- put natspec.js in a heredoc string (to help binary) - constructor takes no args, just sets up js vm - API: only exports Notice(transaction, abi, method, expression string) (string, error) - effort to turn natspec.js error strings to proper go errors - test errors
		
			
				
	
	
		
			3521 lines
		
	
	
		
			119 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			3521 lines
		
	
	
		
			119 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| package natspec
 | |
| 
 | |
| const natspecJS = `require=(function e(t,n,r){function s(o,u){if(!n[o]){if(!t[o]){var a=typeof require=="function"&&require;if(!u&&a)return a(o,!0);if(i)return i(o,!0);var f=new Error("Cannot find module '"+o+"'");throw f.code="MODULE_NOT_FOUND",f}var l=n[o]={exports:{}};t[o][0].call(l.exports,function(e){var n=t[o][1][e];return s(n?n:e)},l,l.exports,e,t,n,r)}return n[o].exports}var i=typeof require=="function"&&require;for(var o=0;o<r.length;o++)s(r[o]);return s})({1:[function(require,module,exports){
 | |
| 
 | |
| },{}],2:[function(require,module,exports){
 | |
| // shim for using process in browser
 | |
| 
 | |
| var process = module.exports = {};
 | |
| var queue = [];
 | |
| var draining = false;
 | |
| 
 | |
| function drainQueue() {
 | |
|     if (draining) {
 | |
|         return;
 | |
|     }
 | |
|     draining = true;
 | |
|     var currentQueue;
 | |
|     var len = queue.length;
 | |
|     while(len) {
 | |
|         currentQueue = queue;
 | |
|         queue = [];
 | |
|         var i = -1;
 | |
|         while (++i < len) {
 | |
|             currentQueue[i]();
 | |
|         }
 | |
|         len = queue.length;
 | |
|     }
 | |
|     draining = false;
 | |
| }
 | |
| process.nextTick = function (fun) {
 | |
|     queue.push(fun);
 | |
|     if (!draining) {
 | |
|         setTimeout(drainQueue, 0);
 | |
|     }
 | |
| };
 | |
| 
 | |
| process.title = 'browser';
 | |
| process.browser = true;
 | |
| process.env = {};
 | |
| process.argv = [];
 | |
| process.version = ''; // empty string to avoid regexp issues
 | |
| 
 | |
| function noop() {}
 | |
| 
 | |
| process.on = noop;
 | |
| process.addListener = noop;
 | |
| process.once = noop;
 | |
| process.off = noop;
 | |
| process.removeListener = noop;
 | |
| process.removeAllListeners = noop;
 | |
| process.emit = noop;
 | |
| 
 | |
| process.binding = function (name) {
 | |
|     throw new Error('process.binding is not supported');
 | |
| };
 | |
| 
 | |
| // TODO(shtylman)
 | |
| process.cwd = function () { return '/' };
 | |
| process.chdir = function (dir) {
 | |
|     throw new Error('process.chdir is not supported');
 | |
| };
 | |
| process.umask = function() { return 0; };
 | |
| 
 | |
| },{}],3:[function(require,module,exports){
 | |
| /*
 | |
|     This file is part of ethereum.js.
 | |
| 
 | |
|     ethereum.js is free software: you can redistribute it and/or modify
 | |
|     it under the terms of the GNU Lesser General Public License as published by
 | |
|     the Free Software Foundation, either version 3 of the License, or
 | |
|     (at your option) any later version.
 | |
| 
 | |
|     ethereum.js is distributed in the hope that it will be useful,
 | |
|     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|     GNU Lesser General Public License for more details.
 | |
| 
 | |
|     You should have received a copy of the GNU Lesser General Public License
 | |
|     along with ethereum.js.  If not, see <http://www.gnu.org/licenses/>.
 | |
| */
 | |
| /** @file abi.js
 | |
|  * @authors:
 | |
|  *   Marek Kotewicz <marek@ethdev.com>
 | |
|  *   Gav Wood <g@ethdev.com>
 | |
|  * @date 2014
 | |
|  */
 | |
| 
 | |
| var utils = require('./utils');
 | |
| var types = require('./types');
 | |
| var c = require('./const');
 | |
| var f = require('./formatters');
 | |
| 
 | |
| var displayTypeError = function (type) {
 | |
|     console.error('parser does not support type: ' + type);
 | |
| };
 | |
| 
 | |
| /// This method should be called if we want to check if givent type is an array type
 | |
| /// @returns true if it is, otherwise false
 | |
| var arrayType = function (type) {
 | |
|     return type.slice(-2) === '[]';
 | |
| };
 | |
| 
 | |
| var dynamicTypeBytes = function (type, value) {
 | |
|     // TODO: decide what to do with array of strings
 | |
|     if (arrayType(type) || type === 'string')    // only string itself that is dynamic; stringX is static length.
 | |
|         return f.formatInputInt(value.length);
 | |
|     return "";
 | |
| };
 | |
| 
 | |
| var inputTypes = types.inputTypes();
 | |
| 
 | |
| /// Formats input params to bytes
 | |
| /// @param abi contract method inputs
 | |
| /// @param array of params that will be formatted to bytes
 | |
| /// @returns bytes representation of input params
 | |
| var formatInput = function (inputs, params) {
 | |
|     var bytes = "";
 | |
|     var toAppendConstant = "";
 | |
|     var toAppendArrayContent = "";
 | |
| 
 | |
|     /// first we iterate in search for dynamic
 | |
|     inputs.forEach(function (input, index) {
 | |
|         bytes += dynamicTypeBytes(input.type, params[index]);
 | |
|     });
 | |
| 
 | |
|     inputs.forEach(function (input, i) {
 | |
|         /*jshint maxcomplexity:5 */
 | |
|         var typeMatch = false;
 | |
|         for (var j = 0; j < inputTypes.length && !typeMatch; j++) {
 | |
|             typeMatch = inputTypes[j].type(inputs[i].type, params[i]);
 | |
|         }
 | |
|         if (!typeMatch) {
 | |
|             displayTypeError(inputs[i].type);
 | |
|         }
 | |
| 
 | |
|         var formatter = inputTypes[j - 1].format;
 | |
| 
 | |
|         if (arrayType(inputs[i].type))
 | |
|             toAppendArrayContent += params[i].reduce(function (acc, curr) {
 | |
|                 return acc + formatter(curr);
 | |
|             }, "");
 | |
|         else if (inputs[i].type === 'string')
 | |
|             toAppendArrayContent += formatter(params[i]);
 | |
|         else
 | |
|             toAppendConstant += formatter(params[i]);
 | |
|     });
 | |
| 
 | |
|     bytes += toAppendConstant + toAppendArrayContent;
 | |
| 
 | |
|     return bytes;
 | |
| };
 | |
| 
 | |
| var dynamicBytesLength = function (type) {
 | |
|     if (arrayType(type) || type === 'string')   // only string itself that is dynamic; stringX is static length.
 | |
|         return c.ETH_PADDING * 2;
 | |
|     return 0;
 | |
| };
 | |
| 
 | |
| var outputTypes = types.outputTypes();
 | |
| 
 | |
| /// Formats output bytes back to param list
 | |
| /// @param contract abi method outputs
 | |
| /// @param bytes representtion of output
 | |
| /// @returns array of output params
 | |
| var formatOutput = function (outs, output) {
 | |
| 
 | |
|     output = output.slice(2);
 | |
|     var result = [];
 | |
|     var padding = c.ETH_PADDING * 2;
 | |
| 
 | |
|     var dynamicPartLength = outs.reduce(function (acc, curr) {
 | |
|         return acc + dynamicBytesLength(curr.type);
 | |
|     }, 0);
 | |
| 
 | |
|     var dynamicPart = output.slice(0, dynamicPartLength);
 | |
|     output = output.slice(dynamicPartLength);
 | |
| 
 | |
|     outs.forEach(function (out, i) {
 | |
|         /*jshint maxcomplexity:6 */
 | |
|         var typeMatch = false;
 | |
|         for (var j = 0; j < outputTypes.length && !typeMatch; j++) {
 | |
|             typeMatch = outputTypes[j].type(outs[i].type);
 | |
|         }
 | |
| 
 | |
|         if (!typeMatch) {
 | |
|             displayTypeError(outs[i].type);
 | |
|         }
 | |
| 
 | |
|         var formatter = outputTypes[j - 1].format;
 | |
|         if (arrayType(outs[i].type)) {
 | |
|             var size = f.formatOutputUInt(dynamicPart.slice(0, padding));
 | |
|             dynamicPart = dynamicPart.slice(padding);
 | |
|             var array = [];
 | |
|             for (var k = 0; k < size; k++) {
 | |
|                 array.push(formatter(output.slice(0, padding)));
 | |
|                 output = output.slice(padding);
 | |
|             }
 | |
|             result.push(array);
 | |
|         }
 | |
|         else if (types.prefixedType('string')(outs[i].type)) {
 | |
|             dynamicPart = dynamicPart.slice(padding);
 | |
|             result.push(formatter(output.slice(0, padding)));
 | |
|             output = output.slice(padding);
 | |
|         } else {
 | |
|             result.push(formatter(output.slice(0, padding)));
 | |
|             output = output.slice(padding);
 | |
|         }
 | |
|     });
 | |
| 
 | |
|     return result;
 | |
| };
 | |
| 
 | |
| /// @param json abi for contract
 | |
| /// @returns input parser object for given json abi
 | |
| /// TODO: refactor creating the parser, do not double logic from contract
 | |
| var inputParser = function (json) {
 | |
|     var parser = {};
 | |
|     json.forEach(function (method) {
 | |
|         var displayName = utils.extractDisplayName(method.name);
 | |
|         var typeName = utils.extractTypeName(method.name);
 | |
| 
 | |
|         var impl = function () {
 | |
|             var params = Array.prototype.slice.call(arguments);
 | |
|             return formatInput(method.inputs, params);
 | |
|         };
 | |
| 
 | |
|         if (parser[displayName] === undefined) {
 | |
|             parser[displayName] = impl;
 | |
|         }
 | |
| 
 | |
|         parser[displayName][typeName] = impl;
 | |
|     });
 | |
| 
 | |
|     return parser;
 | |
| };
 | |
| 
 | |
| /// @param json abi for contract
 | |
| /// @returns output parser for given json abi
 | |
| var outputParser = function (json) {
 | |
|     var parser = {};
 | |
|     json.forEach(function (method) {
 | |
| 
 | |
|         var displayName = utils.extractDisplayName(method.name);
 | |
|         var typeName = utils.extractTypeName(method.name);
 | |
| 
 | |
|         var impl = function (output) {
 | |
|             return formatOutput(method.outputs, output);
 | |
|         };
 | |
| 
 | |
|         if (parser[displayName] === undefined) {
 | |
|             parser[displayName] = impl;
 | |
|         }
 | |
| 
 | |
|         parser[displayName][typeName] = impl;
 | |
|     });
 | |
| 
 | |
|     return parser;
 | |
| };
 | |
| 
 | |
| module.exports = {
 | |
|     inputParser: inputParser,
 | |
|     outputParser: outputParser,
 | |
|     formatInput: formatInput,
 | |
|     formatOutput: formatOutput
 | |
| };
 | |
| 
 | |
| },{"./const":4,"./formatters":5,"./types":6,"./utils":7}],4:[function(require,module,exports){
 | |
| (function (process){
 | |
| /*
 | |
|     This file is part of ethereum.js.
 | |
| 
 | |
|     ethereum.js is free software: you can redistribute it and/or modify
 | |
|     it under the terms of the GNU Lesser General Public License as published by
 | |
|     the Free Software Foundation, either version 3 of the License, or
 | |
|     (at your option) any later version.
 | |
| 
 | |
|     ethereum.js is distributed in the hope that it will be useful,
 | |
|     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|     GNU Lesser General Public License for more details.
 | |
| 
 | |
|     You should have received a copy of the GNU Lesser General Public License
 | |
|     along with ethereum.js.  If not, see <http://www.gnu.org/licenses/>.
 | |
| */
 | |
| /** @file const.js
 | |
|  * @authors:
 | |
|  *   Marek Kotewicz <marek@ethdev.com>
 | |
|  * @date 2015
 | |
|  */
 | |
| 
 | |
| /// required to define ETH_BIGNUMBER_ROUNDING_MODE
 | |
| if (process.env.NODE_ENV !== 'build') {
 | |
|     var BigNumber = require('bignumber.js'); // jshint ignore:line
 | |
| }
 | |
| 
 | |
| var ETH_UNITS = [
 | |
|     'wei',
 | |
|     'Kwei',
 | |
|     'Mwei',
 | |
|     'Gwei',
 | |
|     'szabo',
 | |
|     'finney',
 | |
|     'ether',
 | |
|     'grand',
 | |
|     'Mether',
 | |
|     'Gether',
 | |
|     'Tether',
 | |
|     'Pether',
 | |
|     'Eether',
 | |
|     'Zether',
 | |
|     'Yether',
 | |
|     'Nether',
 | |
|     'Dether',
 | |
|     'Vether',
 | |
|     'Uether'
 | |
| ];
 | |
| 
 | |
| module.exports = {
 | |
|     ETH_PADDING: 32,
 | |
|     ETH_SIGNATURE_LENGTH: 4,
 | |
|     ETH_UNITS: ETH_UNITS,
 | |
|     ETH_BIGNUMBER_ROUNDING_MODE: { ROUNDING_MODE: BigNumber.ROUND_DOWN },
 | |
|     ETH_POLLING_TIMEOUT: 1000
 | |
| };
 | |
| 
 | |
| 
 | |
| }).call(this,require('_process'))
 | |
| },{"_process":2,"bignumber.js":8}],5:[function(require,module,exports){
 | |
| (function (process){
 | |
| /*
 | |
|     This file is part of ethereum.js.
 | |
| 
 | |
|     ethereum.js is free software: you can redistribute it and/or modify
 | |
|     it under the terms of the GNU Lesser General Public License as published by
 | |
|     the Free Software Foundation, either version 3 of the License, or
 | |
|     (at your option) any later version.
 | |
| 
 | |
|     ethereum.js is distributed in the hope that it will be useful,
 | |
|     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|     GNU Lesser General Public License for more details.
 | |
| 
 | |
|     You should have received a copy of the GNU Lesser General Public License
 | |
|     along with ethereum.js.  If not, see <http://www.gnu.org/licenses/>.
 | |
| */
 | |
| /** @file formatters.js
 | |
|  * @authors:
 | |
|  *   Marek Kotewicz <marek@ethdev.com>
 | |
|  * @date 2015
 | |
|  */
 | |
| 
 | |
| if (process.env.NODE_ENV !== 'build') {
 | |
|     var BigNumber = require('bignumber.js'); // jshint ignore:line
 | |
| }
 | |
| 
 | |
| var utils = require('./utils');
 | |
| var c = require('./const');
 | |
| 
 | |
| /// @param string string to be padded
 | |
| /// @param number of characters that result string should have
 | |
| /// @param sign, by default 0
 | |
| /// @returns right aligned string
 | |
| var padLeft = function (string, chars, sign) {
 | |
|     return new Array(chars - string.length + 1).join(sign ? sign : "0") + string;
 | |
| };
 | |
| 
 | |
| /// Formats input value to byte representation of int
 | |
| /// If value is negative, return it's two's complement
 | |
| /// If the value is floating point, round it down
 | |
| /// @returns right-aligned byte representation of int
 | |
| var formatInputInt = function (value) {
 | |
|     /*jshint maxcomplexity:7 */
 | |
|     var padding = c.ETH_PADDING * 2;
 | |
|     if (value instanceof BigNumber || typeof value === 'number') {
 | |
|         if (typeof value === 'number')
 | |
|             value = new BigNumber(value);
 | |
|         BigNumber.config(c.ETH_BIGNUMBER_ROUNDING_MODE);
 | |
|         value = value.round();
 | |
| 
 | |
|         if (value.lessThan(0))
 | |
|             value = new BigNumber("ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff", 16).plus(value).plus(1);
 | |
|         value = value.toString(16);
 | |
|     }
 | |
|     else if (value.indexOf('0x') === 0)
 | |
|         value = value.substr(2);
 | |
|     else if (typeof value === 'string')
 | |
|         value = formatInputInt(new BigNumber(value));
 | |
|     else
 | |
|         value = (+value).toString(16);
 | |
|     return padLeft(value, padding);
 | |
| };
 | |
| 
 | |
| /// Formats input value to byte representation of string
 | |
| /// @returns left-algined byte representation of string
 | |
| var formatInputString = function (value) {
 | |
|     return utils.fromAscii(value, c.ETH_PADDING).substr(2);
 | |
| };
 | |
| 
 | |
| /// Formats input value to byte representation of bool
 | |
| /// @returns right-aligned byte representation bool
 | |
| var formatInputBool = function (value) {
 | |
|     return '000000000000000000000000000000000000000000000000000000000000000' + (value ?  '1' : '0');
 | |
| };
 | |
| 
 | |
| /// Formats input value to byte representation of real
 | |
| /// Values are multiplied by 2^m and encoded as integers
 | |
| /// @returns byte representation of real
 | |
| var formatInputReal = function (value) {
 | |
|     return formatInputInt(new BigNumber(value).times(new BigNumber(2).pow(128)));
 | |
| };
 | |
| 
 | |
| 
 | |
| /// Check if input value is negative
 | |
| /// @param value is hex format
 | |
| /// @returns true if it is negative, otherwise false
 | |
| var signedIsNegative = function (value) {
 | |
|     return (new BigNumber(value.substr(0, 1), 16).toString(2).substr(0, 1)) === '1';
 | |
| };
 | |
| 
 | |
| /// Formats input right-aligned input bytes to int
 | |
| /// @returns right-aligned input bytes formatted to int
 | |
| var formatOutputInt = function (value) {
 | |
|     value = value || "0";
 | |
|     // check if it's negative number
 | |
|     // it it is, return two's complement
 | |
|     if (signedIsNegative(value)) {
 | |
|         return new BigNumber(value, 16).minus(new BigNumber('ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff', 16)).minus(1);
 | |
|     }
 | |
|     return new BigNumber(value, 16);
 | |
| };
 | |
| 
 | |
| /// Formats big right-aligned input bytes to uint
 | |
| /// @returns right-aligned input bytes formatted to uint
 | |
| var formatOutputUInt = function (value) {
 | |
|     value = value || "0";
 | |
|     return new BigNumber(value, 16);
 | |
| };
 | |
| 
 | |
| /// @returns input bytes formatted to real
 | |
| var formatOutputReal = function (value) {
 | |
|     return formatOutputInt(value).dividedBy(new BigNumber(2).pow(128));
 | |
| };
 | |
| 
 | |
| /// @returns input bytes formatted to ureal
 | |
| var formatOutputUReal = function (value) {
 | |
|     return formatOutputUInt(value).dividedBy(new BigNumber(2).pow(128));
 | |
| };
 | |
| 
 | |
| /// @returns right-aligned input bytes formatted to hex
 | |
| var formatOutputHash = function (value) {
 | |
|     return "0x" + value;
 | |
| };
 | |
| 
 | |
| /// @returns right-aligned input bytes formatted to bool
 | |
| var formatOutputBool = function (value) {
 | |
|     return value === '0000000000000000000000000000000000000000000000000000000000000001' ? true : false;
 | |
| };
 | |
| 
 | |
| /// @returns left-aligned input bytes formatted to ascii string
 | |
| var formatOutputString = function (value) {
 | |
|     return utils.toAscii(value);
 | |
| };
 | |
| 
 | |
| /// @returns right-aligned input bytes formatted to address
 | |
| var formatOutputAddress = function (value) {
 | |
|     return "0x" + value.slice(value.length - 40, value.length);
 | |
| };
 | |
| 
 | |
| 
 | |
| module.exports = {
 | |
|     formatInputInt: formatInputInt,
 | |
|     formatInputString: formatInputString,
 | |
|     formatInputBool: formatInputBool,
 | |
|     formatInputReal: formatInputReal,
 | |
|     formatOutputInt: formatOutputInt,
 | |
|     formatOutputUInt: formatOutputUInt,
 | |
|     formatOutputReal: formatOutputReal,
 | |
|     formatOutputUReal: formatOutputUReal,
 | |
|     formatOutputHash: formatOutputHash,
 | |
|     formatOutputBool: formatOutputBool,
 | |
|     formatOutputString: formatOutputString,
 | |
|     formatOutputAddress: formatOutputAddress
 | |
| };
 | |
| 
 | |
| 
 | |
| }).call(this,require('_process'))
 | |
| },{"./const":4,"./utils":7,"_process":2,"bignumber.js":8}],6:[function(require,module,exports){
 | |
| /*
 | |
|     This file is part of ethereum.js.
