority until the next and the next-after-next refresh. Update and Refresh
 | |
| 	// always places items in queue[1].
 | |
| 	queue                      [2]*sstack[P, V]
 | |
| 	popQueue                   *sstack[P, V]
 | |
| 	period                     time.Duration
 | |
| 	maxUntil                   mclock.AbsTime
 | |
| 	indexOffset                int
 | |
| 	setIndex                   SetIndexCallback[V]
 | |
| 	priority                   PriorityCallback[P, V]
 | |
| 	maxPriority                MaxPriorityCallback[P, V]
 | |
| 	lastRefresh1, lastRefresh2 mclock.AbsTime
 | |
| }
 | |
| 
 | |
| type (
 | |
| 	PriorityCallback[P constraints.Ordered, V any]    func(data V) P                       // actual priority callback
 | |
| 	MaxPriorityCallback[P constraints.Ordered, V any] func(data V, until mclock.AbsTime) P // estimated maximum priority callback
 | |
| )
 | |
| 
 | |
| // NewLazyQueue creates a new lazy queue
 | |
| func NewLazyQueue[P constraints.Ordered, V any](setIndex SetIndexCallback[V], priority PriorityCallback[P, V], maxPriority MaxPriorityCallback[P, V], clock mclock.Clock, refreshPeriod time.Duration) *LazyQueue[P, V] {
 | |
| 	q := &LazyQueue[P, V]{
 | |
| 		popQueue:     newSstack[P, V](nil),
 | |
| 		setIndex:     setIndex,
 | |
| 		priority:     priority,
 | |
| 		maxPriority:  maxPriority,
 | |
| 		clock:        clock,
 | |
| 		period:       refreshPeriod,
 | |
| 		lastRefresh1: clock.Now(),
 | |
| 		lastRefresh2: clock.Now(),
 | |
| 	}
 | |
| 	q.Reset()
 | |
| 	q.refresh(clock.Now())
 | |
| 	return q
 | |
| }
 | |
| 
 | |
| // Reset clears the contents of the queue
 | |
| func (q *LazyQueue[P, V]) Reset() {
 | |
| 	q.queue[0] = newSstack[P, V](q.setIndex0)
 | |
| 	q.queue[1] = newSstack[P, V](q.setIndex1)
 | |
| }
 | |
| 
 | |
| // Refresh performs queue re-evaluation if necessary
 | |
| func (q *LazyQueue[P, V]) Refresh() {
 | |
| 	now := q.clock.Now()
 | |
| 	for time.Duration(now-q.lastRefresh2) >= q.period*2 {
 | |
| 		q.refresh(now)
 | |
| 		q.lastRefresh2 = q.lastRefresh1
 | |
| 		q.lastRefresh1 = now
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // refresh re-evaluates items in the older queue and swaps the two queues
 | |
| func (q *LazyQueue[P, V]) refresh(now mclock.AbsTime) {
 | |
| 	q.maxUntil = now.Add(q.period)
 | |
| 	for q.queue[0].Len() != 0 {
 | |
| 		q.Push(heap.Pop(q.queue[0]).(*item[P, V]).value)
 | |
| 	}
 | |
| 	q.queue[0], q.queue[1] = q.queue[1], q.queue[0]
 | |
| 	q.indexOffset = 1 - q.indexOffset
 | |
| 	q.maxUntil = q.maxUntil.Add(q.period)
 | |
| }
 | |
| 
 | |
| // Push adds an item to the queue
 | |
| func (q *LazyQueue[P, V]) Push(data V) {
 | |
| 	heap.Push(q.queue[1], &item[P, V]{data, q.maxPriority(data, q.maxUntil)})
 | |
| }
 | |
| 
 | |
| // Update updates the upper priority estimate for the item with the given queue index
 | |
| func (q *LazyQueue[P, V]) Update(index int) {
 | |
| 	q.Push(q.Remove(index))
 | |
| }
 | |
| 
 | |
| // Pop removes and returns the item with the greatest actual priority
 | |
| func (q *LazyQueue[P, V]) Pop() (V, P) {
 | |
| 	var (
 | |
| 		resData V
