636 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			636 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright 2016 The go-ethereum Authors
 | |
| // This file is part of the go-ethereum library.
 | |
| //
 | |
| // The go-ethereum library is free software: you can redistribute it and/or modify
 | |
| // it under the terms of the GNU Lesser General Public License as published by
 | |
| // the Free Software Foundation, either version 3 of the License, or
 | |
| // (at your option) any later version.
 | |
| //
 | |
| // The go-ethereum library is distributed in the hope that it will be useful,
 | |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 | |
| // GNU Lesser General Public License for more details.
 | |
| //
 | |
| // You should have received a copy of the GNU Lesser General Public License
 | |
| // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
 | |
| 
 | |
| package core
 | |
| 
 | |
| import (
 | |
| 	"container/heap"
 | |
| 	"math"
 | |
| 	"math/big"
 | |
| 	"sort"
 | |
| 	"sync"
 | |
| 	"sync/atomic"
 | |
| 	"time"
 | |
| 
 | |
| 	"github.com/ethereum/go-ethereum/common"
 | |
| 	"github.com/ethereum/go-ethereum/core/types"
 | |
| )
 | |
| 
 | |
| // nonceHeap is a heap.Interface implementation over 64bit unsigned integers for
 | |
| // retrieving sorted transactions from the possibly gapped future queue.
 | |
| type nonceHeap []uint64
 | |
| 
 | |
| func (h nonceHeap) Len() int           { return len(h) }
 | |
| func (h nonceHeap) Less(i, j int) bool { return h[i] < h[j] }
 | |
| func (h nonceHeap) Swap(i, j int)      { h[i], h[j] = h[j], h[i] }
 | |
| 
 | |
| func (h *nonceHeap) Push(x interface{}) {
 | |
| 	*h = append(*h, x.(uint64))
 | |
| }
 | |
| 
 | |
| func (h *nonceHeap) Pop() interface{} {
 | |
| 	old := *h
 | |
| 	n := len(old)
 | |
| 	x := old[n-1]
 | |
| 	*h = old[0 : n-1]
 | |
| 	return x
 | |
| }
 | |
| 
 | |
| // txSortedMap is a nonce->transaction hash map with a heap based index to allow
 | |
| // iterating over the contents in a nonce-incrementing way.
 | |
| type txSortedMap struct {
 | |
| 	items map[uint64]*types.Transaction // Hash map storing the transaction data
 | |
| 	index *nonceHeap                    // Heap of nonces of all the stored transactions (non-strict mode)
 | |
| 	cache types.Transactions            // Cache of the transactions already sorted
 | |
| }
 | |
| 
 | |
| // newTxSortedMap creates a new nonce-sorted transaction map.
 | |
| func newTxSortedMap() *txSortedMap {
 | |
| 	return &txSortedMap{
 | |
| 		items: make(map[uint64]*types.Transaction),
 | |
| 		index: new(nonceHeap),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Get retrieves the current transactions associated with the given nonce.
 | |
| func (m *txSortedMap) Get(nonce uint64) *types.Transaction {
 | |
| 	return m.items[nonce]
 | |
| }
 | |
| 
 | |
| // Put inserts a new transaction into the map, also updating the map's nonce
 | |
| // index. If a transaction already exists with the same nonce, it's overwritten.
 | |
| func (m *txSortedMap) Put(tx *types.Transaction) {
 | |
| 	nonce := tx.Nonce()
 | |
| 	if m.items[nonce] == nil {
 | |
| 		heap.Push(m.index, nonce)
 | |
| 	}
 | |
| 	m.items[nonce], m.cache = tx, nil
 | |
| }
 | |
| 
 | |
| // Forward removes all transactions from the map with a nonce lower than the
 | |
| // provided threshold. Every removed transaction is returned for any post-removal
 | |
| // maintenance.
