281 lines
		
	
	
		
			7.4 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			281 lines
		
	
	
		
			7.4 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Package discover implements the Node Discovery Protocol.
 | |
| //
 | |
| // The Node Discovery protocol provides a way to find RLPx nodes that
 | |
| // can be connected to. It uses a Kademlia-like protocol to maintain a
 | |
| // distributed database of the IDs and endpoints of all listening
 | |
| // nodes.
 | |
| package discover
 | |
| 
 | |
| import (
 | |
| 	"net"
 | |
| 	"sort"
 | |
| 	"sync"
 | |
| 	"time"
 | |
| )
 | |
| 
 | |
| const (
 | |
| 	alpha      = 3              // Kademlia concurrency factor
 | |
| 	bucketSize = 16             // Kademlia bucket size
 | |
| 	nBuckets   = nodeIDBits + 1 // Number of buckets
 | |
| )
 | |
| 
 | |
| type Table struct {
 | |
| 	mutex   sync.Mutex        // protects buckets, their content, and nursery
 | |
| 	buckets [nBuckets]*bucket // index of known nodes by distance
 | |
| 	nursery []*Node           // bootstrap nodes
 | |
| 
 | |
| 	net  transport
 | |
| 	self *Node // metadata of the local node
 | |
| }
 | |
| 
 | |
| // transport is implemented by the UDP transport.
 | |
| // it is an interface so we can test without opening lots of UDP
 | |
| // sockets and without generating a private key.
 | |
| type transport interface {
 | |
| 	ping(*Node) error
 | |
| 	findnode(e *Node, target NodeID) ([]*Node, error)
 | |
| 	close()
 | |
| }
 | |
| 
 | |
| // bucket contains nodes, ordered by their last activity.
 | |
| type bucket struct {
 | |
| 	lastLookup time.Time
 | |
| 	entries    []*Node
 | |
| }
 | |
| 
 | |
| func newTable(t transport, ourID NodeID, ourAddr *net.UDPAddr) *Table {
 | |
| 	tab := &Table{net: t, self: newNode(ourID, ourAddr)}
 | |
| 	for i := range tab.buckets {
 | |
| 		tab.buckets[i] = new(bucket)
 | |
| 	}
 | |
| 	return tab
 | |
| }
 | |
| 
 | |
| // Self returns the local node ID.
 | |
| func (tab *Table) Self() NodeID {
 | |
| 	return tab.self.ID
 | |
| }
 | |
| 
 | |
| // Close terminates the network listener.
 | |
| func (tab *Table) Close() {
 | |
| 	tab.net.close()
 | |
| }
 | |
| 
 | |
| // Bootstrap sets the bootstrap nodes. These nodes are used to connect
 | |
| // to the network if the table is empty. Bootstrap will also attempt to
 | |
| // fill the table by performing random lookup operations on the
 | |
| // network.
 | |
| func (tab *Table) Bootstrap(nodes []*Node) {
 | |
| 	tab.mutex.Lock()
 | |
| 	// TODO: maybe filter nodes with bad fields (nil, etc.) to avoid strange crashes
 | |
| 	tab.nursery = make([]*Node, 0, len(nodes))
 | |
| 	for _, n := range nodes {
 | |
| 		cpy := *n
 | |
| 		tab.nursery = append(tab.nursery, &cpy)
 | |
| 	}
 | |
| 	tab.mutex.Unlock()
 | |
| 	tab.refresh()
 | |
| }
 | |
| 
 | |
| // Lookup performs a network search for nodes close
 | |
| // to the given target. It approaches the target by querying
 | |
| // nodes that are closer to it on each iteration.
 | |
| func (tab *Table) Lookup(target NodeID) []*Node {
 | |
| 	var (
 | |
| 		asked          = make(map[NodeID]bool)
 | |
| 		seen           = make(map[NodeID]bool)
 | |
| 		reply          = make(chan []*Node, alpha)
 | |
| 		pendingQueries = 0
 | |
| 	)
 | |
| 	// don't query further if we hit the target or ourself.
 | |
| 	// unlikely to happen often in practice.
