1162162c0a
* Write state diff to CSV (#2)
* port statediff from 9b7fd9af80/statediff/statediff.go
; minor fixes
* integrating state diff extracting, building, and persisting into geth processes
* work towards persisting created statediffs in ipfs; based off github.com/vulcanize/eth-block-extractor
* Add a state diff service
* Remove diff extractor from blockchain
* Update imports
* Move statediff on/off check to geth cmd config
* Update starting state diff service
* Add debugging logs for creating diff
* Add statediff extractor and builder tests and small refactoring
* Start to write statediff to a CSV
* Restructure statediff directory
* Pull CSV publishing methods into their own file
* Reformatting due to go fmt
* Add gomega to vendor dir
* Remove testing focuses
* Update statediff tests to use golang test pkg
instead of ginkgo
- builder_test
- extractor_test
- publisher_test
* Use hexutil.Encode instead of deprecated common.ToHex
* Remove OldValue from DiffBigInt and DiffUint64 fields
* Update builder test
* Remove old storage value from updated accounts
* Remove old values from created/deleted accounts
* Update publisher to account for only storing current account values
* Update service loop and fetching previous block
* Update testing
- remove statediff ginkgo test suite file
- move mocks to their own dir
* Updates per go fmt
* Updates to tests
* Pass statediff mode and path in through cli
* Return filename from publisher
* Remove some duplication in builder
* Remove code field from state diff output
this is the contract byte code, and it can still be obtained by querying
the db by the codeHash
* Consolidate acct diff structs for updated & updated/deleted accts
* Include block number in csv filename
* Clean up error logging
* Cleanup formatting, spelling, etc
* Address PR comments
* Add contract address and storage value to csv
* Refactor accumulating account row in csv publisher
* Add DiffStorage struct
* Add storage key to csv
* Address PR comments
* Fix publisher to include rows for accounts that don't have store updates
* Update builder test after merging in release/1.8
* Update test contract to include storage on contract intialization
- so that we're able to test that storage diffing works for created and
deleted accounts (not just updated accounts).
* Factor out a common trie iterator method in builder
* Apply goimports to statediff
* Apply gosimple changes to statediff
* Gracefully exit geth command(#4)
* Statediff for full node (#6)
* Open a trie from the in-memory database
* Use a node's LeafKey as an identifier instead of the address
It was proving difficult to find look the address up from a given path
with a full node (sometimes the value wouldn't exist in the disk db).
So, instead, for now we are using the node's LeafKey with is a Keccak256
hash of the address, so if we know the address we can figure out which
LeafKey it matches up to.
* Make sure that statediff has been processed before pruning
* Use blockchain stateCache.OpenTrie for storage diffs
* Clean up log lines and remove unnecessary fields from builder
* Apply go fmt changes
* Add a sleep to the blockchain test
* Address PR comments
* Address PR comments
* refactoring/reorganizing packages
* refactoring statediff builder and types and adjusted to relay proofs and paths (still need to make this optional)
* refactoring state diff service and adding api which allows for streaming state diff payloads over an rpc websocket subscription
* make proofs and paths optional + compress service loop into single for loop (may be missing something here)
* option to process intermediate nodes
* make state diff rlp serializable
* cli parameter to limit statediffing to select account addresses + test
* review fixes and fixes for issues ran into in integration
* review fixes; proper method signature for api; adjust service so that statediff processing is halted/paused until there is at least one subscriber listening for the results
* adjust buffering to improve stability; doc.go; fix notifier
err handling
* relay receipts with the rest of the data + review fixes/changes
* rpc method to get statediff at specific block; requires archival node or the block be within the pruning range
* review fixes
* fixes after rebase
* statediff verison meta
* fix linter issues
* include total difficulty to the payload
* fix state diff builder: emit actual leaf nodes instead of value nodes; diff on the leaf not on the value; emit correct path for intermediate nodes
* adjust statediff builder tests to changes and extend to test intermediate nodes; golint
* add genesis block to test; handle block 0 in StateDiffAt
* rlp files for mainnet blocks 0-3, for tests
* builder test on mainnet blocks
* common.BytesToHash(path) => crypto.Keaccak256(hash) in builder; BytesToHash produces same hash for e.g. []byte{} and []byte{\x00} - prefix \x00 steps are inconsequential to the hash result
* complete tests for early mainnet blocks