 | |
| 
 | |
|     ethereum.js is free software: you can redistribute it and/or modify
 | |
|     it under the terms of the GNU Lesser General Public License as published by
 | |
|     the Free Software Foundation, either version 3 of the License, or
 | |
|     (at your option) any later version.
 | |
| 
 | |
|     ethereum.js is distributed in the hope that it will be useful,
 | |
|     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|     GNU Lesser General Public License for more details.
 | |
| 
 | |
|     You should have received a copy of the GNU Lesser General Public License
 | |
|     along with ethereum.js.  If not, see <http://www.gnu.org/licenses/>.
 | |
| */
 | |
| /** @file types.js
 | |
|  * @authors:
 | |
|  *   Marek Kotewicz <marek@ethdev.com>
 | |
|  * @date 2015
 | |
|  */
 | |
| 
 | |
| var f = require('./formatters');
 | |
| 
 | |
| /// @param expected type prefix (string)
 | |
| /// @returns function which checks if type has matching prefix. if yes, returns true, otherwise false
 | |
| var prefixedType = function (prefix) {
 | |
|     return function (type) {
 | |
|         return type.indexOf(prefix) === 0;
 | |
|     };
 | |
| };
 | |
| 
 | |
| /// @param expected type name (string)
 | |
| /// @returns function which checks if type is matching expected one. if yes, returns true, otherwise false
 | |
| var namedType = function (name) {
 | |
|     return function (type) {
 | |
|         return name === type;
 | |
|     };
 | |
| };
 | |
| 
 | |
| /// Setups input formatters for solidity types
 | |
| /// @returns an array of input formatters
 | |
| var inputTypes = function () {
 | |
| 
 | |
|     return [
 | |
|         { type: prefixedType('uint'), format: f.formatInputInt },
 | |
|         { type: prefixedType('int'), format: f.formatInputInt },
 | |
|         { type: prefixedType('hash'), format: f.formatInputInt },
 | |
|         { type: prefixedType('string'), format: f.formatInputString },
 | |
|         { type: prefixedType('real'), format: f.formatInputReal },
 | |
|         { type: prefixedType('ureal'), format: f.formatInputReal },
 | |
|         { type: namedType('address'), format: f.formatInputInt },
 | |
|         { type: namedType('bool'), format: f.formatInputBool }
 | |
|     ];
 | |
| };
 | |
| 
 | |
| /// Setups output formaters for solidity types
 | |
| /// @returns an array of output formatters
 | |
| var outputTypes = function () {
 | |
| 
 | |
|     return [
 | |
|         { type: prefixedType('uint'), format: f.formatOutputUInt },
 | |
|         { type: prefixedType('int'), format: f.formatOutputInt },
 | |
|         { type: prefixedType('hash'), format: f.formatOutputHash },
 | |
|         { type: prefixedType('string'), format: f.formatOutputString },
 | |
|         { type: prefixedType('real'), format: f.formatOutputReal },
 | |
|         { type: prefixedType('ureal'), format: f.formatOutputUReal },
 | |
|         { type: namedType('address'), format: f.formatOutputAddress },
 | |
|         { type: namedType('bool'), format: f.formatOutputBool }
 | |
|     ];
 | |
| };
 | |
| 
 | |
| module.exports = {
 | |
|     prefixedType: prefixedType,
 | |
|     namedType: namedType,
 | |
|     inputTypes: inputTypes,
 | |
|     outputTypes: outputTypes
 | |
| };
 | |
| 
 | |
| 
 | |
| },{"./formatters":5}],7:[function(require,module,exports){
 | |
| /*
 | |
|     This file is part of ethereum.js.
 | |
| 
 | |
|     ethereum.js is free software: you can redistribute it and/or modify
 | |
|     it under the terms of the GNU Lesser General Public License as published by
 | |
|     the Free Software Foundation, either version 3 of the License, or
 | |
|     (at your option) any later version.
 | |
| 
 | |
|     ethereum.js is distributed in the hope that it will be useful,
 | |
|     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|     GNU Lesser General Public License for more details.
 | |
| 
 | |
|     You should have received a copy of the GNU Lesser General Public License
 | |
|     along with ethereum.js.  If not, see <http://www.gnu.org/licenses/>.
 | |
| */
 | |
| /** @file utils.js
 | |
|  * @authors:
 | |
|  *   Marek Kotewicz <marek@ethdev.com>
 | |
|  * @date 2015
 | |
|  */
 | |
| 
 | |
| var c = require('./const');
 | |
| 
 | |
| /// Finds first index of array element matching pattern
 | |
| /// @param array
 | |
| /// @param callback pattern
 | |
| /// @returns index of element
 | |
| var findIndex = function (array, callback) {
 | |
|     var end = false;
 | |
|     var i = 0;
 | |
|     for (; i < array.length && !end; i++) {
 | |
|         end = callback(array[i]);
 | |
|     }
 | |
|     return end ? i - 1 : -1;
 | |
| };
 | |
| 
 | |
| /// @returns ascii string representation of hex value prefixed with 0x
 | |
| var toAscii = function(hex) {
 | |
| // Find termination
 | |
|     var str = "";
 | |
|     var i = 0, l = hex.length;
 | |
|     if (hex.substring(0, 2) === '0x') {
 | |
|         i = 2;
 | |
|     }
 | |
|     for (; i < l; i+=2) {
 | |
|         var code = parseInt(hex.substr(i, 2), 16);
 | |
|         if (code === 0) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         str += String.fromCharCode(code);
 | |
|     }
 | |
| 
 | |
|     return str;
 | |
| };
 | |
| 
 | |
| var toHex = function(str) {
 | |
|     var hex = "";
 | |
|     for(var i = 0; i < str.length; i++) {
 | |
|         var n = str.charCodeAt(i).toString(16);
 | |
|         hex += n.length < 2 ? '0' + n : n;
 | |
|     }
 | |
| 
 | |
|     return hex;
 | |
| };
 | |
| 
 | |
| /// @returns hex representation (prefixed by 0x) of ascii string
 | |
| var fromAscii = function(str, pad) {
 | |
|     pad = pad === undefined ? 0 : pad;
 | |
|     var hex = toHex(str);
 | |
|     while (hex.length < pad*2)
 | |
|         hex += "00";
 | |
|     return "0x" + hex;
 | |
| };
 | |
| 
 | |
| /// @returns display name for function/event eg. multiply(uint256) -> multiply
 | |
| var extractDisplayName = function (name) {
 | |
|     var length = name.indexOf('(');
 | |
|     return length !== -1 ? name.substr(0, length) : name;
 | |
| };
 | |
| 
 | |
| /// @returns overloaded part of function/event name
 | |
| var extractTypeName = function (name) {
 | |
|     /// TODO: make it invulnerable
 | |
|     var length = name.indexOf('(');
 | |
|     return length !== -1 ? name.substr(length + 1, name.length - 1 - (length + 1)).replace(' ', '') : "";
 | |
| };
 | |
| 
 | |
| /// Filters all function from input abi
 | |
| /// @returns abi array with filtered objects of type 'function'
 | |
| var filterFunctions = function (json) {
 | |
|     return json.filter(function (current) {
 | |
|         return current.type === 'function';
 | |
|     });
 | |
| };
 | |
| 
 | |
| /// Filters all events form input abi
 | |
| /// @returns abi array with filtered objects of type 'event'
 | |
| var filterEvents = function (json) {
 | |
|     return json.filter(function (current) {
 | |
|         return current.type === 'event';
 | |
|     });
 | |
| };
 | |
| 
 | |
| /// used to transform value/string to eth string
 | |
| /// TODO: use BigNumber.js to parse int
 | |
| /// TODO: add tests for it!
 | |
| var toEth = function (str) {
 | |
|      /*jshint maxcomplexity:7 */
 | |
|     var val = typeof str === "string" ? str.indexOf('0x') === 0 ? parseInt(str.substr(2), 16) : parseInt(str) : str;
 | |
|     var unit = 0;
 | |
|     var units = c.ETH_UNITS;
 | |
|     while (val > 3000 && unit < units.length - 1)
 | |
|     {
 | |
|         val /= 1000;
 | |
|         unit++;
 | |
|     }
 | |
|     var s = val.toString().length < val.toFixed(2).length ? val.toString() : val.toFixed(2);
 | |
|     var replaceFunction = function($0, $1, $2) {
 | |
|         return $1 + ',' + $2;
 | |
|     };
 | |
| 
 | |
|     while (true) {
 | |
|         var o = s;
 | |
|         s = s.replace(/(\d)(\d\d\d[\.\,])/, replaceFunction);
 | |
|         if (o === s)
 | |
|             break;
 | |
|     }
 | |
|     return s + ' ' + units[unit];
 | |
| };
 | |
| 
 | |
| module.exports = {
 | |
|     findIndex: findIndex,
 | |
|     toAscii: toAscii,
 | |
|     fromAscii: fromAscii,
 | |
|     extractDisplayName: extractDisplayName,
 | |
|     extractTypeName: extractTypeName,
 | |
|     filterFunctions: filterFunctions,
 | |
|     filterEvents: filterEvents,
 | |
|     toEth: toEth
 | |
| };
 | |
| 
 | |
| 
 | |
| },{"./const":4}],8:[function(require,module,exports){
 | |
| /*! bignumber.js v2.0.3 https://github.com/MikeMcl/bignumber.js/LICENCE */
 | |
| 
 | |
| ;(function (global) {
 | |
|     'use strict';
 | |
| 
 | |
|     /*
 | |
|       bignumber.js v2.0.3
 | |
|       A JavaScript library for arbitrary-precision arithmetic.
 | |
|       https://github.com/MikeMcl/bignumber.js
 | |
|       Copyright (c) 2015 Michael Mclaughlin <M8ch88l@gmail.com>
 | |
|       MIT Expat Licence
 | |
|     */
 | |
| 
 | |
| 
 | |
|     var BigNumber, crypto, parseNumeric,
 | |
|         isNumeric = /^-?(\d+(\.\d*)?|\.\d+)(e[+-]?\d+)?$/i,
 | |
|         mathceil = Math.ceil,
 | |
|         mathfloor = Math.floor,
 | |
|         notBool = ' not a boolean or binary digit',
 | |
|         roundingMode = 'rounding mode',
 | |
|         tooManyDigits = 'number type has more than 15 significant digits',
 | |
|         ALPHABET = '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ$_',
 | |
|         BASE = 1e14,
 | |
|         LOG_BASE = 14,
 | |
|         MAX_SAFE_INTEGER = 0x1fffffffffffff,         // 2^53 - 1
 | |
|         // MAX_INT32 = 0x7fffffff,                   // 2^31 - 1
 | |
|         POWS_TEN = [1, 10, 100, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13],
 | |
|         SQRT_BASE = 1e7,
 | |
| 
 | |
|         /*
 | |
|          * The limit on the value of DECIMAL_PLACES, TO_EXP_NEG, TO_EXP_POS, MIN_EXP, MAX_EXP, and
 | |
|          * the arguments to toExponential, toFixed, toFormat, and toPrecision, beyond which an
 | |
|          * exception is thrown (if ERRORS is true).
 | |
|          */
 | |
|         MAX = 1E9;                                   // 0 to MAX_INT32
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      * Create and return a BigNumber constructor.
 | |
|      */
 | |
|     function another(configObj) {
 | |
|         var div,
 | |
| 
 | |
|             // id tracks the caller function, so its name can be included in error messages.
 | |
|             id = 0,
 | |
|             P = BigNumber.prototype,
 | |
|             ONE = new BigNumber(1),
 | |
| 
 | |
| 
 | |
|             /********************************* EDITABLE DEFAULTS **********************************/
 | |
| 
 | |
| 
 | |
|             /*
 | |
|              * The default values below must be integers within the inclusive ranges stated.
 | |
|              * The values can also be changed at run-time using BigNumber.config.
 | |
|              */
 | |
| 
 | |
|             // The maximum number of decimal places for operations involving division.
 | |
|             DECIMAL_PLACES = 20,                     // 0 to MAX
 | |
| 
 | |
|             /*
 | |
|              * The rounding mode used when rounding to the above decimal places, and when using
 | |
|              * toExponential, toFixed, toFormat and toPrecision, and round (default value).
 | |
|              * UP         0 Away from zero.
 | |
|              * DOWN       1 Towards zero.
 | |
|              * CEIL       2 Towards +Infinity.
 | |
|              * FLOOR      3 Towards -Infinity.
 | |
|              * HALF_UP    4 Towards nearest neighbour. If equidistant, up.
 | |
|              * HALF_DOWN  5 Towards nearest neighbour. If equidistant, down.
 | |
|              * HALF_EVEN  6 Towards nearest neighbour. If equidistant, towards even neighbour.
 | |
|              * HALF_CEIL  7 Towards nearest neighbour. If equidistant, towards +Infinity.
 | |
|              * HALF_FLOOR 8 Towards nearest neighbour. If equidistant, towards -Infinity.
 | |
|              */
 | |
|             ROUNDING_MODE = 4,                       // 0 to 8
 | |
| 
 | |
|             // EXPONENTIAL_AT : [TO_EXP_NEG , TO_EXP_POS]
 | |
| 
 | |
|             // The exponent value at and beneath which toString returns exponential notation.
 | |
|             // Number type: -7
 | |
|             TO_EXP_NEG = -7,                         // 0 to -MAX
 | |
| 
 | |
|             // The exponent value at and above which toString returns exponential notation.
 | |
|             // Number type: 21
 | |
|             TO_EXP_POS = 21,                         // 0 to MAX
 | |
| 
 | |
|             // RANGE : [MIN_EXP, MAX_EXP]
 | |
| 
 | |
|             // The minimum exponent value, beneath which underflow to zero occurs.
 | |
|             // Number type: -324  (5e-324)
 | |
|             MIN_EXP = -1e7,                          // -1 to -MAX
 | |
| 
 | |
|             // The maximum exponent value, above which overflow to Infinity occurs.
 | |
|             // Number type:  308  (1.7976931348623157e+308)
 | |
|             // For MAX_EXP > 1e7, e.g. new BigNumber('1e100000000').plus(1) may be slow.
 | |
|             MAX_EXP = 1e7,                           // 1 to MAX
 | |
| 
 | |
|             // Whether BigNumber Errors are ever thrown.
 | |
|             ERRORS = true,                           // true or false
 | |
| 
 | |
|             // Change to intValidatorNoErrors if ERRORS is false.
 | |
|             isValidInt = intValidatorWithErrors,     // intValidatorWithErrors/intValidatorNoErrors
 | |
| 
 | |
|             // Whether to use cryptographically-secure random number generation, if available.
 | |
|             CRYPTO = false,                          // true or false
 | |
| 
 | |
|             /*
 | |
|              * The modulo mode used when calculating the modulus: a mod n.
 | |
|              * The quotient (q = a / n) is calculated according to the corresponding rounding mode.
 | |
|              * The remainder (r) is calculated as: r = a - n * q.
 | |
|              *
 | |
|              * UP        0 The remainder is positive if the dividend is negative, else is negative.
 | |
|              * DOWN      1 The remainder has the same sign as the dividend.
 | |
|              *             This modulo mode is commonly known as 'truncated division' and is
 | |
|              *             equivalent to (a % n) in JavaScript.
 | |
|              * FLOOR     3 The remainder has the same sign as the divisor (Python %).
 | |
|              * HALF_EVEN 6 This modulo mode implements the IEEE 754 remainder function.
 | |
|              * EUCLID    9 Euclidian division. q = sign(n) * floor(a / abs(n)).
 | |
|              *             The remainder is always positive.
 | |
|              *
 | |
|              * The truncated division, floored division, Euclidian division and IEEE 754 remainder
 | |
|              * modes are commonly used for the modulus operation.
 | |
|              * Although the other rounding modes can also be used, they may not give useful results.
 | |
|              */
 | |
|             MODULO_MODE = 1,                         // 0 to 9
 | |
| 
 | |
|             // The maximum number of significant digits of the result of the toPower operation.
 | |
|             // If POW_PRECISION is 0, there will be unlimited significant digits.
 | |
|             POW_PRECISION = 100,                     // 0 to MAX
 | |
| 
 | |
|             // The format specification used by the BigNumber.prototype.toFormat method.
 | |
|             FORMAT = {
 | |
|                 decimalSeparator: '.',
 | |
|                 groupSeparator: ',',
 | |
|                 groupSize: 3,
 | |
|                 secondaryGroupSize: 0,
 | |
|                 fractionGroupSeparator: '\xA0',      // non-breaking space
 | |
|                 fractionGroupSize: 0
 | |
|             };
 | |
| 
 | |
| 
 | |
|         /******************************************************************************************/
 | |
| 
 | |
| 
 | |
|         // CONSTRUCTOR
 | |
| 
 | |
| 
 | |
|         /*
 | |
|          * The BigNumber constructor and exported function.
 | |
|          * Create and return a new instance of a BigNumber object.
 | |
|          *
 | |
|          * n {number|string|BigNumber} A numeric value.
 | |
|          * [b] {number} The base of n. Integer, 2 to 64 inclusive.
 | |
|          */
 | |
|         function BigNumber( n, b ) {
 | |
|             var c, e, i, num, len, str,
 | |
|                 x = this;
 | |
| 
 | |
|             // Enable constructor usage without new.
 | |
|             if ( !( x instanceof BigNumber ) ) {
 | |
| 
 | |
|                 // 'BigNumber() constructor call without new: {n}'
 | |
|                 if (ERRORS) raise( 26, 'constructor call without new', n );
 | |
|                 return new BigNumber( n, b );
 | |
|             }
 | |
| 
 | |
|             // 'new BigNumber() base not an integer: {b}'
 | |
|             // 'new BigNumber() base out of range: {b}'
 | |
|             if ( b == null || !isValidInt( b, 2, 64, id, 'base' ) ) {
 | |
| 
 | |
|                 // Duplicate.