 | |
| 	asked[target] = true
 | |
| 	asked[tab.self.ID] = true
 | |
| 
 | |
| 	tab.mutex.Lock()
 | |
| 	// update last lookup stamp (for refresh logic)
 | |
| 	tab.buckets[logdist(tab.self.ID, target)].lastLookup = time.Now()
 | |
| 	// generate initial result set
 | |
| 	result := tab.closest(target, bucketSize)
 | |
| 	tab.mutex.Unlock()
 | |
| 
 | |
| 	for {
 | |
| 		// ask the alpha closest nodes that we haven't asked yet
 | |
| 		for i := 0; i < len(result.entries) && pendingQueries < alpha; i++ {
 | |
| 			n := result.entries[i]
 | |
| 			if !asked[n.ID] {
 | |
| 				asked[n.ID] = true
 | |
| 				pendingQueries++
 | |
| 				go func() {
 | |
| 					result, _ := tab.net.findnode(n, target)
 | |
| 					reply <- result
 | |
| 				}()
 | |
| 			}
 | |
| 		}
 | |
| 		if pendingQueries == 0 {
 | |
| 			// we have asked all closest nodes, stop the search
 | |
| 			break
 | |
| 		}
 | |
| 
 | |
| 		// wait for the next reply
 | |
| 		for _, n := range <-reply {
 | |
| 			cn := n
 | |
| 			if !seen[n.ID] {
 | |
| 				seen[n.ID] = true
 | |
| 				result.push(cn, bucketSize)
 | |
| 			}
 | |
| 		}
 | |
| 		pendingQueries--
 | |
| 	}
 | |
| 	return result.entries
 | |
| }
 | |
| 
 | |
| // refresh performs a lookup for a random target to keep buckets full.
 | |
| func (tab *Table) refresh() {
 | |
| 	ld := -1 // logdist of chosen bucket
 | |
| 	tab.mutex.Lock()
 | |
| 	for i, b := range tab.buckets {
 | |
| 		if i > 0 && b.lastLookup.Before(time.Now().Add(-1*time.Hour)) {
 | |
| 			ld = i
 | |
| 			break
 | |
| 		}
 | |
| 	}
 | |
| 	tab.mutex.Unlock()
 | |
| 
 | |
| 	result := tab.Lookup(randomID(tab.self.ID, ld))
 | |
| 	if len(result) == 0 {
 | |
| 		// bootstrap the table with a self lookup
 | |
| 		tab.mutex.Lock()
 | |
| 		tab.add(tab.nursery)
 | |
| 		tab.mutex.Unlock()
 | |
| 		tab.Lookup(tab.self.ID)
 | |
| 		// TODO: the Kademlia paper says that we're supposed to perform
 | |
| 		// random lookups in all buckets further away than our closest neighbor.
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // closest returns the n nodes in the table that are closest to the
 | |
| // given id. The caller must hold tab.mutex.
 | |
| func (tab *Table) closest(target NodeID, nresults int) *nodesByDistance {
 | |
| 	// This is a very wasteful way to find the closest nodes but
 | |
| 	// obviously correct. I believe that tree-based buckets would make
 | |
| 	// this easier to implement efficiently.
 | |
| 	close := &nodesByDistance{target: target}
 | |
| 	for _, b := range tab.buckets {
 | |
| 		for _, n := range b.entries {
 | |
| 			close.push(n, nresults)
 | |
| 		}
 | |
| 	}
 | |
| 	return close
 | |
| }
 | |
| 
 | |
| func (tab *Table) len() (n int) {
 | |
| 	for _, b := range tab.buckets {
 | |
| 		n += len(b.entries)
 | |
| 	}
 | |
| 	return n
 | |
| }
 | |
| 
 | |
| // bumpOrAdd updates the activity timestamp for the given node and
 | |
| // attempts to insert the node into a bucket. The returned Node might
 | |
| // not be part of the table. The caller must hold tab.mutex.