 | |
| func (m *txSortedMap) Forward(threshold uint64) types.Transactions {
 | |
| 	var removed types.Transactions
 | |
| 
 | |
| 	// Pop off heap items until the threshold is reached
 | |
| 	for m.index.Len() > 0 && (*m.index)[0] < threshold {
 | |
| 		nonce := heap.Pop(m.index).(uint64)
 | |
| 		removed = append(removed, m.items[nonce])
 | |
| 		delete(m.items, nonce)
 | |
| 	}
 | |
| 	// If we had a cached order, shift the front
 | |
| 	if m.cache != nil {
 | |
| 		m.cache = m.cache[len(removed):]
 | |
| 	}
 | |
| 	return removed
 | |
| }
 | |
| 
 | |
| // Filter iterates over the list of transactions and removes all of them for which
 | |
| // the specified function evaluates to true.
 | |
| // Filter, as opposed to 'filter', re-initialises the heap after the operation is done.
 | |
| // If you want to do several consecutive filterings, it's therefore better to first
 | |
| // do a .filter(func1) followed by .Filter(func2) or reheap()
 | |
| func (m *txSortedMap) Filter(filter func(*types.Transaction) bool) types.Transactions {
 | |
| 	removed := m.filter(filter)
 | |
| 	// If transactions were removed, the heap and cache are ruined
 | |
| 	if len(removed) > 0 {
 | |
| 		m.reheap()
 | |
| 	}
 | |
| 	return removed
 | |
| }
 | |
| 
 | |
| func (m *txSortedMap) reheap() {
 | |
| 	*m.index = make([]uint64, 0, len(m.items))
 | |
| 	for nonce := range m.items {
 | |
| 		*m.index = append(*m.index, nonce)
 | |
| 	}
 | |
| 	heap.Init(m.index)
 | |
| 	m.cache = nil
 | |
| }
 | |
| 
 | |
| // filter is identical to Filter, but **does not** regenerate the heap. This method
 | |
| // should only be used if followed immediately by a call to Filter or reheap()
 | |
| func (m *txSortedMap) filter(filter func(*types.Transaction) bool) types.Transactions {
 | |
| 	var removed types.Transactions
 | |
| 
 | |
| 	// Collect all the transactions to filter out
 | |
| 	for nonce, tx := range m.items {
 | |
| 		if filter(tx) {
 | |
| 			removed = append(removed, tx)
 | |
| 			delete(m.items, nonce)
 | |
| 		}
 | |
| 	}
 | |
| 	if len(removed) > 0 {
 | |
| 		m.cache = nil
 | |
| 	}
 | |
| 	return removed
 | |
| }
 | |
| 
 | |
| // Cap places a hard limit on the number of items, returning all transactions
 | |
| // exceeding that limit.
 | |
| func (m *txSortedMap) Cap(threshold int) types.Transactions {
 | |
| 	// Short circuit if the number of items is under the limit
 | |
| 	if len(m.items) <= threshold {
 | |
| 		return nil
 | |
| 	}
 | |
| 	// Otherwise gather and drop the highest nonce'd transactions
 | |
| 	var drops types.Transactions
 | |
| 
 | |
| 	sort.Sort(*m.index)
 | |
| 	for size := len(m.items); size > threshold; size-- {
 | |
| 		drops = append(drops, m.items[(*m.index)[size-1]])
 | |
| 		delete(m.items, (*m.index)[size-1])
 | |
| 	}
 | |
| 	*m.index = (*m.index)[:threshold]
 | |
| 	heap.Init(m.index)
 | |
| 
 | |
| 	// If we had a cache, shift the back
 | |
| 	if m.cache != nil {
 | |
| 		m.cache = m.cache[:len(m.cache)-len(drops)]
 | |
| 	}
 | |
| 	return drops
 | |
| }
 | |
| 
 | |
| // Remove deletes a transaction from the maintained map, returning whether the
 | |
| // transaction was found.
