Package crypto works with or without cgo, which is great. However, to make it work without cgo required setting the build tag `nocgo`. It's common to disable cgo by instead just setting the environment variable `CGO_ENABLED=0`. Setting this environment variable does _not_ implicitly set the build tag `nocgo`. So projects that try to build the crypto package with `CGO_ENABLED=0` will fail. I have done this myself several times. Until today, I had just assumed that this meant that this package requires cgo. But a small build tag change will make this case work. Instead of using `nocgo` and `!nocgo`, we can use `!cgo` and `cgo`, respectively. The `cgo` build tag is automatically set if cgo is enabled, and unset if it is disabled.
		
			
				
	
	
		
			88 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			88 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright 2017 The go-ethereum Authors
 | |
| // This file is part of the go-ethereum library.
 | |
| //
 | |
| // The go-ethereum library is free software: you can redistribute it and/or modify
 | |
| // it under the terms of the GNU Lesser General Public License as published by
 | |
| // the Free Software Foundation, either version 3 of the License, or
 | |
| // (at your option) any later version.
 | |
| //
 | |
| // The go-ethereum library is distributed in the hope that it will be useful,
 | |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 | |
| // GNU Lesser General Public License for more details.
 | |
| //
 | |
| // You should have received a copy of the GNU Lesser General Public License
 | |
| // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
 | |
| 
 | |
| // +build !nacl,!js,cgo
 | |
| 
 | |
| package crypto
 | |
| 
 | |
| import (
 | |
| 	"crypto/ecdsa"
 | |
| 	"crypto/elliptic"
 | |
| 	"fmt"
 | |
| 
 | |
| 	"github.com/ethereum/go-ethereum/common/math"
 | |
| 	"github.com/ethereum/go-ethereum/crypto/secp256k1"
 | |
| )
 | |
| 
 | |
| // Ecrecover returns the uncompressed public key that created the given signature.
 | |
| func Ecrecover(hash, sig []byte) ([]byte, error) {
 | |
| 	return secp256k1.RecoverPubkey(hash, sig)
 | |
| }
 | |
| 
 | |
| // SigToPub returns the public key that created the given signature.
 | |
| func SigToPub(hash, sig []byte) (*ecdsa.PublicKey, error) {
 | |
| 	s, err := Ecrecover(hash, sig)
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 
 | |
| 	x, y := elliptic.Unmarshal(S256(), s)
 | |
| 	return &ecdsa.PublicKey{Curve: S256(), X: x, Y: y}, nil
 | |
| }
 | |
| 
 | |
| // Sign calculates an ECDSA signature.
 | |
| //
 | |
| // This function is susceptible to chosen plaintext attacks that can leak
 | |
| // information about the private key that is used for signing. Callers must
 | |
| // be aware that the given hash cannot be chosen by an adversery. Common
 | |
| // solution is to hash any input before calculating the signature.
 | |
| //
 | |
| // The produced signature is in the [R || S || V] format where V is 0 or 1.
 | |
| func Sign(hash []byte, prv *ecdsa.PrivateKey) (sig []byte, err error) {
 | |
| 	if len(hash) != 32 {
 | |
| 		return nil, fmt.Errorf("hash is required to be exactly 32 bytes (%d)", len(hash))
 | |
| 	}
 | |
| 	seckey := math.PaddedBigBytes(prv.D, prv.Params().BitSize/8)
 | |
| 	defer zeroBytes(seckey)
 | |
| 	return secp256k1.Sign(hash, seckey)
 | |
| }
 | |
| 
 | |
| // VerifySignature checks that the given public key created signature over hash.
 | |
| // The public key should be in compressed (33 bytes) or uncompressed (65 bytes) format.
 | |
| // The signature should have the 64 byte [R || S] format.
 | |
| func VerifySignature(pubkey, hash, signature []byte) bool {
 | |
| 	return secp256k1.VerifySignature(pubkey, hash, signature)
 | |
| }
 | |
| 
 | |
| // DecompressPubkey parses a public key in the 33-byte compressed format.
 | |
| func DecompressPubkey(pubkey []byte) (*ecdsa.PublicKey, error) {
 | |
| 	x, y := secp256k1.DecompressPubkey(pubkey)
 | |
| 	if x == nil {
 | |
| 		return nil, fmt.Errorf("invalid public key")
 | |
| 	}
 | |
| 	return &ecdsa.PublicKey{X: x, Y: y, Curve: S256()}, nil
 | |
| }
 | |
| 
 | |
| // CompressPubkey encodes a public key to the 33-byte compressed format.
 | |
| func CompressPubkey(pubkey *ecdsa.PublicKey) []byte {
 | |
| 	return secp256k1.CompressPubkey(pubkey.X, pubkey.Y)
 | |
| }
 | |
| 
 | |
| // S256 returns an instance of the secp256k1 curve.
 | |
| func S256() elliptic.Curve {
 | |
| 	return secp256k1.S256()
 | |
| }
 |