 | |
|                 if ( n instanceof BigNumber ) {
 | |
|                     x.s = n.s;
 | |
|                     x.e = n.e;
 | |
|                     x.c = ( n = n.c ) ? n.slice() : n;
 | |
|                     id = 0;
 | |
|                     return;
 | |
|                 }
 | |
| 
 | |
|                 if ( ( num = typeof n == 'number' ) && n * 0 == 0 ) {
 | |
|                     x.s = 1 / n < 0 ? ( n = -n, -1 ) : 1;
 | |
| 
 | |
|                     // Fast path for integers.
 | |
|                     if ( n === ~~n ) {
 | |
|                         for ( e = 0, i = n; i >= 10; i /= 10, e++ );
 | |
|                         x.e = e;
 | |
|                         x.c = [n];
 | |
|                         id = 0;
 | |
|                         return;
 | |
|                     }
 | |
| 
 | |
|                     str = n + '';
 | |
|                 } else {
 | |
|                     if ( !isNumeric.test( str = n + '' ) ) return parseNumeric( x, str, num );
 | |
|                     x.s = str.charCodeAt(0) === 45 ? ( str = str.slice(1), -1 ) : 1;
 | |
|                 }
 | |
|             } else {
 | |
|                 b = b | 0;
 | |
|                 str = n + '';
 | |
| 
 | |
|                 // Ensure return value is rounded to DECIMAL_PLACES as with other bases.
 | |
|                 // Allow exponential notation to be used with base 10 argument.
 | |
|                 if ( b == 10 ) {
 | |
|                     x = new BigNumber( n instanceof BigNumber ? n : str );
 | |
|                     return round( x, DECIMAL_PLACES + x.e + 1, ROUNDING_MODE );
 | |
|                 }
 | |
| 
 | |
|                 // Avoid potential interpretation of Infinity and NaN as base 44+ values.
 | |
|                 // Any number in exponential form will fail due to the [Ee][+-].
 | |
|                 if ( ( num = typeof n == 'number' ) && n * 0 != 0 ||
 | |
|                   !( new RegExp( '^-?' + ( c = '[' + ALPHABET.slice( 0, b ) + ']+' ) +
 | |
|                     '(?:\\.' + c + ')?$',b < 37 ? 'i' : '' ) ).test(str) ) {
 | |
|                     return parseNumeric( x, str, num, b );
 | |
|                 }
 | |
| 
 | |
|                 if (num) {
 | |
|                     x.s = 1 / n < 0 ? ( str = str.slice(1), -1 ) : 1;
 | |
| 
 | |
|                     if ( ERRORS && str.replace( /^0\.0*|\./, '' ).length > 15 ) {
 | |
| 
 | |
|                         // 'new BigNumber() number type has more than 15 significant digits: {n}'
 | |
|                         raise( id, tooManyDigits, n );
 | |
|                     }
 | |
| 
 | |
|                     // Prevent later check for length on converted number.
 | |
|                     num = false;
 | |
|                 } else {
 | |
|                     x.s = str.charCodeAt(0) === 45 ? ( str = str.slice(1), -1 ) : 1;
 | |
|                 }
 | |
| 
 | |
|                 str = convertBase( str, 10, b, x.s );
 | |
|             }
 | |
| 
 | |
|             // Decimal point?
 | |
|             if ( ( e = str.indexOf('.') ) > -1 ) str = str.replace( '.', '' );
 | |
| 
 | |
|             // Exponential form?
 | |
|             if ( ( i = str.search( /e/i ) ) > 0 ) {
 | |
| 
 | |
|                 // Determine exponent.
 | |
|                 if ( e < 0 ) e = i;
 | |
|                 e += +str.slice( i + 1 );
 | |
|                 str = str.substring( 0, i );
 | |
|             } else if ( e < 0 ) {
 | |
| 
 | |
|                 // Integer.
 | |
|                 e = str.length;
 | |
|             }
 | |
| 
 | |
|             // Determine leading zeros.
 | |
|             for ( i = 0; str.charCodeAt(i) === 48; i++ );
 | |
| 
 | |
|             // Determine trailing zeros.
 | |
|             for ( len = str.length; str.charCodeAt(--len) === 48; );
 | |
|             str = str.slice( i, len + 1 );
 | |
| 
 | |
|             if (str) {
 | |
|                 len = str.length;
 | |
| 
 | |
|                 // Disallow numbers with over 15 significant digits if number type.
 | |
|                 // 'new BigNumber() number type has more than 15 significant digits: {n}'
 | |
|                 if ( num && ERRORS && len > 15 ) raise( id, tooManyDigits, x.s * n );
 | |
| 
 | |
|                 e = e - i - 1;
 | |
| 
 | |
|                  // Overflow?
 | |
|                 if ( e > MAX_EXP ) {
 | |
| 
 | |
|                     // Infinity.
 | |
|                     x.c = x.e = null;
 | |
| 
 | |
|                 // Underflow?
 | |
|                 } else if ( e < MIN_EXP ) {
 | |
| 
 | |
|                     // Zero.
 | |
|                     x.c = [ x.e = 0 ];
 | |
|                 } else {
 | |
|                     x.e = e;
 | |
|                     x.c = [];
 | |
| 
 | |
|                     // Transform base
 | |
| 
 | |
|                     // e is the base 10 exponent.
 | |
|                     // i is where to slice str to get the first element of the coefficient array.
 | |
|                     i = ( e + 1 ) % LOG_BASE;
 | |
|                     if ( e < 0 ) i += LOG_BASE;
 | |
| 
 | |
|                     if ( i < len ) {
 | |
|                         if (i) x.c.push( +str.slice( 0, i ) );
 | |
| 
 | |
|                         for ( len -= LOG_BASE; i < len; ) {
 | |
|                             x.c.push( +str.slice( i, i += LOG_BASE ) );
 | |
|                         }
 | |
| 
 | |
|                         str = str.slice(i);
 | |
|                         i = LOG_BASE - str.length;
 | |
|                     } else {
 | |
|                         i -= len;
 | |
|                     }
 | |
| 
 | |
|                     for ( ; i--; str += '0' );
 | |
|                     x.c.push( +str );
 | |
|                 }
 | |
|             } else {
 | |
| 
 | |
|                 // Zero.
 | |
|                 x.c = [ x.e = 0 ];
 | |
|             }
 | |
| 
 | |
|             id = 0;
 | |
|         }
 | |
| 
 | |
| 
 | |
|         // CONSTRUCTOR PROPERTIES
 | |
| 
 | |
| 
 | |
|         BigNumber.another = another;
 | |
| 
 | |
|         BigNumber.ROUND_UP = 0;
 | |
|         BigNumber.ROUND_DOWN = 1;
 | |
|         BigNumber.ROUND_CEIL = 2;
 | |
|         BigNumber.ROUND_FLOOR = 3;
 | |
|         BigNumber.ROUND_HALF_UP = 4;
 | |
|         BigNumber.ROUND_HALF_DOWN = 5;
 | |
|         BigNumber.ROUND_HALF_EVEN = 6;
 | |
|         BigNumber.ROUND_HALF_CEIL = 7;
 | |
|         BigNumber.ROUND_HALF_FLOOR = 8;
 | |
|         BigNumber.EUCLID = 9;
 | |
| 
 | |
| 
 | |
|         /*
 | |
|          * Configure infrequently-changing library-wide settings.
 | |
|          *
 | |
|          * Accept an object or an argument list, with one or many of the following properties or
 | |
|          * parameters respectively:
 | |
|          *
 | |
|          *   DECIMAL_PLACES  {number}  Integer, 0 to MAX inclusive
 | |
|          *   ROUNDING_MODE   {number}  Integer, 0 to 8 inclusive
 | |
|          *   EXPONENTIAL_AT  {number|number[]}  Integer, -MAX to MAX inclusive or
 | |
|          *                                      [integer -MAX to 0 incl., 0 to MAX incl.]
 | |
|          *   RANGE           {number|number[]}  Non-zero integer, -MAX to MAX inclusive or
 | |
|          *                                      [integer -MAX to -1 incl., integer 1 to MAX incl.]
 | |
|          *   ERRORS          {boolean|number}   true, false, 1 or 0
 | |
|          *   CRYPTO          {boolean|number}   true, false, 1 or 0
 | |
|          *   MODULO_MODE     {number}           0 to 9 inclusive
 | |
|          *   POW_PRECISION   {number}           0 to MAX inclusive
 | |
|          *   FORMAT          {object}           See BigNumber.prototype.toFormat
 | |
|          *      decimalSeparator       {string}
 | |
|          *      groupSeparator         {string}
 | |
|          *      groupSize              {number}
 | |
|          *      secondaryGroupSize     {number}
 | |
|          *      fractionGroupSeparator {string}
 | |
|          *      fractionGroupSize      {number}
 | |
|          *
 | |
|          * (The values assigned to the above FORMAT object properties are not checked for validity.)
 | |
|          *
 | |
|          * E.g.
 | |
|          * BigNumber.config(20, 4) is equivalent to
 | |
|          * BigNumber.config({ DECIMAL_PLACES : 20, ROUNDING_MODE : 4 })
 | |
|          *
 | |
|          * Ignore properties/parameters set to null or undefined.
 | |
|          * Return an object with the properties current values.
 | |
|          */
 | |
|         BigNumber.config = function () {
 | |
|             var v, p,
 | |
|                 i = 0,
 | |
|                 r = {},
 | |
|                 a = arguments,
 | |
|                 o = a[0],
 | |
|                 has = o && typeof o == 'object'
 | |
|                   ? function () { if ( o.hasOwnProperty(p) ) return ( v = o[p] ) != null; }
 | |
|                   : function () { if ( a.length > i ) return ( v = a[i++] ) != null; };
 | |
| 
 | |
|             // DECIMAL_PLACES {number} Integer, 0 to MAX inclusive.
 | |
|             // 'config() DECIMAL_PLACES not an integer: {v}'
 | |
|             // 'config() DECIMAL_PLACES out of range: {v}'
 | |
|             if ( has( p = 'DECIMAL_PLACES' ) && isValidInt( v, 0, MAX, 2, p ) ) {
 | |
|                 DECIMAL_PLACES = v | 0;
 | |
|             }
 | |
|             r[p] = DECIMAL_PLACES;
 | |
| 
 | |
|             // ROUNDING_MODE {number} Integer, 0 to 8 inclusive.
 | |
|             // 'config() ROUNDING_MODE not an integer: {v}'
 | |
|             // 'config() ROUNDING_MODE out of range: {v}'
 | |
|             if ( has( p = 'ROUNDING_MODE' ) && isValidInt( v, 0, 8, 2, p ) ) {
 | |
|                 ROUNDING_MODE = v | 0;
 | |
|             }
 | |
|             r[p] = ROUNDING_MODE;
 | |
| 
 | |
|             // EXPONENTIAL_AT {number|number[]}
 | |
|             // Integer, -MAX to MAX inclusive or [integer -MAX to 0 inclusive, 0 to MAX inclusive].
 | |
|             // 'config() EXPONENTIAL_AT not an integer: {v}'
 | |
|             // 'config() EXPONENTIAL_AT out of range: {v}'
 | |
|             if ( has( p = 'EXPONENTIAL_AT' ) ) {
 | |
| 
 | |
|                 if ( isArray(v) ) {
 | |
|                     if ( isValidInt( v[0], -MAX, 0, 2, p ) && isValidInt( v[1], 0, MAX, 2, p ) ) {
 | |
|                         TO_EXP_NEG = v[0] | 0;
 | |
|                         TO_EXP_POS = v[1] | 0;
 | |
|                     }
 | |
|                 } else if ( isValidInt( v, -MAX, MAX, 2, p ) ) {
 | |
|                     TO_EXP_NEG = -( TO_EXP_POS = ( v < 0 ? -v : v ) | 0 );
 | |
|                 }
 | |
|             }
 | |
|             r[p] = [ TO_EXP_NEG, TO_EXP_POS ];
 | |
| 
 | |
|             // RANGE {number|number[]} Non-zero integer, -MAX to MAX inclusive or
 | |
|             // [integer -MAX to -1 inclusive, integer 1 to MAX inclusive].
 | |
|             // 'config() RANGE not an integer: {v}'
 | |
|             // 'config() RANGE cannot be zero: {v}'
 | |
|             // 'config() RANGE out of range: {v}'
 | |
|             if ( has( p = 'RANGE' ) ) {
 | |
| 
 | |
|                 if ( isArray(v) ) {
 | |
|                     if ( isValidInt( v[0], -MAX, -1, 2, p ) && isValidInt( v[1], 1, MAX, 2, p ) ) {
 | |
|                         MIN_EXP = v[0] | 0;
 | |
|                         MAX_EXP = v[1] | 0;
 | |
|                     }
 | |
|                 } else if ( isValidInt( v, -MAX, MAX, 2, p ) ) {
 | |
|                     if ( v | 0 ) MIN_EXP = -( MAX_EXP = ( v < 0 ? -v : v ) | 0 );
 | |
|                     else if (ERRORS) raise( 2, p + ' cannot be zero', v );
 | |
|                 }
 | |
|             }
 | |
|             r[p] = [ MIN_EXP, MAX_EXP ];
 | |
| 
 | |
|             // ERRORS {boolean|number} true, false, 1 or 0.
 | |
|             // 'config() ERRORS not a boolean or binary digit: {v}'
 | |
|             if ( has( p = 'ERRORS' ) ) {
 | |
| 
 | |
|                 if ( v === !!v || v === 1 || v === 0 ) {
 | |
|                     id = 0;
 | |
|                     isValidInt = ( ERRORS = !!v ) ? intValidatorWithErrors : intValidatorNoErrors;
 | |
|                 } else if (ERRORS) {
 | |
|                     raise( 2, p + notBool, v );
 | |
|                 }
 | |
|             }
 | |
|             r[p] = ERRORS;
 | |
| 
 | |
|             // CRYPTO {boolean|number} true, false, 1 or 0.
 | |
|             // 'config() CRYPTO not a boolean or binary digit: {v}'
 | |
|             // 'config() crypto unavailable: {crypto}'
 | |
|             if ( has( p = 'CRYPTO' ) ) {
 | |
| 
 | |
|                 if ( v === !!v || v === 1 || v === 0 ) {
 | |
|                     CRYPTO = !!( v && crypto && typeof crypto == 'object' );
 | |
|                     if ( v && !CRYPTO && ERRORS ) raise( 2, 'crypto unavailable', crypto );
 | |
|                 } else if (ERRORS) {
 | |
|                     raise( 2, p + notBool, v );
 | |
|                 }
 | |
|             }
 | |
|             r[p] = CRYPTO;
 | |
| 
 | |
|             // MODULO_MODE {number} Integer, 0 to 9 inclusive.
 | |
|             // 'config() MODULO_MODE not an integer: {v}'
 | |
|             // 'config() MODULO_MODE out of range: {v}'
 | |
|             if ( has( p = 'MODULO_MODE' ) && isValidInt( v, 0, 9, 2, p ) ) {
 | |
|                 MODULO_MODE = v | 0;
 | |
|             }
 | |
|             r[p] = MODULO_MODE;
 | |
| 
 | |
|             // POW_PRECISION {number} Integer, 0 to MAX inclusive.
 | |
|             // 'config() POW_PRECISION not an integer: {v}'
 | |
|             // 'config() POW_PRECISION out of range: {v}'
 | |
|             if ( has( p = 'POW_PRECISION' ) && isValidInt( v, 0, MAX, 2, p ) ) {
 | |
|                 POW_PRECISION = v | 0;
 | |
|             }
 | |
|             r[p] = POW_PRECISION;
 | |
| 
 | |
|             // FORMAT {object}
 | |
|             // 'config() FORMAT not an object: {v}'
 | |
|             if ( has( p = 'FORMAT' ) ) {
 | |
| 
 | |
|                 if ( typeof v == 'object' ) {
 | |
|                     FORMAT = v;
 | |
|                 } else if (ERRORS) {
 | |
|                     raise( 2, p + ' not an object', v );
 | |
|                 }
 | |
|             }
 | |
|             r[p] = FORMAT;
 | |
| 
 | |
|             return r;
 | |
|         };
 | |
| 
 | |
| 
 | |
|         /*
 | |
|          * Return a new BigNumber whose value is the maximum of the arguments.
 | |
|          *
 | |
|          * arguments {number|string|BigNumber}
 | |
|          */
 | |
|         BigNumber.max = function () { return maxOrMin( arguments, P.lt ); };
 | |
| 
 | |
| 
 | |
|         /*
 | |
|          * Return a new BigNumber whose value is the minimum of the arguments.
 | |
|          *
 | |
|          * arguments {number|string|BigNumber}
 | |
|          */
 | |
|         BigNumber.min = function () { return maxOrMin( arguments, P.gt ); };
 | |
| 
 | |
| 
 | |
|         /*
 | |
|          * Return a new BigNumber with a random value equal to or greater than 0 and less than 1,
 | |
|          * and with dp, or DECIMAL_PLACES if dp is omitted, decimal places (or less if trailing
 | |
|          * zeros are produced).
 | |
|          *
 | |
|          * [dp] {number} Decimal places. Integer, 0 to MAX inclusive.
 | |
|          *
 | |
|          * 'random() decimal places not an integer: {dp}'
 | |
|          * 'random() decimal places out of range: {dp}'
 | |
|          * 'random() crypto unavailable: {crypto}'
 | |
|          */
 | |
|         BigNumber.random = (function () {
 | |
|             var pow2_53 = 0x20000000000000;
 | |
| 
 | |
|             // Return a 53 bit integer n, where 0 <= n < 9007199254740992.
 | |
|             // Check if Math.random() produces more than 32 bits of randomness.
 | |
|             // If it does, assume at least 53 bits are produced, otherwise assume at least 30 bits.
 | |
|             // 0x40000000 is 2^30, 0x800000 is 2^23, 0x1fffff is 2^21 - 1.
 | |
|             var random53bitInt = (Math.random() * pow2_53) & 0x1fffff
 | |
|               ? function () { return mathfloor( Math.random() * pow2_53 ); }
 | |
|               : function () { return ((Math.random() * 0x40000000 | 0) * 0x800000) +
 | |
|                   (Math.random() * 0x800000 | 0); };
 | |
| 
 | |
|             return function (dp) {
 | |
|                 var a, b, e, k, v,
 | |
|                     i = 0,
 | |
|                     c = [],
 | |
|                     rand = new BigNumber(ONE);
 | |
| 
 | |
|                 dp = dp == null || !isValidInt( dp, 0, MAX, 14 ) ? DECIMAL_PLACES : dp | 0;
 | |
|                 k = mathceil( dp / LOG_BASE );
 | |
| 
 | |
|                 if (CRYPTO) {
 | |
| 
 | |
|                     // Browsers supporting crypto.getRandomValues.
 | |
|                     if ( crypto && crypto.getRandomValues ) {
 | |
| 
 | |
|                         a = crypto.getRandomValues( new Uint32Array( k *= 2 ) );
 | |
| 
 | |
|                         for ( ; i < k; ) {
 | |
| 
 | |
|                             // 53 bits:
 | |
|                             // ((Math.pow(2, 32) - 1) * Math.pow(2, 21)).toString(2)
 | |
|                             // 11111 11111111 11111111 11111111 11100000 00000000 00000000
 | |
|                             // ((Math.pow(2, 32) - 1) >>> 11).toString(2)
 | |
|                             //                                     11111 11111111 11111111
 | |
|                             // 0x20000 is 2^21.