 | |
| func (m *txSortedMap) Remove(nonce uint64) bool {
 | |
| 	// Short circuit if no transaction is present
 | |
| 	_, ok := m.items[nonce]
 | |
| 	if !ok {
 | |
| 		return false
 | |
| 	}
 | |
| 	// Otherwise delete the transaction and fix the heap index
 | |
| 	for i := 0; i < m.index.Len(); i++ {
 | |
| 		if (*m.index)[i] == nonce {
 | |
| 			heap.Remove(m.index, i)
 | |
| 			break
 | |
| 		}
 | |
| 	}
 | |
| 	delete(m.items, nonce)
 | |
| 	m.cache = nil
 | |
| 
 | |
| 	return true
 | |
| }
 | |
| 
 | |
| // Ready retrieves a sequentially increasing list of transactions starting at the
 | |
| // provided nonce that is ready for processing. The returned transactions will be
 | |
| // removed from the list.
 | |
| //
 | |
| // Note, all transactions with nonces lower than start will also be returned to
 | |
| // prevent getting into and invalid state. This is not something that should ever
 | |
| // happen but better to be self correcting than failing!
 | |
| func (m *txSortedMap) Ready(start uint64) types.Transactions {
 | |
| 	// Short circuit if no transactions are available
 | |
| 	if m.index.Len() == 0 || (*m.index)[0] > start {
 | |
| 		return nil
 | |
| 	}
 | |
| 	// Otherwise start accumulating incremental transactions
 | |
| 	var ready types.Transactions
 | |
| 	for next := (*m.index)[0]; m.index.Len() > 0 && (*m.index)[0] == next; next++ {
 | |
| 		ready = append(ready, m.items[next])
 | |
| 		delete(m.items, next)
 | |
| 		heap.Pop(m.index)
 | |
| 	}
 | |
| 	m.cache = nil
 | |
| 
 | |
| 	return ready
 | |
| }
 | |
| 
 | |
| // Len returns the length of the transaction map.
 | |
| func (m *txSortedMap) Len() int {
 | |
| 	return len(m.items)
 | |
| }
 | |
| 
 | |
| func (m *txSortedMap) flatten() types.Transactions {
 | |
| 	// If the sorting was not cached yet, create and cache it
 | |
| 	if m.cache == nil {
 | |
| 		m.cache = make(types.Transactions, 0, len(m.items))
 | |
| 		for _, tx := range m.items {
 | |
| 			m.cache = append(m.cache, tx)
 | |
| 		}
 | |
| 		sort.Sort(types.TxByNonce(m.cache))
 | |
| 	}
 | |
| 	return m.cache
 | |
| }
 | |
| 
 | |
| // Flatten creates a nonce-sorted slice of transactions based on the loosely
 | |
| // sorted internal representation. The result of the sorting is cached in case
 | |
| // it's requested again before any modifications are made to the contents.
 | |
| func (m *txSortedMap) Flatten() types.Transactions {
 | |
| 	// Copy the cache to prevent accidental modifications
 | |
| 	cache := m.flatten()
 | |
| 	txs := make(types.Transactions, len(cache))
 | |
| 	copy(txs, cache)
 | |
| 	return txs
 | |
| }
 | |
| 
 | |
| // LastElement returns the last element of a flattened list, thus, the
 | |
| // transaction with the highest nonce
 | |
| func (m *txSortedMap) LastElement() *types.Transaction {
 | |
| 	cache := m.flatten()
 | |
| 	return cache[len(cache)-1]
 | |
| }
 | |
| 
 | |
| // txList is a "list" of transactions belonging to an account, sorted by account
 | |
| // nonce. The same type can be used both for storing contiguous transactions for
 | |
| // the executable/pending queue; and for storing gapped transactions for the non-
 | |
| // executable/future queue, with minor behavioral changes.
 | |
| type txList struct {
 | |
| 	strict bool         // Whether nonces are strictly continuous or not
 | |
| 	txs    *txSortedMap // Heap indexed sorted hash map of the transactions
 | |
| 
 | |
| 	costcap *big.Int // Price of the highest costing transaction (reset only if exceeds balance)
 | |
| 	gascap  uint64   // Gas limit of the highest spending transaction (reset only if exceeds block limit)
 | |
| }
 | |
| 
 | |
| // newTxList create a new transaction list for maintaining nonce-indexable fast,
 | |
| // gapped, sortable transaction lists.