 | |
| func (tab *Table) bumpOrAdd(node NodeID, from *net.UDPAddr) (n *Node) {
 | |
| 	b := tab.buckets[logdist(tab.self.ID, node)]
 | |
| 	if n = b.bump(node); n == nil {
 | |
| 		n = newNode(node, from)
 | |
| 		if len(b.entries) == bucketSize {
 | |
| 			tab.pingReplace(n, b)
 | |
| 		} else {
 | |
| 			b.entries = append(b.entries, n)
 | |
| 		}
 | |
| 	}
 | |
| 	return n
 | |
| }
 | |
| 
 | |
| func (tab *Table) pingReplace(n *Node, b *bucket) {
 | |
| 	old := b.entries[bucketSize-1]
 | |
| 	go func() {
 | |
| 		if err := tab.net.ping(old); err == nil {
 | |
| 			// it responded, we don't need to replace it.
 | |
| 			return
 | |
| 		}
 | |
| 		// it didn't respond, replace the node if it is still the oldest node.
 | |
| 		tab.mutex.Lock()
 | |
| 		if len(b.entries) > 0 && b.entries[len(b.entries)-1] == old {
 | |
| 			// slide down other entries and put the new one in front.
 | |
| 			// TODO: insert in correct position to keep the order
 | |
| 			copy(b.entries[1:], b.entries)
 | |
| 			b.entries[0] = n
 | |
| 		}
 | |
| 		tab.mutex.Unlock()
 | |
| 	}()
 | |
| }
 | |
| 
 | |
| // bump updates the activity timestamp for the given node.
 | |
| // The caller must hold tab.mutex.
 | |
| func (tab *Table) bump(node NodeID) {
 | |
| 	tab.buckets[logdist(tab.self.ID, node)].bump(node)
 | |
| }
 | |
| 
 | |
| // add puts the entries into the table if their corresponding
 | |
| // bucket is not full. The caller must hold tab.mutex.
 | |
| func (tab *Table) add(entries []*Node) {
 | |
| outer:
 | |
| 	for _, n := range entries {
 | |
| 		if n == nil || n.ID == tab.self.ID {
 | |
| 			// skip bad entries. The RLP decoder returns nil for empty
 | |
| 			// input lists.
 | |
| 			continue
 | |
| 		}
 | |
| 		bucket := tab.buckets[logdist(tab.self.ID, n.ID)]
 | |
| 		for i := range bucket.entries {
 | |
| 			if bucket.entries[i].ID == n.ID {
 | |
| 				// already in bucket
 | |
| 				continue outer
 | |
| 			}
 | |
| 		}
 | |
| 		if len(bucket.entries) < bucketSize {
 | |
| 			bucket.entries = append(bucket.entries, n)
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (b *bucket) bump(id NodeID) *Node {
 | |
| 	for i, n := range b.entries {
 | |
| 		if n.ID == id {
 | |
| 			n.active = time.Now()
 | |
| 			// move it to the front
 | |
| 			copy(b.entries[1:], b.entries[:i+1])
 | |
| 			b.entries[0] = n
 | |
| 			return n
 | |
| 		}
 | |
| 	}
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| // nodesByDistance is a list of nodes, ordered by
 | |
| // distance to target.
 | |
| type nodesByDistance struct {
 | |
| 	entries []*Node
 | |
| 	target  NodeID
 | |
| }
 | |
| 
 | |
| // push adds the given node to the list, keeping the total size below maxElems.
 | |
| func (h *nodesByDistance) push(n *Node, maxElems int) {
 | |
| 	ix := sort.Search(len(h.entries), func(i int) bool {
 | |
| 		return distcmp(h.target, h.entries[i].ID, n.ID) > 0
 | |
| 	})
 | |
| 	if len(h.entries) < maxElems {
 | |
| 		h.entries = append(h.entries, n)
 | |
| 	}
 | |
| 	if ix == len(h.entries) {
 | |
| 		// farther away than all nodes we already have.
 | |
| 		// if there was room for it, the node is now the last element.
 | |
| 	} else {
 | |
| 		// slide existing entries down to make room
 | |
| 		// this will overwrite the entry we just appended.
 | |
| 		copy(h.entries[ix+1:], h.entries[ix:])
 | |
| 		h.entries[ix] = n
 | |
| 	}
 | |
| }
 |