* diff type for representing deleted accounts
* fix builder so that we handle account deletions properly and properly diff storage when an account is moved to a new path; update params
* remove cli params; moving them to subscriber defined
* remove unneeded bc methods
* update service and api; statediffing params are now defined by user through api rather than by service provider by cli
* update top level tests
* add ability to watch specific storage slots (leaf keys) only
* comments; explain logic
* update mainnet blocks test
* update api_test.go
* storage leafkey filter test
* cleanup chain maker
* adjust chain maker for tests to add an empty account in block1 and switch to EIP-158 afterwards (now we just need to generate enough accounts until one causes the empty account to be touched and removed post-EIP-158 so we can simulate and test that process...); also added 2 new blocks where more contract storage is set and old slots are set to zero so they are removed so we can test that
* found an account whose creation causes the empty account to be moved to a new path; this should count as 'touching; the empty account and cause it to be removed according to eip-158... but it doesn't
* use new contract in unit tests that has self-destruct ability, so we can test eip-158 since simply moving an account to new path doesn't count as 'touchin' it
* handle storage deletions
* tests for eip-158 account removal and storage value deletions; there is one edge case left to test where we remove 1 account when only two exist such that the remaining account is moved up and replaces the root branch node
* finish testing known edge cases
* add endpoint to fetch all state and storage nodes at a given blockheight; useful for generating a recent atate cache/snapshot that we can diff forward from rather than needing to collect all diffs from genesis
* test for state trie builder
* minor changes/fixes
* update version meta
* if statediffing is on, lock tries in triedb until the statediffing service signals they are done using them
* update version meta
* fix mock blockchain; golint; bump patch
* increase maxRequestContentLength; bump patch
* log the sizes of the state objects we are sending
* CI build (#20)
* CI: run build on PR and on push to master
* CI: debug building geth
* CI: fix coping file
* CI: fix coping file v2
* CI: temporary upload file to release asset
* CI: get release upload_url by tag, upload asset to current relase
* CI: fix tag name
* fix ci build on statediff_at_anyblock-1.9.11 branch
* fix publishing assets in release
* bump version meta
* use context deadline for timeout in eth_call
* collect and emit codehash=>code mappings for state objects
* subscription endpoint for retrieving all the codehash=>code mappings that exist at provided height
* bump version meta
* Implement WriteStateDiffAt
* Writes state diffs directly to postgres
* Adds CLI flags to configure PG
* Refactors builder output with callbacks
* Copies refactored postgres handling code from ipld-eth-indexer
* rename PostgresCIDWriter.{index->upsert}*
* less ambiguous
* go.mod update
* rm unused
* cleanup
* output code & codehash iteratively
* had to rf some types for this
* prometheus metrics output
* duplicate recent eth-indexer changes
* migrations and metrics...
* [wip] prom.Init() here? another CLI flag?
* cleanup
* tidy & DRY
* statediff WriteLoop service + CLI flag
* [wip] update test mocks
* todo - do something meaningful to test write loop
* logging
* use geth log
* port tests to go testing
* drop ginkgo/gomega
* fix and cleanup tests
* fail before defer statement
* delete vendor/ dir
* unused
* bump version meta
* fixes after rebase onto 1.9.23
* bump version meta
* fix API registration
* bump version meta
* use golang 1.15.5 version (#34)
* bump version meta; add 0.0.11 branch to actions
* bump version meta; update github actions workflows
* statediff: refactor metrics
* Remove redundant statediff/indexer/prom tooling and use existing
prometheus integration.
* cleanup
* "indexer" namespace for metrics
* add reporting loop for db metrics
* doc
* metrics for statediff stats
* metrics namespace/subsystem = statediff/{indexer,service}
* statediff: use a worker pool (for direct writes)
* fix test
* fix chain event subscription
* log tweaks
* func name
* unused import
* intermediate chain event channel for metrics
* cleanup
* bump version meta
* update github actions; linting
* add poststate and status to receipt ipld indexes
* bump statediff version
* stateDiffFor endpoints for fetching or writing statediff object by blockhash; bump statediff version
* fixes after rebase on to v1.10.1
* update github actions and version meta; go fmt
* add leaf key to removed 'nodes'
* include Postgres migrations and schema
* service documentation
* touching up
460 lines
16 KiB
Go
460 lines
16 KiB
Go
// Copyright 2015 The go-ethereum Authors
|
|
// This file is part of the go-ethereum library.