 | |
|                             v = a[i] * 0x20000 + (a[i + 1] >>> 11);
 | |
| 
 | |
|                             // Rejection sampling:
 | |
|                             // 0 <= v < 9007199254740992
 | |
|                             // Probability that v >= 9e15, is
 | |
|                             // 7199254740992 / 9007199254740992 ~= 0.0008, i.e. 1 in 1251
 | |
|                             if ( v >= 9e15 ) {
 | |
|                                 b = crypto.getRandomValues( new Uint32Array(2) );
 | |
|                                 a[i] = b[0];
 | |
|                                 a[i + 1] = b[1];
 | |
|                             } else {
 | |
| 
 | |
|                                 // 0 <= v <= 8999999999999999
 | |
|                                 // 0 <= (v % 1e14) <= 99999999999999
 | |
|                                 c.push( v % 1e14 );
 | |
|                                 i += 2;
 | |
|                             }
 | |
|                         }
 | |
|                         i = k / 2;
 | |
| 
 | |
|                     // Node.js supporting crypto.randomBytes.
 | |
|                     } else if ( crypto && crypto.randomBytes ) {
 | |
| 
 | |
|                         // buffer
 | |
|                         a = crypto.randomBytes( k *= 7 );
 | |
| 
 | |
|                         for ( ; i < k; ) {
 | |
| 
 | |
|                             // 0x1000000000000 is 2^48, 0x10000000000 is 2^40
 | |
|                             // 0x100000000 is 2^32, 0x1000000 is 2^24
 | |
|                             // 11111 11111111 11111111 11111111 11111111 11111111 11111111
 | |
|                             // 0 <= v < 9007199254740992
 | |
|                             v = ( ( a[i] & 31 ) * 0x1000000000000 ) + ( a[i + 1] * 0x10000000000 ) +
 | |
|                                   ( a[i + 2] * 0x100000000 ) + ( a[i + 3] * 0x1000000 ) +
 | |
|                                   ( a[i + 4] << 16 ) + ( a[i + 5] << 8 ) + a[i + 6];
 | |
| 
 | |
|                             if ( v >= 9e15 ) {
 | |
|                                 crypto.randomBytes(7).copy( a, i );
 | |
|                             } else {
 | |
| 
 | |
|                                 // 0 <= (v % 1e14) <= 99999999999999
 | |
|                                 c.push( v % 1e14 );
 | |
|                                 i += 7;
 | |
|                             }
 | |
|                         }
 | |
|                         i = k / 7;
 | |
|                     } else if (ERRORS) {
 | |
|                         raise( 14, 'crypto unavailable', crypto );
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 // Use Math.random: CRYPTO is false or crypto is unavailable and ERRORS is false.
 | |
|                 if (!i) {
 | |
| 
 | |
|                     for ( ; i < k; ) {
 | |
|                         v = random53bitInt();
 | |
|                         if ( v < 9e15 ) c[i++] = v % 1e14;
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 k = c[--i];
 | |
|                 dp %= LOG_BASE;
 | |
| 
 | |
|                 // Convert trailing digits to zeros according to dp.
 | |
|                 if ( k && dp ) {
 | |
|                     v = POWS_TEN[LOG_BASE - dp];
 | |
|                     c[i] = mathfloor( k / v ) * v;
 | |
|                 }
 | |
| 
 | |
|                 // Remove trailing elements which are zero.
 | |
|                 for ( ; c[i] === 0; c.pop(), i-- );
 | |
| 
 | |
|                 // Zero?
 | |
|                 if ( i < 0 ) {
 | |
|                     c = [ e = 0 ];
 | |
|                 } else {
 | |
| 
 | |
|                     // Remove leading elements which are zero and adjust exponent accordingly.
 | |
|                     for ( e = -1 ; c[0] === 0; c.shift(), e -= LOG_BASE);
 | |
| 
 | |
|                     // Count the digits of the first element of c to determine leading zeros, and...
 | |
|                     for ( i = 1, v = c[0]; v >= 10; v /= 10, i++);
 | |
| 
 | |
|                     // adjust the exponent accordingly.
 | |
|                     if ( i < LOG_BASE ) e -= LOG_BASE - i;
 | |
|                 }
 | |
| 
 | |
|                 rand.e = e;
 | |
|                 rand.c = c;
 | |
|                 return rand;
 | |
|             };
 | |
|         })();
 | |
| 
 | |
| 
 | |
|         // PRIVATE FUNCTIONS
 | |
| 
 | |
| 
 | |
|         // Convert a numeric string of baseIn to a numeric string of baseOut.
 | |
|         function convertBase( str, baseOut, baseIn, sign ) {
 | |
|             var d, e, k, r, x, xc, y,
 | |
|                 i = str.indexOf( '.' ),
 | |
|                 dp = DECIMAL_PLACES,
 | |
|                 rm = ROUNDING_MODE;
 | |
| 
 | |
|             if ( baseIn < 37 ) str = str.toLowerCase();
 | |
| 
 | |
|             // Non-integer.
 | |
|             if ( i >= 0 ) {
 | |
|                 k = POW_PRECISION;
 | |
| 
 | |
|                 // Unlimited precision.
 | |
|                 POW_PRECISION = 0;
 | |
|                 str = str.replace( '.', '' );
 | |
|                 y = new BigNumber(baseIn);
 | |
|                 x = y.pow( str.length - i );
 | |
|                 POW_PRECISION = k;
 | |
| 
 | |
|                 // Convert str as if an integer, then restore the fraction part by dividing the
 | |
|                 // result by its base raised to a power.
 | |
|                 y.c = toBaseOut( toFixedPoint( coeffToString( x.c ), x.e ), 10, baseOut );
 | |
|                 y.e = y.c.length;
 | |
|             }
 | |
| 
 | |
|             // Convert the number as integer.
 | |
|             xc = toBaseOut( str, baseIn, baseOut );
 | |
|             e = k = xc.length;
 | |
| 
 | |
|             // Remove trailing zeros.
 | |
|             for ( ; xc[--k] == 0; xc.pop() );
 | |
|             if ( !xc[0] ) return '0';
 | |
| 
 | |
|             if ( i < 0 ) {
 | |
|                 --e;
 | |
|             } else {
 | |
|                 x.c = xc;
 | |
|                 x.e = e;
 | |
| 
 | |
|                 // sign is needed for correct rounding.
 | |
|                 x.s = sign;
 | |
|                 x = div( x, y, dp, rm, baseOut );
 | |
|                 xc = x.c;
 | |
|                 r = x.r;
 | |
|                 e = x.e;
 | |
|             }
 | |
| 
 | |
|             d = e + dp + 1;
 | |
| 
 | |
|             // The rounding digit, i.e. the digit to the right of the digit that may be rounded up.
 | |
|             i = xc[d];
 | |
|             k = baseOut / 2;
 | |
|             r = r || d < 0 || xc[d + 1] != null;
 | |
| 
 | |
|             r = rm < 4 ? ( i != null || r ) && ( rm == 0 || rm == ( x.s < 0 ? 3 : 2 ) )
 | |
|                        : i > k || i == k &&( rm == 4 || r || rm == 6 && xc[d - 1] & 1 ||
 | |
|                          rm == ( x.s < 0 ? 8 : 7 ) );
 | |
| 
 | |
|             if ( d < 1 || !xc[0] ) {
 | |
| 
 | |
|                 // 1^-dp or 0.
 | |
|                 str = r ? toFixedPoint( '1', -dp ) : '0';
 | |
|             } else {
 | |
|                 xc.length = d;
 | |
| 
 | |
|                 if (r) {
 | |
| 
 | |
|                     // Rounding up may mean the previous digit has to be rounded up and so on.
 | |
|                     for ( --baseOut; ++xc[--d] > baseOut; ) {
 | |
|                         xc[d] = 0;
 | |
| 
 | |
|                         if ( !d ) {
 | |
|                             ++e;
 | |
|                             xc.unshift(1);
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 // Determine trailing zeros.
 | |
|                 for ( k = xc.length; !xc[--k]; );
 | |
| 
 | |
|                 // E.g. [4, 11, 15] becomes 4bf.
 | |
|                 for ( i = 0, str = ''; i <= k; str += ALPHABET.charAt( xc[i++] ) );
 | |
|                 str = toFixedPoint( str, e );
 | |
|             }
 | |
| 
 | |
|             // The caller will add the sign.
 | |
|             return str;
 | |
|         }
 | |
| 
 | |
| 
 | |
|         // Perform division in the specified base. Called by div and convertBase.
 | |
|         div = (function () {
 | |
| 
 | |
|             // Assume non-zero x and k.
 | |
|             function multiply( x, k, base ) {
 | |
|                 var m, temp, xlo, xhi,
 | |
|                     carry = 0,
 | |
|                     i = x.length,
 | |
|                     klo = k % SQRT_BASE,
 | |
|                     khi = k / SQRT_BASE | 0;
 | |
| 
 | |
|                 for ( x = x.slice(); i--; ) {
 | |
|                     xlo = x[i] % SQRT_BASE;
 | |
|                     xhi = x[i] / SQRT_BASE | 0;
 | |
|                     m = khi * xlo + xhi * klo;
 | |
|                     temp = klo * xlo + ( ( m % SQRT_BASE ) * SQRT_BASE ) + carry;
 | |
|                     carry = ( temp / base | 0 ) + ( m / SQRT_BASE | 0 ) + khi * xhi;
 | |
|                     x[i] = temp % base;
 | |
|                 }
 | |
| 
 | |
|                 if (carry) x.unshift(carry);
 | |
| 
 | |
|                 return x;
 | |
|             }
 | |
| 
 | |
|             function compare( a, b, aL, bL ) {
 | |
|                 var i, cmp;
 | |
| 
 | |
|                 if ( aL != bL ) {
 | |
|                     cmp = aL > bL ? 1 : -1;
 | |
|                 } else {
 | |
| 
 | |
|                     for ( i = cmp = 0; i < aL; i++ ) {
 | |
| 
 | |
|                         if ( a[i] != b[i] ) {
 | |
|                             cmp = a[i] > b[i] ? 1 : -1;
 | |
|                             break;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|                 return cmp;
 | |
|             }
 | |
| 
 | |
|             function subtract( a, b, aL, base ) {
 | |
|                 var i = 0;
 | |
| 
 | |
|                 // Subtract b from a.
 | |
|                 for ( ; aL--; ) {
 | |
|                     a[aL] -= i;
 | |
|                     i = a[aL] < b[aL] ? 1 : 0;
 | |
|                     a[aL] = i * base + a[aL] - b[aL];
 | |
|                 }
 | |
| 
 | |
|                 // Remove leading zeros.
 | |
|                 for ( ; !a[0] && a.length > 1; a.shift() );
 | |
|             }
 | |
| 
 | |
|             // x: dividend, y: divisor.
 | |
|             return function ( x, y, dp, rm, base ) {
 | |
|                 var cmp, e, i, more, n, prod, prodL, q, qc, rem, remL, rem0, xi, xL, yc0,
 | |
|                     yL, yz,
 | |
|                     s = x.s == y.s ? 1 : -1,
 | |
|                     xc = x.c,
 | |
|                     yc = y.c;
 | |
| 
 | |
|                 // Either NaN, Infinity or 0?
 | |
|                 if ( !xc || !xc[0] || !yc || !yc[0] ) {
 | |
| 
 | |
|                     return new BigNumber(
 | |
| 
 | |
|                       // Return NaN if either NaN, or both Infinity or 0.
 | |
|                       !x.s || !y.s || ( xc ? yc && xc[0] == yc[0] : !yc ) ? NaN :
 | |
| 
 | |
|                         // Return ±0 if x is ±0 or y is ±Infinity, or return ±Infinity as y is ±0.
 | |
|                         xc && xc[0] == 0 || !yc ? s * 0 : s / 0
 | |
|                     );
 | |
|                 }
 | |
| 
 | |
|                 q = new BigNumber(s);
 | |
|                 qc = q.c = [];
 | |
|                 e = x.e - y.e;
 | |
|                 s = dp + e + 1;
 | |
| 
 | |
|                 if ( !base ) {
 | |
|                     base = BASE;
 | |
|                     e = bitFloor( x.e / LOG_BASE ) - bitFloor( y.e / LOG_BASE );
 | |
|                     s = s / LOG_BASE | 0;
 | |
|                 }
 | |
| 
 | |
|                 // Result exponent may be one less then the current value of e.
 | |
|                 // The coefficients of the BigNumbers from convertBase may have trailing zeros.
 | |
|                 for ( i = 0; yc[i] == ( xc[i] || 0 ); i++ );
 | |
|                 if ( yc[i] > ( xc[i] || 0 ) ) e--;
 | |
| 
 | |
|                 if ( s < 0 ) {
 | |
|                     qc.push(1);
 | |
|                     more = true;
 | |
|                 } else {
 | |
|                     xL = xc.length;
 | |
|                     yL = yc.length;
 | |
|                     i = 0;
 | |
|                     s += 2;
 | |
| 
 | |
|                     // Normalise xc and yc so highest order digit of yc is >= base/2
 | |
| 
 | |
|                     n = mathfloor( base / ( yc[0] + 1 ) );
 | |
| 
 | |
|                     if ( n > 1 ) {
 | |
|                         yc = multiply( yc, n, base );
 | |
|                         xc = multiply( xc, n, base );
 | |
|                         yL = yc.length;
 | |
|                         xL = xc.length;
 | |
|                     }
 | |
| 
 | |
|                     xi = yL;
 | |
|                     rem = xc.slice( 0, yL );
 | |
|                     remL = rem.length;
 | |
| 
 | |
|                     // Add zeros to make remainder as long as divisor.
 | |
|                     for ( ; remL < yL; rem[remL++] = 0 );
 | |
|                     yz = yc.slice();
 | |
|                     yz.unshift(0);
 | |
|                     yc0 = yc[0];
 | |
|                     if ( yc[1] >= base / 2 ) yc0++;
 | |
| 
 | |
|                     do {
 | |
|                         n = 0;
 | |
| 
 | |
|                         // Compare divisor and remainder.
 | |
|                         cmp = compare( yc, rem, yL, remL );
 | |
| 
 | |
|                         // If divisor < remainder.
 | |
|                         if ( cmp < 0 ) {
 | |
| 
 | |
|                             // Calculate trial digit, n.
 | |
| 
 | |
|                             rem0 = rem[0];
 | |
|                             if ( yL != remL ) rem0 = rem0 * base + ( rem[1] || 0 );
 | |
| 
 | |
|                             // n is how many times the divisor goes into the current remainder.
 | |
|                             n = mathfloor( rem0 / yc0 );
 | |
| 
 | |
|                             //  Algorithm:
 | |
|                             //  1. product = divisor * trial digit (n)
 | |
|                             //  2. if product > remainder: product -= divisor, n--
 | |
|                             //  3. remainder -= product
 | |
|                             //  4. if product was < remainder at 2:
 | |
|                             //    5. compare new remainder and divisor
 | |
|                             //    6. If remainder > divisor: remainder -= divisor, n++
 | |
| 
 | |
|                             if ( n > 1 ) {
 | |
|                                 if ( n >= base ) n = base - 1;
 | |
| 
 | |
|                                 // product = divisor * trial digit.
 | |
|                                 prod = multiply( yc, n, base );
 | |
|                                 prodL = prod.length;
 | |
|                                 remL = rem.length;
 | |
| 
 | |
|                                 // Compare product and remainder.
 | |
|                                 cmp = compare( prod, rem, prodL, remL );
 | |
| 
 | |
|                                 // product > remainder.
 | |
|                                 if ( cmp == 1 ) {
 | |
|                                     n--;
 | |
| 
 | |
|                                     // Subtract divisor from product.
 | |
|                                     subtract( prod, yL < prodL ? yz : yc, prodL, base );
 | |
|                                 }
 | |
|                             } else {
 | |
| 
 | |
|                                 // cmp is -1.
 | |
|                                 // If n is 0, there is no need to compare yc and rem again
 | |
|                                 // below, so change cmp to 1 to avoid it.
 | |
|                                 // If n is 1, compare yc and rem again below.
 | |
|                                 if ( n == 0 ) cmp = n = 1;
 | |
|                                 prod = yc.slice();
 | |
|                             }
 | |
| 
 | |
|                             prodL = prod.length;
 | |
|                             if ( prodL < remL ) prod.unshift(0);
 | |
| 
 | |
|                             // Subtract product from remainder.
 | |
|                             subtract( rem, prod, remL, base );
 | |
| 
 | |
|                             // If product was < previous remainder.
 | |
|                             if ( cmp == -1 ) {
 | |
|                                 remL = rem.length;
 | |
| 
 | |
|                                 // Compare divisor and new remainder.
 | |
|                                 cmp = compare( yc, rem, yL, remL );
 | |
| 
 | |
|                                 // If divisor < new remainder, subtract divisor from remainder.
 | |
|                                 if ( cmp < 1 ) {
 | |
|                                     n++;
 | |
| 
 | |
|                                     // Subtract divisor from remainder.
 | |
|                                     subtract( rem, yL < remL ? yz : yc, remL, base );
 | |
|                                 }
 | |
|                             }
 | |
|                             remL = rem.length;
 | |
|                         } else if ( cmp === 0 ) {
 | |
|                             n++;
 | |
|                             rem = [0];
 | |
|                         }
 | |
|                         // if cmp === 1, n will be 0
 | |
| 
 | |
|                         // Add the next digit, n, to the result array.
 | |
|                         qc[i++] = n;
 | |
| 
 | |
|                         // Update the remainder.
 | |
|                         if ( cmp && rem[0] ) {
 | |
|                             rem[remL++] = xc[xi] || 0;
 | |
|                         } else {
 | |
|                             rem = [ xc[xi] ];
 | |
|                             remL = 1;
 | |
|                         }
 | |
|                     } while ( ( xi++ < xL || rem[0] != null ) && s-- );
 | |
| 
 | |
|                     more = rem[0] != null;
 | |
| 
 | |
|                     // Leading zero?
 | |
|                     if ( !qc[0] ) qc.shift();
 | |
|                 }
 | |
| 
 | |
|                 if ( base == BASE ) {
 | |
| 
 | |
|                     // To calculate q.e, first get the number of digits of qc[0].
 | |
|                     for ( i = 1, s = qc[0]; s >= 10; s /= 10, i++ );
 | |
|                     round( q, dp + ( q.e = i + e * LOG_BASE - 1 ) + 1, rm, more );
 | |
| 
 | |
|                 // Caller is convertBase.
 | |
|                 } else {
 | |
|                     q.e = e;
 | |
|                     q.r = +more;
 | |
|                 }
 | |
| 
 | |
|                 return q;
 | |
|             };
 | |
|         })();
 | |
| 
 | |
| 
 | |
|         /*
 | |
|          * Return a string representing the value of BigNumber n in fixed-point or exponential
 | |
|          * notation rounded to the specified decimal places or significant digits.
 | |
|          *
 | |
|          * n is a BigNumber.
 | |
|          * i is the index of the last digit required (i.e. the digit that may be rounded up).
 | |
|          * rm is the rounding mode.
 | |
|          * caller is caller id: toExponential 19, toFixed 20, toFormat 21, toPrecision 24.