 | |
| 		resPri  P
 | |
| 	)
 | |
| 	q.MultiPop(func(data V, priority P) bool {
 | |
| 		resData = data
 | |
| 		resPri = priority
 | |
| 		return false
 | |
| 	})
 | |
| 	return resData, resPri
 | |
| }
 | |
| 
 | |
| // peekIndex returns the index of the internal queue where the item with the
 | |
| // highest estimated priority is or -1 if both are empty
 | |
| func (q *LazyQueue[P, V]) peekIndex() int {
 | |
| 	if q.queue[0].Len() != 0 {
 | |
| 		if q.queue[1].Len() != 0 && q.queue[1].blocks[0][0].priority > q.queue[0].blocks[0][0].priority {
 | |
| 			return 1
 | |
| 		}
 | |
| 		return 0
 | |
| 	}
 | |
| 	if q.queue[1].Len() != 0 {
 | |
| 		return 1
 | |
| 	}
 | |
| 	return -1
 | |
| }
 | |
| 
 | |
| // MultiPop pops multiple items from the queue and is more efficient than calling
 | |
| // Pop multiple times. Popped items are passed to the callback. MultiPop returns
 | |
| // when the callback returns false or there are no more items to pop.
 | |
| func (q *LazyQueue[P, V]) MultiPop(callback func(data V, priority P) bool) {
 | |
| 	nextIndex := q.peekIndex()
 | |
| 	for nextIndex != -1 {
 | |
| 		data := heap.Pop(q.queue[nextIndex]).(*item[P, V]).value
 | |
| 		heap.Push(q.popQueue, &item[P, V]{data, q.priority(data)})
 | |
| 		nextIndex = q.peekIndex()
 | |
| 		for q.popQueue.Len() != 0 && (nextIndex == -1 || q.queue[nextIndex].blocks[0][0].priority < q.popQueue.blocks[0][0].priority) {
 | |
| 			i := heap.Pop(q.popQueue).(*item[P, V])
 | |
| 			if !callback(i.value, i.priority) {
 | |
| 				for q.popQueue.Len() != 0 {
 | |
| 					q.Push(heap.Pop(q.popQueue).(*item[P, V]).value)
 | |
| 				}
 | |
| 				return
 | |
| 			}
 | |
| 			nextIndex = q.peekIndex() // re-check because callback is allowed to push items back
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // PopItem pops the item from the queue only, dropping the associated priority value.
 | |
| func (q *LazyQueue[P, V]) PopItem() V {
 | |
| 	i, _ := q.Pop()
 | |
| 	return i
 | |
| }
 | |
| 
 | |
| // Remove removes the item with the given index.
 | |
| func (q *LazyQueue[P, V]) Remove(index int) V {
 | |
| 	return heap.Remove(q.queue[index&1^q.indexOffset], index>>1).(*item[P, V]).value
 | |
| }
 | |
| 
 | |
| // Empty checks whether the priority queue is empty.
 | |
| func (q *LazyQueue[P, V]) Empty() bool {
 | |
| 	return q.queue[0].Len() == 0 && q.queue[1].Len() == 0
 | |
| }
 | |
| 
 | |
| // Size returns the number of items in the priority queue.
 | |
| func (q *LazyQueue[P, V]) Size() int {
 | |
| 	return q.queue[0].Len() + q.queue[1].Len()
 | |
| }
 | |
| 
 | |
| // setIndex0 translates internal queue item index to the virtual index space of LazyQueue
 | |
| func (q *LazyQueue[P, V]) setIndex0(data V, index int) {
 | |
| 	if index == -1 {
 | |
| 		q.setIndex(data, -1)
 | |
| 	} else {
 | |
| 		q.setIndex(data, index+index)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // setIndex1 translates internal queue item index to the virtual index space of LazyQueue
 | |
| func (q *LazyQueue[P, V]) setIndex1(data V, index int) {
 | |
| 	q.setIndex(data, index+index+1)
 | |
| }
 |