 | |
| func newTxList(strict bool) *txList {
 | |
| 	return &txList{
 | |
| 		strict:  strict,
 | |
| 		txs:     newTxSortedMap(),
 | |
| 		costcap: new(big.Int),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Overlaps returns whether the transaction specified has the same nonce as one
 | |
| // already contained within the list.
 | |
| func (l *txList) Overlaps(tx *types.Transaction) bool {
 | |
| 	return l.txs.Get(tx.Nonce()) != nil
 | |
| }
 | |
| 
 | |
| // Add tries to insert a new transaction into the list, returning whether the
 | |
| // transaction was accepted, and if yes, any previous transaction it replaced.
 | |
| //
 | |
| // If the new transaction is accepted into the list, the lists' cost and gas
 | |
| // thresholds are also potentially updated.
 | |
| func (l *txList) Add(tx *types.Transaction, priceBump uint64) (bool, *types.Transaction) {
 | |
| 	// If there's an older better transaction, abort
 | |
| 	old := l.txs.Get(tx.Nonce())
 | |
| 	if old != nil {
 | |
| 		if old.GasFeeCapCmp(tx) >= 0 || old.GasTipCapCmp(tx) >= 0 {
 | |
| 			return false, nil
 | |
| 		}
 | |
| 		// thresholdFeeCap = oldFC  * (100 + priceBump) / 100
 | |
| 		a := big.NewInt(100 + int64(priceBump))
 | |
| 		aFeeCap := new(big.Int).Mul(a, old.GasFeeCap())
 | |
| 		aTip := a.Mul(a, old.GasTipCap())
 | |
| 
 | |
| 		// thresholdTip    = oldTip * (100 + priceBump) / 100
 | |
| 		b := big.NewInt(100)
 | |
| 		thresholdFeeCap := aFeeCap.Div(aFeeCap, b)
 | |
| 		thresholdTip := aTip.Div(aTip, b)
 | |
| 
 | |
| 		// Have to ensure that either the new fee cap or tip is higher than the
 | |
| 		// old ones as well as checking the percentage threshold to ensure that
 | |
| 		// this is accurate for low (Wei-level) gas price replacements
 | |
| 		if tx.GasFeeCapIntCmp(thresholdFeeCap) < 0 || tx.GasTipCapIntCmp(thresholdTip) < 0 {
 | |
| 			return false, nil
 | |
| 		}
 | |
| 	}
 | |
| 	// Otherwise overwrite the old transaction with the current one
 | |
| 	l.txs.Put(tx)
 | |
| 	if cost := tx.Cost(); l.costcap.Cmp(cost) < 0 {
 | |
| 		l.costcap = cost
 | |
| 	}
 | |
| 	if gas := tx.Gas(); l.gascap < gas {
 | |
| 		l.gascap = gas
 | |
| 	}
 | |
| 	return true, old
 | |
| }
 | |
| 
 | |
| // Forward removes all transactions from the list with a nonce lower than the
 | |
| // provided threshold. Every removed transaction is returned for any post-removal
 | |
| // maintenance.
 | |
| func (l *txList) Forward(threshold uint64) types.Transactions {
 | |
| 	return l.txs.Forward(threshold)
 | |
| }
 | |
| 
 | |
| // Filter removes all transactions from the list with a cost or gas limit higher
 | |
| // than the provided thresholds. Every removed transaction is returned for any
 | |
| // post-removal maintenance. Strict-mode invalidated transactions are also
 | |
| // returned.
 | |
| //
 | |
| // This method uses the cached costcap and gascap to quickly decide if there's even
 | |
| // a point in calculating all the costs or if the balance covers all. If the threshold
 | |
| // is lower than the costgas cap, the caps will be reset to a new high after removing
 | |
| // the newly invalidated transactions.