 | |
|          */
 | |
|         function format( n, i, rm, caller ) {
 | |
|             var c0, e, ne, len, str;
 | |
| 
 | |
|             rm = rm != null && isValidInt( rm, 0, 8, caller, roundingMode )
 | |
|               ? rm | 0 : ROUNDING_MODE;
 | |
| 
 | |
|             if ( !n.c ) return n.toString();
 | |
|             c0 = n.c[0];
 | |
|             ne = n.e;
 | |
| 
 | |
|             if ( i == null ) {
 | |
|                 str = coeffToString( n.c );
 | |
|                 str = caller == 19 || caller == 24 && ne <= TO_EXP_NEG
 | |
|                   ? toExponential( str, ne )
 | |
|                   : toFixedPoint( str, ne );
 | |
|             } else {
 | |
|                 n = round( new BigNumber(n), i, rm );
 | |
| 
 | |
|                 // n.e may have changed if the value was rounded up.
 | |
|                 e = n.e;
 | |
| 
 | |
|                 str = coeffToString( n.c );
 | |
|                 len = str.length;
 | |
| 
 | |
|                 // toPrecision returns exponential notation if the number of significant digits
 | |
|                 // specified is less than the number of digits necessary to represent the integer
 | |
|                 // part of the value in fixed-point notation.
 | |
| 
 | |
|                 // Exponential notation.
 | |
|                 if ( caller == 19 || caller == 24 && ( i <= e || e <= TO_EXP_NEG ) ) {
 | |
| 
 | |
|                     // Append zeros?
 | |
|                     for ( ; len < i; str += '0', len++ );
 | |
|                     str = toExponential( str, e );
 | |
| 
 | |
|                 // Fixed-point notation.
 | |
|                 } else {
 | |
|                     i -= ne;
 | |
|                     str = toFixedPoint( str, e );
 | |
| 
 | |
|                     // Append zeros?
 | |
|                     if ( e + 1 > len ) {
 | |
|                         if ( --i > 0 ) for ( str += '.'; i--; str += '0' );
 | |
|                     } else {
 | |
|                         i += e - len;
 | |
|                         if ( i > 0 ) {
 | |
|                             if ( e + 1 == len ) str += '.';
 | |
|                             for ( ; i--; str += '0' );
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             return n.s < 0 && c0 ? '-' + str : str;
 | |
|         }
 | |
| 
 | |
| 
 | |
|         // Handle BigNumber.max and BigNumber.min.
 | |
|         function maxOrMin( args, method ) {
 | |
|             var m, n,
 | |
|                 i = 0;
 | |
| 
 | |
|             if ( isArray( args[0] ) ) args = args[0];
 | |
|             m = new BigNumber( args[0] );
 | |
| 
 | |
|             for ( ; ++i < args.length; ) {
 | |
|                 n = new BigNumber( args[i] );
 | |
| 
 | |
|                 // If any number is NaN, return NaN.
 | |
|                 if ( !n.s ) {
 | |
|                     m = n;
 | |
|                     break;
 | |
|                 } else if ( method.call( m, n ) ) {
 | |
|                     m = n;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             return m;
 | |
|         }
 | |
| 
 | |
| 
 | |
|         /*
 | |
|          * Return true if n is an integer in range, otherwise throw.
 | |
|          * Use for argument validation when ERRORS is true.
 | |
|          */
 | |
|         function intValidatorWithErrors( n, min, max, caller, name ) {
 | |
|             if ( n < min || n > max || n != truncate(n) ) {
 | |
|                 raise( caller, ( name || 'decimal places' ) +
 | |
|                   ( n < min || n > max ? ' out of range' : ' not an integer' ), n );
 | |
|             }
 | |
| 
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
| 
 | |
|         /*
 | |
|          * Strip trailing zeros, calculate base 10 exponent and check against MIN_EXP and MAX_EXP.
 | |
|          * Called by minus, plus and times.
 | |
|          */
 | |
|         function normalise( n, c, e ) {
 | |
|             var i = 1,
 | |
|                 j = c.length;
 | |
| 
 | |
|              // Remove trailing zeros.
 | |
|             for ( ; !c[--j]; c.pop() );
 | |
| 
 | |
|             // Calculate the base 10 exponent. First get the number of digits of c[0].
 | |
|             for ( j = c[0]; j >= 10; j /= 10, i++ );
 | |
| 
 | |
|             // Overflow?
 | |
|             if ( ( e = i + e * LOG_BASE - 1 ) > MAX_EXP ) {
 | |
| 
 | |
|                 // Infinity.
 | |
|                 n.c = n.e = null;
 | |
| 
 | |
|             // Underflow?
 | |
|             } else if ( e < MIN_EXP ) {
 | |
| 
 | |
|                 // Zero.
 | |
|                 n.c = [ n.e = 0 ];
 | |
|             } else {
 | |
|                 n.e = e;
 | |
|                 n.c = c;
 | |
|             }
 | |
| 
 | |
|             return n;
 | |
|         }
 | |
| 
 | |
| 
 | |
|         // Handle values that fail the validity test in BigNumber.
 | |
|         parseNumeric = (function () {
 | |
| //            var basePrefix = /^(-?)0([xbo])(?=\w[\w.]*$)/i,
 | |
|             var basePrefix = /^(-?)0([xbo])/i,
 | |
|                 dotAfter = /^([^.]+)\.$/,
 | |
|                 dotBefore = /^\.([^.]+)$/,
 | |
|                 isInfinityOrNaN = /^-?(Infinity|NaN)$/,
 | |
| //                whitespaceOrPlus = /^\s*\+(?=[\w.])|^\s+|\s+$/g;
 | |
|                 whitespaceOrPlus = /^\s*\+[\w.]|^\s+|\s+$/g;
 | |
| 
 | |
|             return function ( x, str, num, b ) {
 | |
|                 var base,
 | |
|                     s = num ? str : str.replace( whitespaceOrPlus, '' );
 | |
| 
 | |
|                 // No exception on ±Infinity or NaN.
 | |
|                 if ( isInfinityOrNaN.test(s) ) {
 | |
|                     x.s = isNaN(s) ? null : s < 0 ? -1 : 1;
 | |
|                 } else {
 | |
|                     if ( !num ) {
 | |
| 
 | |
|                         // basePrefix = /^(-?)0([xbo])(?=\w[\w.]*$)/i
 | |
|                         s = s.replace( basePrefix, function ( m, p1, p2 ) {
 | |
|                             base = ( p2 = p2.toLowerCase() ) == 'x' ? 16 : p2 == 'b' ? 2 : 8;
 | |
|                             return !b || b == base ? p1 : m;
 | |
|                         });
 | |
| 
 | |
|                         if (b) {
 | |
|                             base = b;
 | |
| 
 | |
|                             // E.g. '1.' to '1', '.1' to '0.1'
 | |
|                             s = s.replace( dotAfter, '$1' ).replace( dotBefore, '0.$1' );
 | |
|                         }
 | |
| 
 | |
|                         if ( str != s ) return new BigNumber( s, base );
 | |
|                     }
 | |
| 
 | |
|                     // 'new BigNumber() not a number: {n}'
 | |
|                     // 'new BigNumber() not a base {b} number: {n}'
 | |
|                     if (ERRORS) raise( id, 'not a' + ( b ? ' base ' + b : '' ) + ' number', str );
 | |
|                     x.s = null;
 | |
|                 }
 | |
| 
 | |
|                 x.c = x.e = null;
 | |
|                 id = 0;
 | |
|             }
 | |
|         })();
 | |
| 
 | |
| 
 | |
|         // Throw a BigNumber Error.
 | |
|         function raise( caller, msg, val ) {
 | |
|             var error = new Error( [
 | |
|                 'new BigNumber',     // 0
 | |
|                 'cmp',               // 1
 | |
|                 'config',            // 2
 | |
|                 'div',               // 3
 | |
|                 'divToInt',          // 4
 | |
|                 'eq',                // 5
 | |
|                 'gt',                // 6
 | |
|                 'gte',               // 7
 | |
|                 'lt',                // 8
 | |
|                 'lte',               // 9
 | |
|                 'minus',             // 10
 | |
|                 'mod',               // 11
 | |
|                 'plus',              // 12
 | |
|                 'precision',         // 13
 | |
|                 'random',            // 14
 | |
|                 'round',             // 15
 | |
|                 'shift',             // 16
 | |
|                 'times',             // 17
 | |
|                 'toDigits',          // 18
 | |
|                 'toExponential',     // 19
 | |
|                 'toFixed',           // 20
 | |
|                 'toFormat',          // 21
 | |
|                 'toFraction',        // 22
 | |
|                 'pow',               // 23
 | |
|                 'toPrecision',       // 24
 | |
|                 'toString',          // 25
 | |
|                 'BigNumber'          // 26
 | |
|             ][caller] + '() ' + msg + ': ' + val );
 | |
| 
 | |
|             error.name = 'BigNumber Error';
 | |
|             id = 0;
 | |
|             throw error;
 | |
|         }
 | |
| 
 | |
| 
 | |
|         /*
 | |
|          * Round x to sd significant digits using rounding mode rm. Check for over/under-flow.
 | |
|          * If r is truthy, it is known that there are more digits after the rounding digit.
 | |
|          */
 | |
|         function round( x, sd, rm, r ) {
 | |
|             var d, i, j, k, n, ni, rd,
 | |
|                 xc = x.c,
 | |
|                 pows10 = POWS_TEN;
 | |
| 
 | |
|             // if x is not Infinity or NaN...
 | |
|             if (xc) {
 | |
| 
 | |
|                 // rd is the rounding digit, i.e. the digit after the digit that may be rounded up.
 | |
|                 // n is a base 1e14 number, the value of the element of array x.c containing rd.
 | |
|                 // ni is the index of n within x.c.
 | |
|                 // d is the number of digits of n.
 | |
|                 // i is the index of rd within n including leading zeros.
 | |
|                 // j is the actual index of rd within n (if < 0, rd is a leading zero).
 | |
|                 out: {
 | |
| 
 | |
|                     // Get the number of digits of the first element of xc.
 | |
|                     for ( d = 1, k = xc[0]; k >= 10; k /= 10, d++ );
 | |
|                     i = sd - d;
 | |
| 
 | |
|                     // If the rounding digit is in the first element of xc...
 | |
|                     if ( i < 0 ) {
 | |
|                         i += LOG_BASE;
 | |
|                         j = sd;
 | |
|                         n = xc[ ni = 0 ];
 | |
| 
 | |
|                         // Get the rounding digit at index j of n.
 | |
|                         rd = n / pows10[ d - j - 1 ] % 10 | 0;
 | |
|                     } else {
 | |
|                         ni = mathceil( ( i + 1 ) / LOG_BASE );
 | |
| 
 | |
|                         if ( ni >= xc.length ) {
 | |
| 
 | |
|                             if (r) {
 | |
| 
 | |
|                                 // Needed by sqrt.
 | |
|                                 for ( ; xc.length <= ni; xc.push(0) );
 | |
|                                 n = rd = 0;
 | |
|                                 d = 1;
 | |
|                                 i %= LOG_BASE;
 | |
|                                 j = i - LOG_BASE + 1;
 | |
|                             } else {
 | |
|                                 break out;
 | |
|                             }
 | |
|                         } else {
 | |
|                             n = k = xc[ni];
 | |
| 
 | |
|                             // Get the number of digits of n.
 | |
|                             for ( d = 1; k >= 10; k /= 10, d++ );
 | |
| 
 | |
|                             // Get the index of rd within n.
 | |
|                             i %= LOG_BASE;
 | |
| 
 | |
|                             // Get the index of rd within n, adjusted for leading zeros.
 | |
|                             // The number of leading zeros of n is given by LOG_BASE - d.
 | |
|                             j = i - LOG_BASE + d;
 | |
| 
 | |
|                             // Get the rounding digit at index j of n.
 | |
|                             rd = j < 0 ? 0 : n / pows10[ d - j - 1 ] % 10 | 0;
 | |
|                         }
 | |
|                     }
 | |
| 
 | |
|                     r = r || sd < 0 ||
 | |
| 
 | |
|                     // Are there any non-zero digits after the rounding digit?
 | |
|                     // The expression  n % pows10[ d - j - 1 ]  returns all digits of n to the right
 | |
|                     // of the digit at j, e.g. if n is 908714 and j is 2, the expression gives 714.
 | |
|                       xc[ni + 1] != null || ( j < 0 ? n : n % pows10[ d - j - 1 ] );
 | |
| 
 | |
|                     r = rm < 4
 | |
|                       ? ( rd || r ) && ( rm == 0 || rm == ( x.s < 0 ? 3 : 2 ) )
 | |
|                       : rd > 5 || rd == 5 && ( rm == 4 || r || rm == 6 &&
 | |
| 
 | |
|                         // Check whether the digit to the left of the rounding digit is odd.
 | |
|                         ( ( i > 0 ? j > 0 ? n / pows10[ d - j ] : 0 : xc[ni - 1] ) % 10 ) & 1 ||
 | |
|                           rm == ( x.s < 0 ? 8 : 7 ) );
 | |
| 
 | |
|                     if ( sd < 1 || !xc[0] ) {
 | |
|                         xc.length = 0;
 | |
| 
 | |
|                         if (r) {
 | |
| 
 | |
|                             // Convert sd to decimal places.
 | |
|                             sd -= x.e + 1;
 | |
| 
 | |
|                             // 1, 0.1, 0.01, 0.001, 0.0001 etc.
 | |
|                             xc[0] = pows10[ sd % LOG_BASE ];
 | |
|                             x.e = -sd || 0;
 | |
|                         } else {
 | |
| 
 | |
|                             // Zero.
 | |
|                             xc[0] = x.e = 0;
 | |
|                         }
 | |
| 
 | |
|                         return x;
 | |
|                     }
 | |
| 
 | |
|                     // Remove excess digits.
 | |
|                     if ( i == 0 ) {
 | |
|                         xc.length = ni;
 | |
|                         k = 1;
 | |
|                         ni--;
 | |
|                     } else {
 | |
|                         xc.length = ni + 1;
 | |
|                         k = pows10[ LOG_BASE - i ];
 | |
| 
 | |
|                         // E.g. 56700 becomes 56000 if 7 is the rounding digit.
 | |
|                         // j > 0 means i > number of leading zeros of n.
 | |
|                         xc[ni] = j > 0 ? mathfloor( n / pows10[ d - j ] % pows10[j] ) * k : 0;
 | |
|                     }
 | |
| 
 | |
|                     // Round up?
 | |
|                     if (r) {
 | |
| 
 | |
|                         for ( ; ; ) {
 | |
| 
 | |
|                             // If the digit to be rounded up is in the first element of xc...
 | |
|                             if ( ni == 0 ) {
 | |
| 
 | |
|                                 // i will be the length of xc[0] before k is added.
 | |
|                                 for ( i = 1, j = xc[0]; j >= 10; j /= 10, i++ );
 | |
|                                 j = xc[0] += k;
 | |
|                                 for ( k = 1; j >= 10; j /= 10, k++ );
 | |
| 
 | |
|                                 // if i != k the length has increased.
 | |
|                                 if ( i != k ) {
 | |
|                                     x.e++;
 | |
|                                     if ( xc[0] == BASE ) xc[0] = 1;
 | |
|                                 }
 | |
| 
 | |
|                                 break;
 | |
|                             } else {
 | |
|                                 xc[ni] += k;
 | |
|                                 if ( xc[ni] != BASE ) break;
 | |
|                                 xc[ni--] = 0;
 | |
|                                 k = 1;
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
| 
 | |
|                     // Remove trailing zeros.
 | |
|                     for ( i = xc.length; xc[--i] === 0; xc.pop() );
 | |
|                 }
 | |
| 
 | |
|                 // Overflow? Infinity.
 | |
|                 if ( x.e > MAX_EXP ) {
 | |
|                     x.c = x.e = null;
 | |
| 
 | |
|                 // Underflow? Zero.
 | |
|                 } else if ( x.e < MIN_EXP ) {
 | |
|                     x.c = [ x.e = 0 ];
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             return x;
 | |
|         }
 | |
| 
 | |
| 
 | |
|         // PROTOTYPE/INSTANCE METHODS
 | |
| 
 | |
| 
 | |
|         /*
 | |
|          * Return a new BigNumber whose value is the absolute value of this BigNumber.
 | |
|          */
 | |
|         P.absoluteValue = P.abs = function () {
 | |
|             var x = new BigNumber(this);
 | |
|             if ( x.s < 0 ) x.s = 1;
 | |
|             return x;
 | |
|         };
 | |
| 
 | |
| 
 | |
|         /*
 | |
|          * Return a new BigNumber whose value is the value of this BigNumber rounded to a whole
 | |
|          * number in the direction of Infinity.
 | |
|          */
 | |
|         P.ceil = function () {
 | |
|             return round( new BigNumber(this), this.e + 1, 2 );
 | |
|         };
 | |
| 
 | |
| 
 | |
|         /*
 | |
|          * Return
 | |
|          * 1 if the value of this BigNumber is greater than the value of BigNumber(y, b),
 | |
|          * -1 if the value of this BigNumber is less than the value of BigNumber(y, b),
 | |
|          * 0 if they have the same value,
 | |
|          * or null if the value of either is NaN.
 | |
|          */
 | |
|         P.comparedTo = P.cmp = function ( y, b ) {
 | |
|             id = 1;
 | |
|             return compare( this, new BigNumber( y, b ) );
 | |
|         };
 | |
| 
 | |
| 
 | |
|         /*
 | |
|          * Return the number of decimal places of the value of this BigNumber, or null if the value
 | |
|          * of this BigNumber is ±Infinity or NaN.
 | |
|          */
 | |
|         P.decimalPlaces = P.dp = function () {
 | |
|             var n, v,
 | |
|                 c = this.c;
 | |
| 
 | |
|             if ( !c ) return null;
 | |
|             n = ( ( v = c.length - 1 ) - bitFloor( this.e / LOG_BASE ) ) * LOG_BASE;
 | |
| 
 | |
|             // Subtract the number of trailing zeros of the last number.
 | |
|             if ( v = c[v] ) for ( ; v % 10 == 0; v /= 10, n-- );
 | |
|             if ( n < 0 ) n = 0;
 | |
| 
 | |
|             return n;
 | |
|         };
 | |
| 
 | |
| 
 | |
|         /*
 | |
|          *  n / 0 = I
 | |
|          *  n / N = N
 | |
|          *  n / I = 0
 | |
|          *  0 / n = 0
 | |
|          *  0 / 0 = N
 | |
|          *  0 / N = N
 | |
|          *  0 / I = 0
 | |
|          *  N / n = N
 | |
|          *  N / 0 = N
 | |
|          *  N / N = N
 | |
|          *  N / I = N
 | |
|          *  I / n = I
 | |
|          *  I / 0 = I
 | |
|          *  I / N = N
 | |
|          *  I / I = N
 | |
|          *
 | |
|          * Return a new BigNumber whose value is the value of this BigNumber divided by the value of
 | |
|          * BigNumber(y, b), rounded according to DECIMAL_PLACES and ROUNDING_MODE.
 | |
|          */
 | |
|         P.dividedBy = P.div = function ( y, b ) {
 | |
|             id = 3;
 | |
|             return div( this, new BigNumber( y, b ), DECIMAL_PLACES, ROUNDING_MODE );
 | |
|         };
 | |
| 
 | |
| 
 | |
|         /*
 | |
|          * Return a new BigNumber whose value is the integer part of dividing the value of this
 | |
|          * BigNumber by the value of BigNumber(y, b).
