139 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			139 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
// Contains the Whisper protocol Envelope element. For formal details please see
 | 
						|
// the specs at https://github.com/ethereum/wiki/wiki/Whisper-PoC-1-Protocol-Spec#envelopes.
 | 
						|
 | 
						|
package whisper
 | 
						|
 | 
						|
import (
 | 
						|
	"crypto/ecdsa"
 | 
						|
	"encoding/binary"
 | 
						|
	"fmt"
 | 
						|
	"time"
 | 
						|
 | 
						|
	"github.com/ethereum/go-ethereum/common"
 | 
						|
	"github.com/ethereum/go-ethereum/crypto"
 | 
						|
	"github.com/ethereum/go-ethereum/crypto/ecies"
 | 
						|
	"github.com/ethereum/go-ethereum/rlp"
 | 
						|
)
 | 
						|
 | 
						|
// Envelope represents a clear-text data packet to transmit through the Whisper
 | 
						|
// network. Its contents may or may not be encrypted and signed.
 | 
						|
type Envelope struct {
 | 
						|
	Expiry uint32 // Whisper protocol specifies int32, really should be int64
 | 
						|
	TTL    uint32 // ^^^^^^
 | 
						|
	Topics [][]byte
 | 
						|
	Data   []byte
 | 
						|
	Nonce  uint32
 | 
						|
 | 
						|
	hash common.Hash
 | 
						|
}
 | 
						|
 | 
						|
// NewEnvelope wraps a Whisper message with expiration and destination data
 | 
						|
// included into an envelope for network forwarding.
 | 
						|
func NewEnvelope(ttl time.Duration, topics [][]byte, msg *Message) *Envelope {
 | 
						|
	return &Envelope{
 | 
						|
		Expiry: uint32(time.Now().Add(ttl).Unix()),
 | 
						|
		TTL:    uint32(ttl.Seconds()),
 | 
						|
		Topics: topics,
 | 
						|
		Data:   msg.bytes(),
 | 
						|
		Nonce:  0,
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// Seal closes the envelope by spending the requested amount of time as a proof
 | 
						|
// of work on hashing the data.
 | 
						|
func (self *Envelope) Seal(pow time.Duration) {
 | 
						|
	d := make([]byte, 64)
 | 
						|
	copy(d[:32], self.rlpWithoutNonce())
 | 
						|
 | 
						|
	finish, bestBit := time.Now().Add(pow).UnixNano(), 0
 | 
						|
	for nonce := uint32(0); time.Now().UnixNano() < finish; {
 | 
						|
		for i := 0; i < 1024; i++ {
 | 
						|
			binary.BigEndian.PutUint32(d[60:], nonce)
 | 
						|
 | 
						|
			firstBit := common.FirstBitSet(common.BigD(crypto.Sha3(d)))
 | 
						|
			if firstBit > bestBit {
 | 
						|
				self.Nonce, bestBit = nonce, firstBit
 | 
						|
			}
 | 
						|
			nonce++
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// valid checks whether the claimed proof of work was indeed executed.
 | 
						|
// TODO: Is this really useful? Isn't this always true?
 | 
						|
func (self *Envelope) valid() bool {
 | 
						|
	d := make([]byte, 64)
 | 
						|
	copy(d[:32], self.rlpWithoutNonce())
 | 
						|
	binary.BigEndian.PutUint32(d[60:], self.Nonce)
 | 
						|
 | 
						|
	return common.FirstBitSet(common.BigD(crypto.Sha3(d))) > 0
 | 
						|
}
 | 
						|
 | 
						|
// rlpWithoutNonce returns the RLP encoded envelope contents, except the nonce.
 | 
						|
func (self *Envelope) rlpWithoutNonce() []byte {
 | 
						|
	enc, _ := rlp.EncodeToBytes([]interface{}{self.Expiry, self.TTL, self.Topics, self.Data})
 | 
						|
	return enc
 | 
						|
}
 | 
						|
 | 
						|
// Open extracts the message contained within a potentially encrypted envelope.
 | 
						|
func (self *Envelope) Open(key *ecdsa.PrivateKey) (msg *Message, err error) {
 | 
						|
	// Split open the payload into a message construct
 | 
						|
	data := self.Data
 | 
						|
 | 
						|
	message := &Message{
 | 
						|
		Flags: data[0],
 | 
						|
	}
 | 
						|
	data = data[1:]
 | 
						|
 | 
						|
	if message.Flags&128 == 128 {
 | 
						|
		if len(data) < 65 {
 | 
						|
			return nil, fmt.Errorf("unable to open envelope. First bit set but len(data) < 65")
 | 
						|
		}
 | 
						|
		message.Signature, data = data[:65], data[65:]
 | 
						|
	}
 | 
						|
	message.Payload = data
 | 
						|
 | 
						|
	// Short circuit if the encryption was requested
 | 
						|
	if key == nil {
 | 
						|
		return message, nil
 | 
						|
	}
 | 
						|
	// Otherwise try to decrypt the message
 | 
						|
	message.Payload, err = crypto.Decrypt(key, message.Payload)
 | 
						|
	switch err {
 | 
						|
	case nil:
 | 
						|
		return message, nil
 | 
						|
 | 
						|
	case ecies.ErrInvalidPublicKey: // Payload isn't encrypted
 | 
						|
		return message, err
 | 
						|
 | 
						|
	default:
 | 
						|
		return nil, fmt.Errorf("unable to open envelope, decrypt failed: %v", err)
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// Hash returns the SHA3 hash of the envelope, calculating it if not yet done.
 | 
						|
func (self *Envelope) Hash() common.Hash {
 | 
						|
	if (self.hash == common.Hash{}) {
 | 
						|
		enc, _ := rlp.EncodeToBytes(self)
 | 
						|
		self.hash = crypto.Sha3Hash(enc)
 | 
						|
	}
 | 
						|
	return self.hash
 | 
						|
}
 | 
						|
 | 
						|
// rlpenv is an Envelope but is not an rlp.Decoder.
 | 
						|
// It is used for decoding because we need to
 | 
						|
type rlpenv Envelope
 | 
						|
 | 
						|
// DecodeRLP decodes an Envelope from an RLP data stream.
 | 
						|
func (self *Envelope) DecodeRLP(s *rlp.Stream) error {
 | 
						|
	raw, err := s.Raw()
 | 
						|
	if err != nil {
 | 
						|
		return err
 | 
						|
	}
 | 
						|
	if err := rlp.DecodeBytes(raw, (*rlpenv)(self)); err != nil {
 | 
						|
		return err
 | 
						|
	}
 | 
						|
	self.hash = crypto.Sha3Hash(raw)
 | 
						|
	return nil
 | 
						|
}
 |