 | |
| func (l *txList) Filter(costLimit *big.Int, gasLimit uint64) (types.Transactions, types.Transactions) {
 | |
| 	// If all transactions are below the threshold, short circuit
 | |
| 	if l.costcap.Cmp(costLimit) <= 0 && l.gascap <= gasLimit {
 | |
| 		return nil, nil
 | |
| 	}
 | |
| 	l.costcap = new(big.Int).Set(costLimit) // Lower the caps to the thresholds
 | |
| 	l.gascap = gasLimit
 | |
| 
 | |
| 	// Filter out all the transactions above the account's funds
 | |
| 	removed := l.txs.Filter(func(tx *types.Transaction) bool {
 | |
| 		return tx.Gas() > gasLimit || tx.Cost().Cmp(costLimit) > 0
 | |
| 	})
 | |
| 
 | |
| 	if len(removed) == 0 {
 | |
| 		return nil, nil
 | |
| 	}
 | |
| 	var invalids types.Transactions
 | |
| 	// If the list was strict, filter anything above the lowest nonce
 | |
| 	if l.strict {
 | |
| 		lowest := uint64(math.MaxUint64)
 | |
| 		for _, tx := range removed {
 | |
| 			if nonce := tx.Nonce(); lowest > nonce {
 | |
| 				lowest = nonce
 | |
| 			}
 | |
| 		}
 | |
| 		invalids = l.txs.filter(func(tx *types.Transaction) bool { return tx.Nonce() > lowest })
 | |
| 	}
 | |
| 	l.txs.reheap()
 | |
| 	return removed, invalids
 | |
| }
 | |
| 
 | |
| // Cap places a hard limit on the number of items, returning all transactions
 | |
| // exceeding that limit.
 | |
| func (l *txList) Cap(threshold int) types.Transactions {
 | |
| 	return l.txs.Cap(threshold)
 | |
| }
 | |
| 
 | |
| // Remove deletes a transaction from the maintained list, returning whether the
 | |
| // transaction was found, and also returning any transaction invalidated due to
 | |
| // the deletion (strict mode only).
 | |
| func (l *txList) Remove(tx *types.Transaction) (bool, types.Transactions) {
 | |
| 	// Remove the transaction from the set
 | |
| 	nonce := tx.Nonce()
 | |
| 	if removed := l.txs.Remove(nonce); !removed {
 | |
| 		return false, nil
 | |
| 	}
 | |
| 	// In strict mode, filter out non-executable transactions
 | |
| 	if l.strict {
 | |
| 		return true, l.txs.Filter(func(tx *types.Transaction) bool { return tx.Nonce() > nonce })
 | |
| 	}
 | |
| 	return true, nil
 | |
| }
 | |
| 
 | |
| // Ready retrieves a sequentially increasing list of transactions starting at the
 | |
| // provided nonce that is ready for processing. The returned transactions will be
 | |
| // removed from the list.
 | |
| //
 | |
| // Note, all transactions with nonces lower than start will also be returned to
 | |
| // prevent getting into and invalid state. This is not something that should ever
 | |
| // happen but better to be self correcting than failing!
 | |
| func (l *txList) Ready(start uint64) types.Transactions {
 | |
| 	return l.txs.Ready(start)
 | |
| }
 | |
| 
 | |
| // Len returns the length of the transaction list.
 | |
| func (l *txList) Len() int {
 | |
| 	return l.txs.Len()
 | |
| }
 | |
| 
 | |
| // Empty returns whether the list of transactions is empty or not.
 | |
| func (l *txList) Empty() bool {
 | |
| 	return l.Len() == 0
 | |
| }
 | |
| 
 | |
| // Flatten creates a nonce-sorted slice of transactions based on the loosely
 | |
| // sorted internal representation. The result of the sorting is cached in case
 | |
| // it's requested again before any modifications are made to the contents.