 | |
|          */
 | |
|         P.dividedToIntegerBy = P.divToInt = function ( y, b ) {
 | |
|             id = 4;
 | |
|             return div( this, new BigNumber( y, b ), 0, 1 );
 | |
|         };
 | |
| 
 | |
| 
 | |
|         /*
 | |
|          * Return true if the value of this BigNumber is equal to the value of BigNumber(y, b),
 | |
|          * otherwise returns false.
 | |
|          */
 | |
|         P.equals = P.eq = function ( y, b ) {
 | |
|             id = 5;
 | |
|             return compare( this, new BigNumber( y, b ) ) === 0;
 | |
|         };
 | |
| 
 | |
| 
 | |
|         /*
 | |
|          * Return a new BigNumber whose value is the value of this BigNumber rounded to a whole
 | |
|          * number in the direction of -Infinity.
 | |
|          */
 | |
|         P.floor = function () {
 | |
|             return round( new BigNumber(this), this.e + 1, 3 );
 | |
|         };
 | |
| 
 | |
| 
 | |
|         /*
 | |
|          * Return true if the value of this BigNumber is greater than the value of BigNumber(y, b),
 | |
|          * otherwise returns false.
 | |
|          */
 | |
|         P.greaterThan = P.gt = function ( y, b ) {
 | |
|             id = 6;
 | |
|             return compare( this, new BigNumber( y, b ) ) > 0;
 | |
|         };
 | |
| 
 | |
| 
 | |
|         /*
 | |
|          * Return true if the value of this BigNumber is greater than or equal to the value of
 | |
|          * BigNumber(y, b), otherwise returns false.
 | |
|          */
 | |
|         P.greaterThanOrEqualTo = P.gte = function ( y, b ) {
 | |
|             id = 7;
 | |
|             return ( b = compare( this, new BigNumber( y, b ) ) ) === 1 || b === 0;
 | |
| 
 | |
|         };
 | |
| 
 | |
| 
 | |
|         /*
 | |
|          * Return true if the value of this BigNumber is a finite number, otherwise returns false.
 | |
|          */
 | |
|         P.isFinite = function () {
 | |
|             return !!this.c;
 | |
|         };
 | |
| 
 | |
| 
 | |
|         /*
 | |
|          * Return true if the value of this BigNumber is an integer, otherwise return false.
 | |
|          */
 | |
|         P.isInteger = P.isInt = function () {
 | |
|             return !!this.c && bitFloor( this.e / LOG_BASE ) > this.c.length - 2;
 | |
|         };
 | |
| 
 | |
| 
 | |
|         /*
 | |
|          * Return true if the value of this BigNumber is NaN, otherwise returns false.
 | |
|          */
 | |
|         P.isNaN = function () {
 | |
|             return !this.s;
 | |
|         };
 | |
| 
 | |
| 
 | |
|         /*
 | |
|          * Return true if the value of this BigNumber is negative, otherwise returns false.
 | |
|          */
 | |
|         P.isNegative = P.isNeg = function () {
 | |
|             return this.s < 0;
 | |
|         };
 | |
| 
 | |
| 
 | |
|         /*
 | |
|          * Return true if the value of this BigNumber is 0 or -0, otherwise returns false.
 | |
|          */
 | |
|         P.isZero = function () {
 | |
|             return !!this.c && this.c[0] == 0;
 | |
|         };
 | |
| 
 | |
| 
 | |
|         /*
 | |
|          * Return true if the value of this BigNumber is less than the value of BigNumber(y, b),
 | |
|          * otherwise returns false.
 | |
|          */
 | |
|         P.lessThan = P.lt = function ( y, b ) {
 | |
|             id = 8;
 | |
|             return compare( this, new BigNumber( y, b ) ) < 0;
 | |
|         };
 | |
| 
 | |
| 
 | |
|         /*
 | |
|          * Return true if the value of this BigNumber is less than or equal to the value of
 | |
|          * BigNumber(y, b), otherwise returns false.
 | |
|          */
 | |
|         P.lessThanOrEqualTo = P.lte = function ( y, b ) {
 | |
|             id = 9;
 | |
|             return ( b = compare( this, new BigNumber( y, b ) ) ) === -1 || b === 0;
 | |
|         };
 | |
| 
 | |
| 
 | |
|         /*
 | |
|          *  n - 0 = n
 | |
|          *  n - N = N
 | |
|          *  n - I = -I
 | |
|          *  0 - n = -n
 | |
|          *  0 - 0 = 0
 | |
|          *  0 - N = N
 | |
|          *  0 - I = -I
 | |
|          *  N - n = N
 | |
|          *  N - 0 = N
 | |
|          *  N - N = N
 | |
|          *  N - I = N
 | |
|          *  I - n = I
 | |
|          *  I - 0 = I
 | |
|          *  I - N = N
 | |
|          *  I - I = N
 | |
|          *
 | |
|          * Return a new BigNumber whose value is the value of this BigNumber minus the value of
 | |
|          * BigNumber(y, b).
 | |
|          */
 | |
|         P.minus = P.sub = function ( y, b ) {
 | |
|             var i, j, t, xLTy,
 | |
|                 x = this,
 | |
|                 a = x.s;
 | |
| 
 | |
|             id = 10;
 | |
|             y = new BigNumber( y, b );
 | |
|             b = y.s;
 | |
| 
 | |
|             // Either NaN?
 | |
|             if ( !a || !b ) return new BigNumber(NaN);
 | |
| 
 | |
|             // Signs differ?
 | |
|             if ( a != b ) {
 | |
|                 y.s = -b;
 | |
|                 return x.plus(y);
 | |
|             }
 | |
| 
 | |
|             var xe = x.e / LOG_BASE,
 | |
|                 ye = y.e / LOG_BASE,
 | |
|                 xc = x.c,
 | |
|                 yc = y.c;
 | |
| 
 | |
|             if ( !xe || !ye ) {
 | |
| 
 | |
|                 // Either Infinity?
 | |
|                 if ( !xc || !yc ) return xc ? ( y.s = -b, y ) : new BigNumber( yc ? x : NaN );
 | |
| 
 | |
|                 // Either zero?
 | |
|                 if ( !xc[0] || !yc[0] ) {
 | |
| 
 | |
|                     // Return y if y is non-zero, x if x is non-zero, or zero if both are zero.
 | |
|                     return yc[0] ? ( y.s = -b, y ) : new BigNumber( xc[0] ? x :
 | |
| 
 | |
|                       // IEEE 754 (2008) 6.3: n - n = -0 when rounding to -Infinity
 | |
|                       ROUNDING_MODE == 3 ? -0 : 0 );
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             xe = bitFloor(xe);
 | |
|             ye = bitFloor(ye);
 | |
|             xc = xc.slice();
 | |
| 
 | |
|             // Determine which is the bigger number.
 | |
|             if ( a = xe - ye ) {
 | |
| 
 | |
|                 if ( xLTy = a < 0 ) {
 | |
|                     a = -a;
 | |
|                     t = xc;
 | |
|                 } else {
 | |
|                     ye = xe;
 | |
|                     t = yc;
 | |
|                 }
 | |
| 
 | |
|                 t.reverse();
 | |
| 
 | |
|                 // Prepend zeros to equalise exponents.
 | |
|                 for ( b = a; b--; t.push(0) );
 | |
|                 t.reverse();
 | |
|             } else {
 | |
| 
 | |
|                 // Exponents equal. Check digit by digit.
 | |
|                 j = ( xLTy = ( a = xc.length ) < ( b = yc.length ) ) ? a : b;
 | |
| 
 | |
|                 for ( a = b = 0; b < j; b++ ) {
 | |
| 
 | |
|                     if ( xc[b] != yc[b] ) {
 | |
|                         xLTy = xc[b] < yc[b];
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // x < y? Point xc to the array of the bigger number.
 | |
|             if (xLTy) t = xc, xc = yc, yc = t, y.s = -y.s;
 | |
| 
 | |
|             b = ( j = yc.length ) - ( i = xc.length );
 | |
| 
 | |
|             // Append zeros to xc if shorter.
 | |
|             // No need to add zeros to yc if shorter as subtract only needs to start at yc.length.
 | |
|             if ( b > 0 ) for ( ; b--; xc[i++] = 0 );
 | |
|             b = BASE - 1;
 | |
| 
 | |
|             // Subtract yc from xc.
 | |
|             for ( ; j > a; ) {
 | |
| 
 | |
|                 if ( xc[--j] < yc[j] ) {
 | |
|                     for ( i = j; i && !xc[--i]; xc[i] = b );
 | |
|                     --xc[i];
 | |
|                     xc[j] += BASE;
 | |
|                 }
 | |
| 
 | |
|                 xc[j] -= yc[j];
 | |
|             }
 | |
| 
 | |
|             // Remove leading zeros and adjust exponent accordingly.
 | |
|             for ( ; xc[0] == 0; xc.shift(), --ye );
 | |
| 
 | |
|             // Zero?
 | |
|             if ( !xc[0] ) {
 | |
| 
 | |
|                 // Following IEEE 754 (2008) 6.3,
 | |
|                 // n - n = +0  but  n - n = -0  when rounding towards -Infinity.
 | |
|                 y.s = ROUNDING_MODE == 3 ? -1 : 1;
 | |
|                 y.c = [ y.e = 0 ];
 | |
|                 return y;
 | |
|             }
 | |
| 
 | |
|             // No need to check for Infinity as +x - +y != Infinity && -x - -y != Infinity
 | |
|             // for finite x and y.
 | |
|             return normalise( y, xc, ye );
 | |
|         };
 | |
| 
 | |
| 
 | |
|         /*
 | |
|          *   n % 0 =  N
 | |
|          *   n % N =  N
 | |
|          *   n % I =  n
 | |
|          *   0 % n =  0
 | |
|          *  -0 % n = -0
 | |
|          *   0 % 0 =  N
 | |
|          *   0 % N =  N
 | |
|          *   0 % I =  0
 | |
|          *   N % n =  N
 | |
|          *   N % 0 =  N
 | |
|          *   N % N =  N
 | |
|          *   N % I =  N
 | |
|          *   I % n =  N
 | |
|          *   I % 0 =  N
 | |
|          *   I % N =  N
 | |
|          *   I % I =  N
 | |
|          *
 | |
|          * Return a new BigNumber whose value is the value of this BigNumber modulo the value of
 | |
|          * BigNumber(y, b). The result depends on the value of MODULO_MODE.
 | |
|          */
 | |
|         P.modulo = P.mod = function ( y, b ) {
 | |
|             var q, s,
 | |
|                 x = this;
 | |
| 
 | |
|             id = 11;
 | |
|             y = new BigNumber( y, b );
 | |
| 
 | |
|             // Return NaN if x is Infinity or NaN, or y is NaN or zero.
 | |
|             if ( !x.c || !y.s || y.c && !y.c[0] ) {
 | |
|                 return new BigNumber(NaN);
 | |
| 
 | |
|             // Return x if y is Infinity or x is zero.
 | |
|             } else if ( !y.c || x.c && !x.c[0] ) {
 | |
|                 return new BigNumber(x);
 | |
|             }
 | |
| 
 | |
|             if ( MODULO_MODE == 9 ) {
 | |
| 
 | |
|                 // Euclidian division: q = sign(y) * floor(x / abs(y))
 | |
|                 // r = x - qy    where  0 <= r < abs(y)
 | |
|                 s = y.s;
 | |
|                 y.s = 1;
 | |
|                 q = div( x, y, 0, 3 );
 | |
|                 y.s = s;
 | |
|                 q.s *= s;
 | |
|             } else {
 | |
|                 q = div( x, y, 0, MODULO_MODE );
 | |
|             }
 | |
| 
 | |
|             return x.minus( q.times(y) );
 | |
|         };
 | |
| 
 | |
| 
 | |
|         /*
 | |
|          * Return a new BigNumber whose value is the value of this BigNumber negated,
 | |
|          * i.e. multiplied by -1.
 | |
|          */
 | |
|         P.negated = P.neg = function () {
 | |
|             var x = new BigNumber(this);
 | |
|             x.s = -x.s || null;
 | |
|             return x;
 | |
|         };
 | |
| 
 | |
| 
 | |
|         /*
 | |
|          *  n + 0 = n
 | |
|          *  n + N = N
 | |
|          *  n + I = I
 | |
|          *  0 + n = n
 | |
|          *  0 + 0 = 0
 | |
|          *  0 + N = N
 | |
|          *  0 + I = I
 | |
|          *  N + n = N
 | |
|          *  N + 0 = N
 | |
|          *  N + N = N
 | |
|          *  N + I = N
 | |
|          *  I + n = I
 | |
|          *  I + 0 = I
 | |
|          *  I + N = N
 | |
|          *  I + I = I
 | |
|          *
 | |
|          * Return a new BigNumber whose value is the value of this BigNumber plus the value of
 | |
|          * BigNumber(y, b).
 | |
|          */
 | |
|         P.plus = P.add = function ( y, b ) {
 | |
|             var t,
 | |
|                 x = this,
 | |
|                 a = x.s;
 | |
| 
 | |
|             id = 12;
 | |
|             y = new BigNumber( y, b );
 | |
|             b = y.s;
 | |
| 
 | |
|             // Either NaN?
 | |
|             if ( !a || !b ) return new BigNumber(NaN);
 | |
| 
 | |
|             // Signs differ?
 | |
|              if ( a != b ) {
 | |
|                 y.s = -b;
 | |
|                 return x.minus(y);
 | |
|             }
 | |
| 
 | |
|             var xe = x.e / LOG_BASE,
 | |
|                 ye = y.e / LOG_BASE,
 | |
|                 xc = x.c,
 | |
|                 yc = y.c;
 | |
| 
 | |
|             if ( !xe || !ye ) {
 | |
| 
 | |
|                 // Return ±Infinity if either ±Infinity.
 | |
|                 if ( !xc || !yc ) return new BigNumber( a / 0 );
 | |
| 
 | |
|                 // Either zero?
 | |
|                 // Return y if y is non-zero, x if x is non-zero, or zero if both are zero.
 | |
|                 if ( !xc[0] || !yc[0] ) return yc[0] ? y : new BigNumber( xc[0] ? x : a * 0 );
 | |
|             }
 | |
| 
 | |
|             xe = bitFloor(xe);
 | |
|             ye = bitFloor(ye);
 | |
|             xc = xc.slice();
 | |
| 
 | |
|             // Prepend zeros to equalise exponents. Faster to use reverse then do unshifts.
 | |
|             if ( a = xe - ye ) {
 | |
|                 if ( a > 0 ) {
 | |
|                     ye = xe;
 | |
|                     t = yc;
 | |
|                 } else {
 | |
|                     a = -a;
 | |
|                     t = xc;
 | |
|                 }
 | |
| 
 | |
|                 t.reverse();
 | |
|                 for ( ; a--; t.push(0) );
 | |
|                 t.reverse();
 | |
|             }
 | |
| 
 | |
|             a = xc.length;
 | |
|             b = yc.length;
 | |
| 
 | |
|             // Point xc to the longer array, and b to the shorter length.
 | |
|             if ( a - b < 0 ) t = yc, yc = xc, xc = t, b = a;
 | |
| 
 | |
|             // Only start adding at yc.length - 1 as the further digits of xc can be ignored.
 | |
|             for ( a = 0; b; ) {
 | |
|                 a = ( xc[--b] = xc[b] + yc[b] + a ) / BASE | 0;
 | |
|                 xc[b] %= BASE;
 | |
|             }
 | |
| 
 | |
|             if (a) {
 | |
|                 xc.unshift(a);
 | |
|                 ++ye;
 | |
|             }
 | |
| 
 | |
|             // No need to check for zero, as +x + +y != 0 && -x + -y != 0
 | |
|             // ye = MAX_EXP + 1 possible
 | |
|             return normalise( y, xc, ye );
 | |
|         };
 | |
| 
 | |
| 
 | |
|         /*
 | |
|          * Return the number of significant digits of the value of this BigNumber.
 | |
|          *
 | |
|          * [z] {boolean|number} Whether to count integer-part trailing zeros: true, false, 1 or 0.
 | |
|          */
 | |
|         P.precision = P.sd = function (z) {
 | |
|             var n, v,
 | |
|                 x = this,
 | |
|                 c = x.c;
 | |
| 
 | |
|             // 'precision() argument not a boolean or binary digit: {z}'
 | |
|             if ( z != null && z !== !!z && z !== 1 && z !== 0 ) {
 | |
|                 if (ERRORS) raise( 13, 'argument' + notBool, z );
 | |
|                 if ( z != !!z ) z = null;
 | |
|             }
 | |
| 
 | |
|             if ( !c ) return null;
 | |
|             v = c.length - 1;
 | |
|             n = v * LOG_BASE + 1;
 | |
| 
 | |
|             if ( v = c[v] ) {
 | |
| 
 | |
|                 // Subtract the number of trailing zeros of the last element.
 | |
|                 for ( ; v % 10 == 0; v /= 10, n-- );
 | |
| 
 | |
|                 // Add the number of digits of the first element.
 | |
|                 for ( v = c[0]; v >= 10; v /= 10, n++ );
 | |
|             }
 | |
| 
 | |
|             if ( z && x.e + 1 > n ) n = x.e + 1;
 | |
| 
 | |
|             return n;
 | |
|         };
 | |
| 
 | |
| 
 | |
|         /*
 | |
|          * Return a new BigNumber whose value is the value of this BigNumber rounded to a maximum of
 | |
|          * dp decimal places using rounding mode rm, or to 0 and ROUNDING_MODE respectively if
 | |
|          * omitted.
 | |
|          *
 | |
|          * [dp] {number} Decimal places. Integer, 0 to MAX inclusive.
 | |
|          * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
 | |
|          *
 | |
|          * 'round() decimal places out of range: {dp}'
 | |
|          * 'round() decimal places not an integer: {dp}'
 | |
|          * 'round() rounding mode not an integer: {rm}'
 | |
|          * 'round() rounding mode out of range: {rm}'
 | |
|          */
 | |
|         P.round = function ( dp, rm ) {
 | |
|             var n = new BigNumber(this);
 | |
| 
 | |
|             if ( dp == null || isValidInt( dp, 0, MAX, 15 ) ) {
 | |
|                 round( n, ~~dp + this.e + 1, rm == null ||
 | |
|                   !isValidInt( rm, 0, 8, 15, roundingMode ) ? ROUNDING_MODE : rm | 0 );
 | |
|             }
 | |
| 
 | |
|             return n;
 | |
|         };
 | |
| 
 | |
| 
 | |
|         /*
 | |
|          * Return a new BigNumber whose value is the value of this BigNumber shifted by k places
 | |
|          * (powers of 10). Shift to the right if n > 0, and to the left if n < 0.
 | |
|          *
 | |
|          * k {number} Integer, -MAX_SAFE_INTEGER to MAX_SAFE_INTEGER inclusive.
 | |
|          *
 | |
|          * If k is out of range and ERRORS is false, the result will be ±0 if k < 0, or ±Infinity
 | |
|          * otherwise.
 | |
|          *
 | |
|          * 'shift() argument not an integer: {k}'
 | |
|          * 'shift() argument out of range: {k}'
 | |
|          */
 | |
|         P.shift = function (k) {
 | |
|             var n = this;
 | |
|             return isValidInt( k, -MAX_SAFE_INTEGER, MAX_SAFE_INTEGER, 16, 'argument' )
 | |
| 
 | |
|               // k < 1e+21, or truncate(k) will produce exponential notation.
