156 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			156 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright 2014 The go-ethereum Authors
 | |
| // This file is part of the go-ethereum library.
 | |
| //
 | |
| // The go-ethereum library is free software: you can redistribute it and/or modify
 | |
| // it under the terms of the GNU Lesser General Public License as published by
 | |
| // the Free Software Foundation, either version 3 of the License, or
 | |
| // (at your option) any later version.
 | |
| //
 | |
| // The go-ethereum library is distributed in the hope that it will be useful,
 | |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 | |
| // GNU Lesser General Public License for more details.
 | |
| //
 | |
| // You should have received a copy of the GNU Lesser General Public License
 | |
| // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
 | |
| 
 | |
| package trie
 | |
| 
 | |
| // Trie keys are dealt with in three distinct encodings:
 | |
| //
 | |
| // KEYBYTES encoding contains the actual key and nothing else. This encoding is the
 | |
| // input to most API functions.
 | |
| //
 | |
| // HEX encoding contains one byte for each nibble of the key and an optional trailing
 | |
| // 'terminator' byte of value 0x10 which indicates whether or not the node at the key
 | |
| // contains a value. Hex key encoding is used for nodes loaded in memory because it's
 | |
| // convenient to access.
 | |
| //
 | |
| // COMPACT encoding is defined by the Ethereum Yellow Paper (it's called "hex prefix
 | |
| // encoding" there) and contains the bytes of the key and a flag. The high nibble of the
 | |
| // first byte contains the flag; the lowest bit encoding the oddness of the length and
 | |
| // the second-lowest encoding whether the node at the key is a value node. The low nibble
 | |
| // of the first byte is zero in the case of an even number of nibbles and the first nibble
 | |
| // in the case of an odd number. All remaining nibbles (now an even number) fit properly
 | |
| // into the remaining bytes. Compact encoding is used for nodes stored on disk.
 | |
| 
 | |
| // HexToCompact converts a hex path to the compact encoded format
 | |
| func HexToCompact(hex []byte) []byte {
 | |
| 	return hexToCompact(hex)
 | |
| }
 | |
| 
 | |
| func hexToCompact(hex []byte) []byte {
 | |
| 	terminator := byte(0)
 | |
| 	if hasTerm(hex) {
 | |
| 		terminator = 1
 | |
| 		hex = hex[:len(hex)-1]
 | |
| 	}
 | |
| 	buf := make([]byte, len(hex)/2+1)
 | |
| 	buf[0] = terminator << 5 // the flag byte
 | |
| 	if len(hex)&1 == 1 {
 | |
| 		buf[0] |= 1 << 4 // odd flag
 | |
| 		buf[0] |= hex[0] // first nibble is contained in the first byte
 | |
| 		hex = hex[1:]
 | |
| 	}
 | |
| 	decodeNibbles(hex, buf[1:])
 | |
| 	return buf
 | |
| }
 | |
| 
 | |
| // hexToCompactInPlace places the compact key in input buffer, returning the length
 | |
| // needed for the representation
 | |
| func hexToCompactInPlace(hex []byte) int {
 | |
| 	var (
 | |
| 		hexLen    = len(hex) // length of the hex input
 | |
| 		firstByte = byte(0)
 | |
| 	)
 | |
| 	// Check if we have a terminator there
 | |
| 	if hexLen > 0 && hex[hexLen-1] == 16 {
 | |
| 		firstByte = 1 << 5
 | |
| 		hexLen-- // last part was the terminator, ignore that
 | |
| 	}
 | |
| 	var (
 | |
| 		binLen = hexLen/2 + 1
 | |
| 		ni     = 0 // index in hex
 | |
| 		bi     = 1 // index in bin (compact)
 | |
| 	)
 | |
| 	if hexLen&1 == 1 {
 | |
| 		firstByte |= 1 << 4 // odd flag
 | |
| 		firstByte |= hex[0] // first nibble is contained in the first byte
 | |
| 		ni++
 | |
| 	}
 | |
| 	for ; ni < hexLen; bi, ni = bi+1, ni+2 {
 | |
| 		hex[bi] = hex[ni]<<4 | hex[ni+1]
 | |
| 	}
 | |
| 	hex[0] = firstByte
 | |
| 	return binLen
 | |
| }
 | |
| 
 | |
| // CompactToHex converts a compact encoded path to hex format
 | |
| func CompactToHex(compact []byte) []byte {
 | |
| 	return compactToHex(compact)
 | |
| }
 | |
| 
 | |
| func compactToHex(compact []byte) []byte {
 | |
| 	if len(compact) == 0 {
 | |
| 		return compact
 | |
| 	}
 | |
| 	base := keybytesToHex(compact)
 | |
| 	// delete terminator flag
 | |
| 	if base[0] < 2 {
 | |
| 		base = base[:len(base)-1]
 | |
| 	}
 | |
| 	// apply odd flag
 | |
| 	chop := 2 - base[0]&1
 | |
| 	return base[chop:]
 | |
| }
 | |
| 
 | |
| func keybytesToHex(str []byte) []byte {
 | |
| 	l := len(str)*2 + 1
 | |
| 	var nibbles = make([]byte, l)
 | |
| 	for i, b := range str {
 | |
| 		nibbles[i*2] = b / 16
 | |
| 		nibbles[i*2+1] = b % 16
 | |
| 	}
 | |
| 	nibbles[l-1] = 16
 | |
| 	return nibbles
 | |
| }
 | |
| 
 | |
| // hexToKeyBytes turns hex nibbles into key bytes.
 | |
| // This can only be used for keys of even length.
 | |
| func hexToKeyBytes(hex []byte) []byte {
 | |
| 	if hasTerm(hex) {
 | |
| 		hex = hex[:len(hex)-1]
 | |
| 	}
 | |
| 	if len(hex)&1 != 0 {
 | |
| 		panic("can't convert hex key of odd length")
 | |
| 	}
 | |
| 	key := make([]byte, len(hex)/2)
 | |
| 	decodeNibbles(hex, key)
 | |
| 	return key
 | |
| }
 | |
| 
 | |
| func decodeNibbles(nibbles []byte, bytes []byte) {
 | |
| 	for bi, ni := 0, 0; ni < len(nibbles); bi, ni = bi+1, ni+2 {
 | |
| 		bytes[bi] = nibbles[ni]<<4 | nibbles[ni+1]
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // prefixLen returns the length of the common prefix of a and b.
 | |
| func prefixLen(a, b []byte) int {
 | |
| 	var i, length = 0, len(a)
 | |
| 	if len(b) < length {
 | |
| 		length = len(b)
 | |
| 	}
 | |
| 	for ; i < length; i++ {
 | |
| 		if a[i] != b[i] {
 | |
| 			break
 | |
| 		}
 | |
| 	}
 | |
| 	return i
 | |
| }
 | |
| 
 | |
| // hasTerm returns whether a hex key has the terminator flag.
 | |
| func hasTerm(s []byte) bool {
 | |
| 	return len(s) > 0 && s[len(s)-1] == 16
 | |
| }
 |