 | |
| func (l *txList) Flatten() types.Transactions {
 | |
| 	return l.txs.Flatten()
 | |
| }
 | |
| 
 | |
| // LastElement returns the last element of a flattened list, thus, the
 | |
| // transaction with the highest nonce
 | |
| func (l *txList) LastElement() *types.Transaction {
 | |
| 	return l.txs.LastElement()
 | |
| }
 | |
| 
 | |
| // priceHeap is a heap.Interface implementation over transactions for retrieving
 | |
| // price-sorted transactions to discard when the pool fills up. If baseFee is set
 | |
| // then the heap is sorted based on the effective tip based on the given base fee.
 | |
| // If baseFee is nil then the sorting is based on gasFeeCap.
 | |
| type priceHeap struct {
 | |
| 	baseFee *big.Int // heap should always be re-sorted after baseFee is changed
 | |
| 	list    []*types.Transaction
 | |
| }
 | |
| 
 | |
| func (h *priceHeap) Len() int      { return len(h.list) }
 | |
| func (h *priceHeap) Swap(i, j int) { h.list[i], h.list[j] = h.list[j], h.list[i] }
 | |
| 
 | |
| func (h *priceHeap) Less(i, j int) bool {
 | |
| 	switch h.cmp(h.list[i], h.list[j]) {
 | |
| 	case -1:
 | |
| 		return true
 | |
| 	case 1:
 | |
| 		return false
 | |
| 	default:
 | |
| 		return h.list[i].Nonce() > h.list[j].Nonce()
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (h *priceHeap) cmp(a, b *types.Transaction) int {
 | |
| 	if h.baseFee != nil {
 | |
| 		// Compare effective tips if baseFee is specified
 | |
| 		if c := a.EffectiveGasTipCmp(b, h.baseFee); c != 0 {
 | |
| 			return c
 | |
| 		}
 | |
| 	}
 | |
| 	// Compare fee caps if baseFee is not specified or effective tips are equal
 | |
| 	if c := a.GasFeeCapCmp(b); c != 0 {
 | |
| 		return c
 | |
| 	}
 | |
| 	// Compare tips if effective tips and fee caps are equal
 | |
| 	return a.GasTipCapCmp(b)
 | |
| }
 | |
| 
 | |
| func (h *priceHeap) Push(x interface{}) {
 | |
| 	tx := x.(*types.Transaction)
 | |
| 	h.list = append(h.list, tx)
 | |
| }
 | |
| 
 | |
| func (h *priceHeap) Pop() interface{} {
 | |
| 	old := h.list
 | |
| 	n := len(old)
 | |
| 	x := old[n-1]
 | |
| 	old[n-1] = nil
 | |
| 	h.list = old[0 : n-1]
 | |
| 	return x
 | |
| }
 | |
| 
 | |
| // txPricedList is a price-sorted heap to allow operating on transactions pool
 | |
| // contents in a price-incrementing way. It's built opon the all transactions
 | |
| // in txpool but only interested in the remote part. It means only remote transactions
 | |
| // will be considered for tracking, sorting, eviction, etc.
 | |
| //
 | |
| // Two heaps are used for sorting: the urgent heap (based on effective tip in the next
 | |
| // block) and the floating heap (based on gasFeeCap). Always the bigger heap is chosen for
 | |
| // eviction. Transactions evicted from the urgent heap are first demoted into the floating heap.
 | |
| // In some cases (during a congestion, when blocks are full) the urgent heap can provide
 | |
| // better candidates for inclusion while in other cases (at the top of the baseFee peak)
 | |
| // the floating heap is better. When baseFee is decreasing they behave similarly.
 | |
| type txPricedList struct {
 | |
| 	// Number of stale price points to (re-heap trigger).
 | |
| 	// This field is accessed atomically, and must be the first field
 | |
| 	// to ensure it has correct alignment for atomic.AddInt64.
 | |
| 	// See https://golang.org/pkg/sync/atomic/#pkg-note-BUG.