 | |
|               ? n.times( '1e' + truncate(k) )
 | |
|               : new BigNumber( n.c && n.c[0] && ( k < -MAX_SAFE_INTEGER || k > MAX_SAFE_INTEGER )
 | |
|                 ? n.s * ( k < 0 ? 0 : 1 / 0 )
 | |
|                 : n );
 | |
|         };
 | |
| 
 | |
| 
 | |
|         /*
 | |
|          *  sqrt(-n) =  N
 | |
|          *  sqrt( N) =  N
 | |
|          *  sqrt(-I) =  N
 | |
|          *  sqrt( I) =  I
 | |
|          *  sqrt( 0) =  0
 | |
|          *  sqrt(-0) = -0
 | |
|          *
 | |
|          * Return a new BigNumber whose value is the square root of the value of this BigNumber,
 | |
|          * rounded according to DECIMAL_PLACES and ROUNDING_MODE.
 | |
|          */
 | |
|         P.squareRoot = P.sqrt = function () {
 | |
|             var m, n, r, rep, t,
 | |
|                 x = this,
 | |
|                 c = x.c,
 | |
|                 s = x.s,
 | |
|                 e = x.e,
 | |
|                 dp = DECIMAL_PLACES + 4,
 | |
|                 half = new BigNumber('0.5');
 | |
| 
 | |
|             // Negative/NaN/Infinity/zero?
 | |
|             if ( s !== 1 || !c || !c[0] ) {
 | |
|                 return new BigNumber( !s || s < 0 && ( !c || c[0] ) ? NaN : c ? x : 1 / 0 );
 | |
|             }
 | |
| 
 | |
|             // Initial estimate.
 | |
|             s = Math.sqrt( +x );
 | |
| 
 | |
|             // Math.sqrt underflow/overflow?
 | |
|             // Pass x to Math.sqrt as integer, then adjust the exponent of the result.
 | |
|             if ( s == 0 || s == 1 / 0 ) {
 | |
|                 n = coeffToString(c);
 | |
|                 if ( ( n.length + e ) % 2 == 0 ) n += '0';
 | |
|                 s = Math.sqrt(n);
 | |
|                 e = bitFloor( ( e + 1 ) / 2 ) - ( e < 0 || e % 2 );
 | |
| 
 | |
|                 if ( s == 1 / 0 ) {
 | |
|                     n = '1e' + e;
 | |
|                 } else {
 | |
|                     n = s.toExponential();
 | |
|                     n = n.slice( 0, n.indexOf('e') + 1 ) + e;
 | |
|                 }
 | |
| 
 | |
|                 r = new BigNumber(n);
 | |
|             } else {
 | |
|                 r = new BigNumber( s + '' );
 | |
|             }
 | |
| 
 | |
|             // Check for zero.
 | |
|             // r could be zero if MIN_EXP is changed after the this value was created.
 | |
|             // This would cause a division by zero (x/t) and hence Infinity below, which would cause
 | |
|             // coeffToString to throw.
 | |
|             if ( r.c[0] ) {
 | |
|                 e = r.e;
 | |
|                 s = e + dp;
 | |
|                 if ( s < 3 ) s = 0;
 | |
| 
 | |
|                 // Newton-Raphson iteration.
 | |
|                 for ( ; ; ) {
 | |
|                     t = r;
 | |
|                     r = half.times( t.plus( div( x, t, dp, 1 ) ) );
 | |
| 
 | |
|                     if ( coeffToString( t.c   ).slice( 0, s ) === ( n =
 | |
|                          coeffToString( r.c ) ).slice( 0, s ) ) {
 | |
| 
 | |
|                         // The exponent of r may here be one less than the final result exponent,
 | |
|                         // e.g 0.0009999 (e-4) --> 0.001 (e-3), so adjust s so the rounding digits
 | |
|                         // are indexed correctly.
 | |
|                         if ( r.e < e ) --s;
 | |
|                         n = n.slice( s - 3, s + 1 );
 | |
| 
 | |
|                         // The 4th rounding digit may be in error by -1 so if the 4 rounding digits
 | |
|                         // are 9999 or 4999 (i.e. approaching a rounding boundary) continue the
 | |
|                         // iteration.
 | |
|                         if ( n == '9999' || !rep && n == '4999' ) {
 | |
| 
 | |
|                             // On the first iteration only, check to see if rounding up gives the
 | |
|                             // exact result as the nines may infinitely repeat.
 | |
|                             if ( !rep ) {
 | |
|                                 round( t, t.e + DECIMAL_PLACES + 2, 0 );
 | |
| 
 | |
|                                 if ( t.times(t).eq(x) ) {
 | |
|                                     r = t;
 | |
|                                     break;
 | |
|                                 }
 | |
|                             }
 | |
| 
 | |
|                             dp += 4;
 | |
|                             s += 4;
 | |
|                             rep = 1;
 | |
|                         } else {
 | |
| 
 | |
|                             // If rounding digits are null, 0{0,4} or 50{0,3}, check for exact
 | |
|                             // result. If not, then there are further digits and m will be truthy.
 | |
|                             if ( !+n || !+n.slice(1) && n.charAt(0) == '5' ) {
 | |
| 
 | |
|                                 // Truncate to the first rounding digit.
 | |
|                                 round( r, r.e + DECIMAL_PLACES + 2, 1 );
 | |
|                                 m = !r.times(r).eq(x);
 | |
|                             }
 | |
| 
 | |
|                             break;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             return round( r, r.e + DECIMAL_PLACES + 1, ROUNDING_MODE, m );
 | |
|         };
 | |
| 
 | |
| 
 | |
|         /*
 | |
|          *  n * 0 = 0
 | |
|          *  n * N = N
 | |
|          *  n * I = I
 | |
|          *  0 * n = 0
 | |
|          *  0 * 0 = 0
 | |
|          *  0 * N = N
 | |
|          *  0 * I = N
 | |
|          *  N * n = N
 | |
|          *  N * 0 = N
 | |
|          *  N * N = N
 | |
|          *  N * I = N
 | |
|          *  I * n = I
 | |
|          *  I * 0 = N
 | |
|          *  I * N = N
 | |
|          *  I * I = I
 | |
|          *
 | |
|          * Return a new BigNumber whose value is the value of this BigNumber times the value of
 | |
|          * BigNumber(y, b).
 | |
|          */
 | |
|         P.times = P.mul = function ( y, b ) {
 | |
|             var c, e, i, j, k, m, xcL, xlo, xhi, ycL, ylo, yhi, zc,
 | |
|                 base, sqrtBase,
 | |
|                 x = this,
 | |
|                 xc = x.c,
 | |
|                 yc = ( id = 17, y = new BigNumber( y, b ) ).c;
 | |
| 
 | |
|             // Either NaN, ±Infinity or ±0?
 | |
|             if ( !xc || !yc || !xc[0] || !yc[0] ) {
 | |
| 
 | |
|                 // Return NaN if either is NaN, or one is 0 and the other is Infinity.
 | |
|                 if ( !x.s || !y.s || xc && !xc[0] && !yc || yc && !yc[0] && !xc ) {
 | |
|                     y.c = y.e = y.s = null;
 | |
|                 } else {
 | |
|                     y.s *= x.s;
 | |
| 
 | |
|                     // Return ±Infinity if either is ±Infinity.
 | |
|                     if ( !xc || !yc ) {
 | |
|                         y.c = y.e = null;
 | |
| 
 | |
|                     // Return ±0 if either is ±0.
 | |
|                     } else {
 | |
|                         y.c = [0];
 | |
|                         y.e = 0;
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 return y;
 | |
|             }
 | |
| 
 | |
|             e = bitFloor( x.e / LOG_BASE ) + bitFloor( y.e / LOG_BASE );
 | |
|             y.s *= x.s;
 | |
|             xcL = xc.length;
 | |
|             ycL = yc.length;
 | |
| 
 | |
|             // Ensure xc points to longer array and xcL to its length.
 | |
|             if ( xcL < ycL ) zc = xc, xc = yc, yc = zc, i = xcL, xcL = ycL, ycL = i;
 | |
| 
 | |
|             // Initialise the result array with zeros.
 | |
|             for ( i = xcL + ycL, zc = []; i--; zc.push(0) );
 | |
| 
 | |
|             base = BASE;
 | |
|             sqrtBase = SQRT_BASE;
 | |
| 
 | |
|             for ( i = ycL; --i >= 0; ) {
 | |
|                 c = 0;
 | |
|                 ylo = yc[i] % sqrtBase;
 | |
|                 yhi = yc[i] / sqrtBase | 0;
 | |
| 
 | |
|                 for ( k = xcL, j = i + k; j > i; ) {
 | |
|                     xlo = xc[--k] % sqrtBase;
 | |
|                     xhi = xc[k] / sqrtBase | 0;
 | |
|                     m = yhi * xlo + xhi * ylo;
 | |
|                     xlo = ylo * xlo + ( ( m % sqrtBase ) * sqrtBase ) + zc[j] + c;
 | |
|                     c = ( xlo / base | 0 ) + ( m / sqrtBase | 0 ) + yhi * xhi;
 | |
|                     zc[j--] = xlo % base;
 | |
|                 }
 | |
| 
 | |
|                 zc[j] = c;
 | |
|             }
 | |
| 
 | |
|             if (c) {
 | |
|                 ++e;
 | |
|             } else {
 | |
|                 zc.shift();
 | |
|             }
 | |
| 
 | |
|             return normalise( y, zc, e );
 | |
|         };
 | |
| 
 | |
| 
 | |
|         /*
 | |
|          * Return a new BigNumber whose value is the value of this BigNumber rounded to a maximum of
 | |
|          * sd significant digits using rounding mode rm, or ROUNDING_MODE if rm is omitted.
 | |
|          *
 | |
|          * [sd] {number} Significant digits. Integer, 1 to MAX inclusive.
 | |
|          * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
 | |
|          *
 | |
|          * 'toDigits() precision out of range: {sd}'
 | |
|          * 'toDigits() precision not an integer: {sd}'
 | |
|          * 'toDigits() rounding mode not an integer: {rm}'
 | |
|          * 'toDigits() rounding mode out of range: {rm}'
 | |
|          */
 | |
|         P.toDigits = function ( sd, rm ) {
 | |
|             var n = new BigNumber(this);
 | |
|             sd = sd == null || !isValidInt( sd, 1, MAX, 18, 'precision' ) ? null : sd | 0;
 | |
|             rm = rm == null || !isValidInt( rm, 0, 8, 18, roundingMode ) ? ROUNDING_MODE : rm | 0;
 | |
|             return sd ? round( n, sd, rm ) : n;
 | |
|         };
 | |
| 
 | |
| 
 | |
|         /*
 | |
|          * Return a string representing the value of this BigNumber in exponential notation and
 | |
|          * rounded using ROUNDING_MODE to dp fixed decimal places.
 | |
|          *
 | |
|          * [dp] {number} Decimal places. Integer, 0 to MAX inclusive.
 | |
|          * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
 | |
|          *
 | |
|          * 'toExponential() decimal places not an integer: {dp}'
 | |
|          * 'toExponential() decimal places out of range: {dp}'
 | |
|          * 'toExponential() rounding mode not an integer: {rm}'
 | |
|          * 'toExponential() rounding mode out of range: {rm}'
 | |
|          */
 | |
|         P.toExponential = function ( dp, rm ) {
 | |
|             return format( this,
 | |
|               dp != null && isValidInt( dp, 0, MAX, 19 ) ? ~~dp + 1 : null, rm, 19 );
 | |
|         };
 | |
| 
 | |
| 
 | |
|         /*
 | |
|          * Return a string representing the value of this BigNumber in fixed-point notation rounding
 | |
|          * to dp fixed decimal places using rounding mode rm, or ROUNDING_MODE if rm is omitted.
 | |
|          *
 | |
|          * Note: as with JavaScript's number type, (-0).toFixed(0) is '0',
 | |
|          * but e.g. (-0.00001).toFixed(0) is '-0'.
 | |
|          *
 | |
|          * [dp] {number} Decimal places. Integer, 0 to MAX inclusive.
 | |
|          * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
 | |
|          *
 | |
|          * 'toFixed() decimal places not an integer: {dp}'
 | |
|          * 'toFixed() decimal places out of range: {dp}'
 | |
|          * 'toFixed() rounding mode not an integer: {rm}'
 | |
|          * 'toFixed() rounding mode out of range: {rm}'
 | |
|          */
 | |
|         P.toFixed = function ( dp, rm ) {
 | |
|             return format( this, dp != null && isValidInt( dp, 0, MAX, 20 )
 | |
|               ? ~~dp + this.e + 1 : null, rm, 20 );
 | |
|         };
 | |
| 
 | |
| 
 | |
|         /*
 | |
|          * Return a string representing the value of this BigNumber in fixed-point notation rounded
 | |
|          * using rm or ROUNDING_MODE to dp decimal places, and formatted according to the properties
 | |
|          * of the FORMAT object (see BigNumber.config).
 | |
|          *
 | |
|          * FORMAT = {
 | |
|          *      decimalSeparator : '.',
 | |
|          *      groupSeparator : ',',
 | |
|          *      groupSize : 3,
 | |
|          *      secondaryGroupSize : 0,
 | |
|          *      fractionGroupSeparator : '\xA0',    // non-breaking space
 | |
|          *      fractionGroupSize : 0
 | |
|          * };
 | |
|          *
 | |
|          * [dp] {number} Decimal places. Integer, 0 to MAX inclusive.
 | |
|          * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
 | |
|          *
 | |
|          * 'toFormat() decimal places not an integer: {dp}'
 | |
|          * 'toFormat() decimal places out of range: {dp}'
 | |
|          * 'toFormat() rounding mode not an integer: {rm}'
 | |
|          * 'toFormat() rounding mode out of range: {rm}'
 | |
|          */
 | |
|         P.toFormat = function ( dp, rm ) {
 | |
|             var str = format( this, dp != null && isValidInt( dp, 0, MAX, 21 )
 | |
|               ? ~~dp + this.e + 1 : null, rm, 21 );
 | |
| 
 | |
|             if ( this.c ) {
 | |
|                 var i,
 | |
|                     arr = str.split('.'),
 | |
|                     g1 = +FORMAT.groupSize,
 | |
|                     g2 = +FORMAT.secondaryGroupSize,
 | |
|                     groupSeparator = FORMAT.groupSeparator,
 | |
|                     intPart = arr[0],
 | |
|                     fractionPart = arr[1],
 | |
|                     isNeg = this.s < 0,
 | |
|                     intDigits = isNeg ? intPart.slice(1) : intPart,
 | |
|                     len = intDigits.length;
 | |
| 
 | |
|                 if (g2) i = g1, g1 = g2, g2 = i, len -= i;
 | |
| 
 | |
|                 if ( g1 > 0 && len > 0 ) {
 | |
|                     i = len % g1 || g1;
 | |
|                     intPart = intDigits.substr( 0, i );
 | |
| 
 | |
|                     for ( ; i < len; i += g1 ) {
 | |
|                         intPart += groupSeparator + intDigits.substr( i, g1 );
 | |
|                     }
 | |
| 
 | |
|                     if ( g2 > 0 ) intPart += groupSeparator + intDigits.slice(i);
 | |
|                     if (isNeg) intPart = '-' + intPart;
 | |
|                 }
 | |
| 
 | |
|                 str = fractionPart
 | |
|                   ? intPart + FORMAT.decimalSeparator + ( ( g2 = +FORMAT.fractionGroupSize )
 | |
|                     ? fractionPart.replace( new RegExp( '\\d{' + g2 + '}\\B', 'g' ),
 | |
|                       '$&' + FORMAT.fractionGroupSeparator )
 | |
|                     : fractionPart )
 | |
|                   : intPart;
 | |
|             }
 | |
| 
 | |
|             return str;
 | |
|         };
 | |
| 
 | |
| 
 | |
|         /*
 | |
|          * Return a string array representing the value of this BigNumber as a simple fraction with
 | |
|          * an integer numerator and an integer denominator. The denominator will be a positive
 | |
|          * non-zero value less than or equal to the specified maximum denominator. If a maximum
 | |
|          * denominator is not specified, the denominator will be the lowest value necessary to
 | |
|          * represent the number exactly.
 | |
|          *
 | |
|          * [md] {number|string|BigNumber} Integer >= 1 and < Infinity. The maximum denominator.
 | |
|          *
 | |
|          * 'toFraction() max denominator not an integer: {md}'
 | |
|          * 'toFraction() max denominator out of range: {md}'
 | |
|          */
 | |
|         P.toFraction = function (md) {
 | |
|             var arr, d0, d2, e, exp, n, n0, q, s,
 | |
|                 k = ERRORS,
 | |
|                 x = this,
 | |
|                 xc = x.c,
 | |
|                 d = new BigNumber(ONE),
 | |
|                 n1 = d0 = new BigNumber(ONE),
 | |
|                 d1 = n0 = new BigNumber(ONE);
 | |
| 
 | |
|             if ( md != null ) {
 | |
|                 ERRORS = false;
 | |
|                 n = new BigNumber(md);
 | |
|                 ERRORS = k;
 | |
| 
 | |
|                 if ( !( k = n.isInt() ) || n.lt(ONE) ) {
 | |
| 
 | |
|                     if (ERRORS) {
 | |
|                         raise( 22,
 | |
|                           'max denominator ' + ( k ? 'out of range' : 'not an integer' ), md );
 | |
|                     }
 | |
| 
 | |
|                     // ERRORS is false:
 | |
|                     // If md is a finite non-integer >= 1, round it to an integer and use it.
 | |
|                     md = !k && n.c && round( n, n.e + 1, 1 ).gte(ONE) ? n : null;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if ( !xc ) return x.toString();
 | |
|             s = coeffToString(xc);
 | |
| 
 | |
|             // Determine initial denominator.
 | |
|             // d is a power of 10 and the minimum max denominator that specifies the value exactly.
 | |
|             e = d.e = s.length - x.e - 1;
 | |
|             d.c[0] = POWS_TEN[ ( exp = e % LOG_BASE ) < 0 ? LOG_BASE + exp : exp ];
 | |
|             md = !md || n.cmp(d) > 0 ? ( e > 0 ? d : n1 ) : n;
 | |
| 
 | |
|             exp = MAX_EXP;
 | |
|             MAX_EXP = 1 / 0;
 | |
|             n = new BigNumber(s);
 | |
| 
 | |
|             // n0 = d1 = 0
 | |
|             n0.c[0] = 0;
 | |
| 
 | |
|             for ( ; ; )  {
 | |
|                 q = div( n, d, 0, 1 );
 | |
|                 d2 = d0.plus( q.times(d1) );
 | |
|                 if ( d2.cmp(md) == 1 ) break;
 | |
|                 d0 = d1;
 | |
|                 d1 = d2;
 | |
|                 n1 = n0.plus( q.times( d2 = n1 ) );
 | |
|                 n0 = d2;
 | |
|                 d = n.minus( q.times( d2 = d ) );
 | |
|                 n = d2;
 | |
|             }
 | |
| 
 | |
|             d2 = div( md.minus(d0), d1, 0, 1 );
 | |
|             n0 = n0.plus( d2.times(n1) );
 | |
|             d0 = d0.plus( d2.times(d1) );
 | |
|             n0.s = n1.s = x.s;
 | |
|             e *= 2;
 | |
| 
 | |
|             // Determine which fraction is closer to x, n0/d0 or n1/d1
 | |
|             arr = div( n1, d1, e, ROUNDING_MODE ).minus(x).abs().cmp(
 | |
|                   div( n0, d0, e, ROUNDING_MODE ).minus(x).abs() ) < 1
 | |
|                     ? [ n1.toString(), d1.toString() ]
 | |
|                     : [ n0.toString(), d0.toString() ];
 | |
| 
 | |
|             MAX_EXP = exp;
 | |
|             return arr;
 | |
|         };
 | |
| 
 | |
| 
 | |
|         /*
 | |
|          * Return the value of this BigNumber converted to a number primitive.
 | |
|          */
 | |
|         P.toNumber = function () {
 | |
|             var x = this;
 | |
| 
 | |
|             // Ensure zero has correct sign.
 | |
|             return +x || ( x.s ? x.s * 0 : NaN );
 | |
|         };
 | |
| 
 | |
| 
 | |
|         /*
 | |
|          * Return a BigNumber whose value is the value of this BigNumber raised to the power n.
 | |
|          * If n is negative round according to DECIMAL_PLACES and ROUNDING_MODE.
 | |
|          * If POW_PRECISION is not 0, round to POW_PRECISION using ROUNDING_MODE.
 | |
|          *
 | |
|          * n {number} Integer, -9007199254740992 to 9007199254740992 inclusive.
 | |
|          * (Performs 54 loop iterations for n of 9007199254740992.)
 | |
|          *
 | |
|          * 'pow() exponent not an integer: {n}'
 | |
|          * 'pow() exponent out of range: {n}'
 | |
|          */
 | |
|         P.toPower = P.pow = function (n) {
 | |
|             var k, y,
 | |
|                 i = mathfloor( n < 0 ? -n : +n ),
 | |
|                 x = this;
 | |
| 
 | |
|             // Pass ±Infinity to Math.pow if exponent is out of range.
 | |
|             if ( !isValidInt( n, -MAX_SAFE_INTEGER, MAX_SAFE_INTEGER, 23, 'exponent' ) &&
 | |
|               ( !isFinite(n) || i > MAX_SAFE_INTEGER && ( n /= 0 ) ||
 | |
|                 parseFloat(n) != n && !( n = NaN ) ) ) {
 | |
|                 return new BigNumber( Math.pow( +x, n ) );
 | |
|             }
 | |
| 
 | |
|             // Truncating each coefficient array to a length of k after each multiplication equates
 | |
|             // to truncating significant digits to POW_PRECISION + [28, 41], i.e. there will be a
 | |
|             // minimum of 28 guard digits retained. (Using + 1.5 would give [9, 21] guard digits.)
 | |
|             k = POW_PRECISION ? mathceil( POW_PRECISION / LOG_BASE + 2 ) : 0;
 | |
|             y = new BigNumber(ONE);
 | |
| 
 | |
|             for ( ; ; ) {
 | |
| 
 | |
|                 if ( i % 2 ) {
 | |
|                     y = y.times(x);
 | |
|                     if ( !y.c ) break;
 | |
|                     if ( k && y.c.length > k ) y.c.length = k;
 | |
|                 }
 | |
| 
 | |
|                 i = mathfloor( i / 2 );
 | |
|                 if ( !i ) break;
 | |
| 
 | |
|                 x = x.times(x);
 | |
|                 if ( k && x.c && x.c.length > k ) x.c.length = k;
 | |
|             }
 | |
| 
 | |
|             if ( n < 0 ) y = ONE.div(y);
 | |
|             return k ? round( y, POW_PRECISION, ROUNDING_MODE ) : y;
 | |
|         };
 | |
| 
 | |
| 
 | |
|         /*
 | |
|          * Return a string representing the value of this BigNumber rounded to sd significant digits
 | |
|          * using rounding mode rm or ROUNDING_MODE. If sd is less than the number of digits
 | |
|          * necessary to represent the integer part of the value in fixed-point notation, then use
 | |
|          * exponential notation.
 | |
|          *
 | |
|          * [sd] {number} Significant digits. Integer, 1 to MAX inclusive.
 | |
|          * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
 | |
|          *
 | |
|          * 'toPrecision() precision not an integer: {sd}'
 | |
|          * 'toPrecision() precision out of range: {sd}'
 | |
|          * 'toPrecision() rounding mode not an integer: {rm}'
 | |
|          * 'toPrecision() rounding mode out of range: {rm}'
 | |
|          */
 | |
|         P.toPrecision = function ( sd, rm ) {
 | |
|             return format( this, sd != null && isValidInt( sd, 1, MAX, 24, 'precision' )
 | |
|               ? sd | 0 : null, rm, 24 );
 | |
|         };
 | |
| 
 | |
| 
 | |
|         /*
 | |
|          * Return a string representing the value of this BigNumber in base b, or base 10 if b is
 | |
|          * omitted. If a base is specified, including base 10, round according to DECIMAL_PLACES and
 | |
|          * ROUNDING_MODE. If a base is not specified, and this BigNumber has a positive exponent
 | |
|          * that is equal to or greater than TO_EXP_POS, or a negative exponent equal to or less than
 | |
|          * TO_EXP_NEG, return exponential notation.
 | |
|          *
 | |
|          * [b] {number} Integer, 2 to 64 inclusive.
 | |
|          *
 | |
|          * 'toString() base not an integer: {b}'
 | |
|          * 'toString() base out of range: {b}'
 | |
|          */
 | |
|         P.toString = function (b) {
 | |
|             var str,
 | |
|                 n = this,
 | |
|                 s = n.s,
 | |
|                 e = n.e;
 | |
| 
 | |
|             // Infinity or NaN?
 | |
|             if ( e === null ) {
 | |
| 
 | |
|                 if (s) {
 | |
|                     str = 'Infinity';
 | |
|                     if ( s < 0 ) str = '-' + str;
 | |
|                 } else {
 | |
|                     str = 'NaN';
 | |
|                 }
 | |
|             } else {
 | |
|                 str = coeffToString( n.c );
 | |
| 
 | |
|                 if ( b == null || !isValidInt( b, 2, 64, 25, 'base' ) ) {
 | |
|                     str = e <= TO_EXP_NEG || e >= TO_EXP_POS
 | |
|                       ? toExponential( str, e )
 | |
|                       : toFixedPoint( str, e );
 | |
|                 } else {
 | |
|                     str = convertBase( toFixedPoint( str, e ), b | 0, 10, s );
 | |
|                 }
 | |
| 
 | |
|                 if ( s < 0 && n.c[0] ) str = '-' + str;
 | |
|             }
 | |
| 
 | |
|             return str;
 | |
|         };
 | |
| 
 | |
| 
 | |
|         /*
 | |
|          * Return a new BigNumber whose value is the value of this BigNumber truncated to a whole
 | |
|          * number.
 | |
|          */
 | |
|         P.truncated = P.trunc = function () {
 | |
|             return round( new BigNumber(this), this.e + 1, 1 );
 | |
|         };
 | |
| 
 | |
| 
 | |
| 
 | |
|         /*
 | |
|          * Return as toString, but do not accept a base argument.
 | |
|          */
 | |
|         P.valueOf = P.toJSON = function () {
 | |
|             return this.toString();
 | |
|         };
 | |
| 
 | |
| 
 | |
|         // Aliases for BigDecimal methods.
 | |
|         //P.add = P.plus;         // P.add included above
 | |
|         //P.subtract = P.minus;   // P.sub included above
 | |
|         //P.multiply = P.times;   // P.mul included above
 | |
|         //P.divide = P.div;
 | |
|         //P.remainder = P.mod;
 | |
|         //P.compareTo = P.cmp;
 | |
|         //P.negate = P.neg;
 | |
| 
 | |
| 
 | |
|         if ( configObj != null ) BigNumber.config(configObj);
 | |
| 
 | |
|         return BigNumber;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     // PRIVATE HELPER FUNCTIONS
 | |
| 
 | |
| 
 | |
|     function bitFloor(n) {
 | |
|         var i = n | 0;
 | |
|         return n > 0 || n === i ? i : i - 1;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     // Return a coefficient array as a string of base 10 digits.
 | |
|     function coeffToString(a) {
 | |
|         var s, z,
 | |
|             i = 1,
 | |
|             j = a.length,
 | |
|             r = a[0] + '';
 | |
| 
 | |
|         for ( ; i < j; ) {
 | |
|             s = a[i++] + '';
 | |
|             z = LOG_BASE - s.length;
 | |
|             for ( ; z--; s = '0' + s );
 | |
|             r += s;
 | |
|         }
 | |
| 
 | |
|         // Determine trailing zeros.
 | |
|         for ( j = r.length; r.charCodeAt(--j) === 48; );
 | |
|         return r.slice( 0, j + 1 || 1 );
 | |
|     }
 | |
| 
 | |
| 
 | |
|     // Compare the value of BigNumbers x and y.
 | |
|     function compare( x, y ) {
 | |
|         var a, b,
 | |
|             xc = x.c,
 | |
|             yc = y.c,
 | |
|             i = x.s,
 | |
|             j = y.s,
 | |
|             k = x.e,
 | |
|             l = y.e;
 | |
| 
 | |
|         // Either NaN?
 | |
|         if ( !i || !j ) return null;
 | |
| 
 | |
|         a = xc && !xc[0];
 | |
|         b = yc && !yc[0];
 | |
| 
 | |
|         // Either zero?
 | |
|         if ( a || b ) return a ? b ? 0 : -j : i;
 | |
| 
 | |
|         // Signs differ?
 | |
|         if ( i != j ) return i;
 | |
| 
 | |
|         a = i < 0;
 | |
|         b = k == l;
 | |
| 
 | |
|         // Either Infinity?
 | |
|         if ( !xc || !yc ) return b ? 0 : !xc ^ a ? 1 : -1;
 | |
| 
 | |
|         // Compare exponents.
 | |
|         if ( !b ) return k > l ^ a ? 1 : -1;
 | |
| 
 | |
|         j = ( k = xc.length ) < ( l = yc.length ) ? k : l;
 | |
| 
 | |
|         // Compare digit by digit.
 | |
|         for ( i = 0; i < j; i++ ) if ( xc[i] != yc[i] ) return xc[i] > yc[i] ^ a ? 1 : -1;
 | |
| 
 | |
|         // Compare lengths.
 | |
|         return k == l ? 0 : k > l ^ a ? 1 : -1;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      * Return true if n is a valid number in range, otherwise false.
 | |
|      * Use for argument validation when ERRORS is false.
 | |
|      * Note: parseInt('1e+1') == 1 but parseFloat('1e+1') == 10.
 | |
|      */
 | |
|     function intValidatorNoErrors( n, min, max ) {
 | |
|         return ( n = truncate(n) ) >= min && n <= max;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     function isArray(obj) {
 | |
|         return Object.prototype.toString.call(obj) == '[object Array]';
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      * Convert string of baseIn to an array of numbers of baseOut.
 | |
|      * Eg. convertBase('255', 10, 16) returns [15, 15].
 | |
|      * Eg. convertBase('ff', 16, 10) returns [2, 5, 5].
 | |
|      */
 | |
|     function toBaseOut( str, baseIn, baseOut ) {
 | |
|         var j,
 | |
|             arr = [0],
 | |
|             arrL,
 | |
|             i = 0,
 | |
|             len = str.length;
 | |
| 
 | |
|         for ( ; i < len; ) {
 | |
|             for ( arrL = arr.length; arrL--; arr[arrL] *= baseIn );
 | |
|             arr[ j = 0 ] += ALPHABET.indexOf( str.charAt( i++ ) );
 | |
| 
 | |
|             for ( ; j < arr.length; j++ ) {
 | |
| 
 | |
|                 if ( arr[j] > baseOut - 1 ) {
 | |
|                     if ( arr[j + 1] == null ) arr[j + 1] = 0;
 | |
|                     arr[j + 1] += arr[j] / baseOut | 0;
 | |
|                     arr[j] %= baseOut;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         return arr.reverse();
 | |
|     }
 | |
| 
 | |
| 
 | |
|     function toExponential( str, e ) {
 | |
|         return ( str.length > 1 ? str.charAt(0) + '.' + str.slice(1) : str ) +
 | |
|           ( e < 0 ? 'e' : 'e+' ) + e;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     function toFixedPoint( str, e ) {
 | |
|         var len, z;
 | |
| 
 | |
|         // Negative exponent?
 | |
|         if ( e < 0 ) {
 | |
| 
 | |
|             // Prepend zeros.
 | |
|             for ( z = '0.'; ++e; z += '0' );
 | |
|             str = z + str;
 | |
| 
 | |
|         // Positive exponent
 | |
|         } else {
 | |
|             len = str.length;
 | |
| 
 | |
|             // Append zeros.
 | |
|             if ( ++e > len ) {
 | |
|                 for ( z = '0', e -= len; --e; z += '0' );
 | |
|                 str += z;
 | |
|             } else if ( e < len ) {
 | |
|                 str = str.slice( 0, e ) + '.' + str.slice(e);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         return str;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     function truncate(n) {
 | |
|         n = parseFloat(n);
 | |
|         return n < 0 ? mathceil(n) : mathfloor(n);
 | |
|     }
 | |
| 
 | |
| 
 | |
|     // EXPORT
 | |
| 
 | |
| 
 | |
|     BigNumber = another();
 | |
| 
 | |
|     // AMD.
 | |
|     if ( typeof define == 'function' && define.amd ) {
 | |
|         define( function () { return BigNumber; } );
 | |
| 
 | |
|     // Node and other environments that support module.exports.
 | |
|     } else if ( typeof module != 'undefined' && module.exports ) {
 | |
|         module.exports = BigNumber;
 | |
|         if ( !crypto ) try { crypto = require('crypto'); } catch (e) {}
 | |
| 
 | |
|     // Browser.
 | |
|     } else {
 | |
|         global.BigNumber = BigNumber;
 | |
|     }
 | |
| })(this);
 | |
| 
 | |
| },{"crypto":1}],"natspec":[function(require,module,exports){
 | |
| /*
 | |
|     This file is part of natspec.js.
 | |
| 
 | |
|     natspec.js is free software: you can redistribute it and/or modify
 | |
|     it under the terms of the GNU Lesser General Public License as published by
 | |
|     the Free Software Foundation, either version 3 of the License, or
 | |
|     (at your option) any later version.
 | |
| 
 | |
|     natspec.js is distributed in the hope that it will be useful,
 | |
|     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|     GNU Lesser General Public License for more details.
 | |
| 
 | |
|     You should have received a copy of the GNU Lesser General Public License
 | |
|     along with natspec.js.  If not, see <http://www.gnu.org/licenses/>.
 | |
| */
 | |
| /** @file natspec.js
 | |
|  * @authors:
 | |
|  *   Marek Kotewicz <marek@ethdev.com>
 | |
|  * @date 2015
 | |
|  */
 | |
| 
 | |
| var abi = require('./node_modules/ethereum.js/lib/abi.js');
 | |
| 
 | |
| /**
 | |
|  * This object should be used to evaluate natspec expression
 | |
|  * It has one method evaluateExpression which shoul be used
 | |
|  */
 | |
| var natspec = (function () {
 | |
|     /// Helper method
 | |
|     /// Should be called to copy values from object to global context
 | |
|     var copyToContext = function (obj, context) {
 | |
|         Object.keys(obj).forEach(function (key) {
 | |
|             context[key] = obj[key];
 | |
|         });
 | |
|     }
 | |
| 
 | |
|     /// generate codes, which will be evaluated
 | |
|     var generateCode = function (obj) {
 | |
|         return Object.keys(obj).reduce(function (acc, key) {
 | |
|             return acc + "var " + key + " = context['" + key + "'];\n";
 | |
|         }, "");
 | |
|     };
 | |
| 
 | |
|     /// Helper method
 | |
|     /// Should be called to get method with given name from the abi
 | |
|     /// @param contract's abi
 | |
|     /// @param name of the method that we are looking for
 | |
|     var getMethodWithName = function(abi, name) {
 | |
|         return abi.filter(function (method) {
 | |
|             return method.name === name;
 | |
|         })[0];
 | |
|     };
 | |
| 
 | |
|     /// Function called to get all contract method input variables
 | |
|     /// @returns hashmap with all contract's method input variables
 | |
|     var getMethodInputParams = function (method, transaction) {
 | |
|         // do it with output formatter (cause we have to decode)
 | |
|         var params = abi.formatOutput(method.inputs, '0x' + transaction.params[0].data.slice(10));
 | |
| 
 | |
|         return method.inputs.reduce(function (acc, current, index) {
 | |
|             acc[current.name] = params[index];
 | |
|             return acc;
 | |
|         }, {});
 | |
|     };
 | |
| 
 | |
|     /// Should be called to evaluate expression
 | |
|     var mapExpressionsToEvaluate = function (expression, cb) {
 | |
|         var evaluatedExpression = "";
 | |
| 
 | |
|         // match everything in backtick
 | |
|         var pattern = /\` + "`" + `(?:\\.|[^` + "`" + `\\])*\` + "`" + `/gim
 | |
|         var match;
 | |
|         var lastIndex = 0;
 | |
|         while ((match = pattern.exec(expression)) !== null) {
 | |
|             var startIndex = pattern.lastIndex - match[0].length;
 | |
|             var toEval = match[0].slice(1, match[0].length - 1);
 | |
|             evaluatedExpression += expression.slice(lastIndex, startIndex);
 | |
|             var evaluatedPart = cb(toEval);
 | |
|             evaluatedExpression += evaluatedPart;
 | |
|             lastIndex = pattern.lastIndex;
 | |
|         }
 | |
| 
 | |
|         evaluatedExpression += expression.slice(lastIndex);
 | |
| 
 | |
|         return evaluatedExpression;
 | |
|     };
 | |
| 
 | |
|     /// Should be called to evaluate single expression
 | |
|     /// Is internally using javascript's 'eval' method
 | |
|     /// @param expression which should be evaluated
 | |
|     /// @param [call] object containing contract abi, transaction, called method
 | |
|     /// TODO: separate evaluation from getting input params, so as not to spoil 'evaluateExpression' function
 | |
|     var evaluateExpression = function (expression, call) {
 | |
|         //var self = this;
 | |
|         var context = {};
 | |
| 
 | |
|         if (!!call) {
 | |
|             try {
 | |
|                 var method = getMethodWithName(call.abi, call.method);
 | |
|                 var params = getMethodInputParams(method, call.transaction);
 | |
|                 copyToContext(params, context);
 | |
|             }
 | |
|             catch (err) {
 | |
|                 return "Natspec evaluation failed, wrong input params";
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         var code = generateCode(context);
 | |
| 
 | |
|         var evaluatedExpression = mapExpressionsToEvaluate(expression, function (toEval) {
 | |
|             try {
 | |
|                 var fn = new Function("context", code + "return " + toEval + ";");
 | |
|                 return fn(context).toString();
 | |
|             }
 | |
|             catch (err) {
 | |
|                 return 'undefined';
 | |
|             }
 | |
|         });
 | |
| 
 | |
|         return evaluatedExpression;
 | |
|     };
 | |
| 
 | |
|     return {
 | |
|         evaluateExpression: evaluateExpression
 | |
|     };
 | |
| 
 | |
| })();
 | |
| 
 | |
| module.exports = natspec;
 | |
| 
 | |
| 
 | |
| },{"./node_modules/ethereum.js/lib/abi.js":3}]},{},[]);
 | |
| `
 |