 | |
| 	stales int64
 | |
| 
 | |
| 	all              *txLookup  // Pointer to the map of all transactions
 | |
| 	urgent, floating priceHeap  // Heaps of prices of all the stored **remote** transactions
 | |
| 	reheapMu         sync.Mutex // Mutex asserts that only one routine is reheaping the list
 | |
| }
 | |
| 
 | |
| const (
 | |
| 	// urgentRatio : floatingRatio is the capacity ratio of the two queues
 | |
| 	urgentRatio   = 4
 | |
| 	floatingRatio = 1
 | |
| )
 | |
| 
 | |
| // newTxPricedList creates a new price-sorted transaction heap.
 | |
| func newTxPricedList(all *txLookup) *txPricedList {
 | |
| 	return &txPricedList{
 | |
| 		all: all,
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Put inserts a new transaction into the heap.
 | |
| func (l *txPricedList) Put(tx *types.Transaction, local bool) {
 | |
| 	if local {
 | |
| 		return
 | |
| 	}
 | |
| 	// Insert every new transaction to the urgent heap first; Discard will balance the heaps
 | |
| 	heap.Push(&l.urgent, tx)
 | |
| }
 | |
| 
 | |
| // Removed notifies the prices transaction list that an old transaction dropped
 | |
| // from the pool. The list will just keep a counter of stale objects and update
 | |
| // the heap if a large enough ratio of transactions go stale.
 | |
| func (l *txPricedList) Removed(count int) {
 | |
| 	// Bump the stale counter, but exit if still too low (< 25%)
 | |
| 	stales := atomic.AddInt64(&l.stales, int64(count))
 | |
| 	if int(stales) <= (len(l.urgent.list)+len(l.floating.list))/4 {
 | |
| 		return
 | |
| 	}
 | |
| 	// Seems we've reached a critical number of stale transactions, reheap
 | |
| 	l.Reheap()
 | |
| }
 | |
| 
 | |
| // Underpriced checks whether a transaction is cheaper than (or as cheap as) the
 | |
| // lowest priced (remote) transaction currently being tracked.
 | |
| func (l *txPricedList) Underpriced(tx *types.Transaction) bool {
 | |
| 	// Note: with two queues, being underpriced is defined as being worse than the worst item
 | |
| 	// in all non-empty queues if there is any. If both queues are empty then nothing is underpriced.
 | |
| 	return (l.underpricedFor(&l.urgent, tx) || len(l.urgent.list) == 0) &&
 | |
| 		(l.underpricedFor(&l.floating, tx) || len(l.floating.list) == 0) &&
 | |
| 		(len(l.urgent.list) != 0 || len(l.floating.list) != 0)
 | |
| }
 | |
| 
 | |
| // underpricedFor checks whether a transaction is cheaper than (or as cheap as) the
 | |
| // lowest priced (remote) transaction in the given heap.
 | |
| func (l *txPricedList) underpricedFor(h *priceHeap, tx *types.Transaction) bool {
 | |
| 	// Discard stale price points if found at the heap start
 | |
| 	for len(h.list) > 0 {
 | |
| 		head := h.list[0]
 | |
| 		if l.all.GetRemote(head.Hash()) == nil { // Removed or migrated
 | |
| 			atomic.AddInt64(&l.stales, -1)
 | |
| 			heap.Pop(h)
 | |
| 			continue
 | |
| 		}
 | |
| 		break
 | |
| 	}
 | |
| 	// Check if the transaction is underpriced or not
 | |
| 	if len(h.list) == 0 {
 | |
| 		return false // There is no remote transaction at all.
 | |
| 	}
 | |
| 	// If the remote transaction is even cheaper than the
 | |
| 	// cheapest one tracked locally, reject it.
 | |
| 	return h.cmp(h.list[0], tx) >= 0
 | |
| }
 | |
| 
 | |
| // Discard finds a number of most underpriced transactions, removes them from the
 | |
| // priced list and returns them for further removal from the entire pool.
 | |
| //
 | |
| // Note local transaction won't be considered for eviction.
 | |
| func (l *txPricedList) Discard(slots int, force bool) (types.Transactions, bool) {
 | |
| 	drop := make(types.Transactions, 0, slots) // Remote underpriced transactions to drop
 | |
| 	for slots > 0 {
 | |
| 		if len(l.urgent.list)*floatingRatio > len(l.floating.list)*urgentRatio || floatingRatio == 0 {
 | |
| 			// Discard stale transactions if found during cleanup
 | |
| 			tx := heap.Pop(&l.urgent).(*types.Transaction)
 | |
| 			if l.all.GetRemote(tx.Hash()) == nil { // Removed or migrated
 | |
| 				atomic.AddInt64(&l.stales, -1)
 | |
| 				continue
 | |
| 			}
 | |
| 			// Non stale transaction found, move to floating heap
 | |
| 			heap.Push(&l.floating, tx)
 | |
| 		} else {
 | |
| 			if len(l.floating.list) == 0 {
 | |
| 				// Stop if both heaps are empty
 | |
| 				break
 | |
| 			}
 | |
| 			// Discard stale transactions if found during cleanup
 | |
| 			tx := heap.Pop(&l.floating).(*types.Transaction)
 | |
| 			if l.all.GetRemote(tx.Hash()) == nil { // Removed or migrated
 | |
| 				atomic.AddInt64(&l.stales, -1)
 | |
| 				continue
 | |
| 			}
 | |
| 			// Non stale transaction found, discard it
 | |
| 			drop = append(drop, tx)
 | |
| 			slots -= numSlots(tx)
 | |
| 		}
 | |
| 	}
 | |
| 	// If we still can't make enough room for the new transaction
 | |
| 	if slots > 0 && !force {
 | |
| 		for _, tx := range drop {
 | |
| 			heap.Push(&l.urgent, tx)
 | |
| 		}
 | |
| 		return nil, false
 | |
| 	}
 | |
| 	return drop, true
 | |
| }
 | |
| 
 | |
| // Reheap forcibly rebuilds the heap based on the current remote transaction set.
 | |
| func (l *txPricedList) Reheap() {
 | |
| 	l.reheapMu.Lock()
 | |
| 	defer l.reheapMu.Unlock()
 | |
| 	start := time.Now()
 | |
| 	atomic.StoreInt64(&l.stales, 0)
 | |
| 	l.urgent.list = make([]*types.Transaction, 0, l.all.RemoteCount())
 | |
| 	l.all.Range(func(hash common.Hash, tx *types.Transaction, local bool) bool {
 | |
| 		l.urgent.list = append(l.urgent.list, tx)
 | |
| 		return true
 | |
| 	}, false, true) // Only iterate remotes
 | |
| 	heap.Init(&l.urgent)
 | |
| 
 | |
| 	// balance out the two heaps by moving the worse half of transactions into the
 | |
| 	// floating heap
 | |
| 	// Note: Discard would also do this before the first eviction but Reheap can do
 | |
| 	// is more efficiently. Also, Underpriced would work suboptimally the first time
 | |
| 	// if the floating queue was empty.
 | |
| 	floatingCount := len(l.urgent.list) * floatingRatio / (urgentRatio + floatingRatio)
 | |
| 	l.floating.list = make([]*types.Transaction, floatingCount)
 | |
| 	for i := 0; i < floatingCount; i++ {
 | |
| 		l.floating.list[i] = heap.Pop(&l.urgent).(*types.Transaction)
 | |
| 	}
 | |
| 	heap.Init(&l.floating)
 | |
| 	reheapTimer.Update(time.Since(start))
 | |
| }
 | |
| 
 | |
| // SetBaseFee updates the base fee and triggers a re-heap. Note that Removed is not
 | |
| // necessary to call right before SetBaseFee when processing a new block.
 | |
| func (l *txPricedList) SetBaseFee(baseFee *big.Int) {
 | |
| 	l.urgent.baseFee = baseFee
 | |
| 	l.Reheap()
 | |
| }
 |