|
|
//
|
|
// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU Lesser General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// The go-ethereum library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
package trie
|
|
|
|
import (
|
|
"errors"
|
|
"fmt"
|
|
|
|
"github.com/ethereum/go-ethereum/common"
|
|
"github.com/ethereum/go-ethereum/common/prque"
|
|
"github.com/ethereum/go-ethereum/core/rawdb"
|
|
"github.com/ethereum/go-ethereum/ethdb"
|
|
)
|
|
|
|
// ErrNotRequested is returned by the trie sync when it's requested to process a
|
|
// node it did not request.
|
|
var ErrNotRequested = errors.New("not requested")
|
|
|
|
// ErrAlreadyProcessed is returned by the trie sync when it's requested to process a
|
|
// node it already processed previously.
|
|
var ErrAlreadyProcessed = errors.New("already processed")
|
|
|
|
// maxFetchesPerDepth is the maximum number of pending trie nodes per depth. The
|
|
// role of this value is to limit the number of trie nodes that get expanded in
|
|
// memory if the node was configured with a significant number of peers.
|
|
const maxFetchesPerDepth = 16384
|
|
|
|
// request represents a scheduled or already in-flight state retrieval request.
|
|
type request struct {
|
|
path []byte // Merkle path leading to this node for prioritization
|
|
hash common.Hash // Hash of the node data content to retrieve
|
|
data []byte // Data content of the node, cached until all subtrees complete
|
|
code bool // Whether this is a code entry
|
|
|
|
parents []*request // Parent state nodes referencing this entry (notify all upon completion)
|
|
deps int // Number of dependencies before allowed to commit this node
|
|
|
|
callback LeafCallback // Callback to invoke if a leaf node it reached on this branch
|
|
}
|
|
|
|
// SyncPath is a path tuple identifying a particular trie node either in a single
|
|
// trie (account) or a layered trie (account -> storage).
|
|
//
|
|
// Content wise the tuple either has 1 element if it addresses a node in a single
|
|
// trie or 2 elements if it addresses a node in a stacked trie.
|
|
//
|
|
// To support aiming arbitrary trie nodes, the path needs to support odd nibble
|
|
// lengths. To avoid transferring expanded hex form over the network, the last
|
|
// part of the tuple (which needs to index into the middle of a trie) is compact
|
|
// encoded. In case of a 2-tuple, the first item is always 32 bytes so that is
|
|
// simple binary encoded.
|
|
//
|
|
// Examples:
|
|
// - Path 0x9 -> {0x19}
|
|
// - Path 0x99 -> {0x0099}
|
|
// - Path 0x01234567890123456789012345678901012345678901234567890123456789019 -> {0x0123456789012345678901234567890101234567890123456789012345678901, 0x19}
|
|
// - Path 0x012345678901234567890123456789010123456789012345678901234567890199 -> {0x0123456789012345678901234567890101234567890123456789012345678901, 0x0099}
|
|
type SyncPath [][]byte
|
|
|
|
// newSyncPath converts an expanded trie path from nibble form into a compact
|
|
// version that can be sent over the network.
|
|
func newSyncPath(path []byte) SyncPath {
|
|
// If the hash is from the account trie, append a single item, if it
|
|
// is from the a storage trie, append a tuple. Note, the length 64 is
|
|
// clashing between account leaf and storage root. It's fine though
|
|
// because having a trie node at 64 depth means a hash collision was
|
|
// found and we're long dead.
|
|
if len(path) < 64 {
|
|
return SyncPath{hexToCompact(path)}
|
|
}
|
|
return SyncPath{hexToKeyBytes(path[:64]), hexToCompact(path[64:])}
|
|
}
|
|
|
|
// SyncResult is a response with requested data along with it's hash.
|
|
type SyncResult struct {
|
|
Hash common.Hash // Hash of the originally unknown trie node
|
|
Data []byte // Data content of the retrieved node
|
|
}
|
|
|
|
// syncMemBatch is an in-memory buffer of successfully downloaded but not yet
|
|
// persisted data items.
|
|
type syncMemBatch struct {
|
|
nodes map[common.Hash][]byte // In-memory membatch of recently completed nodes
|
|
codes map[common.Hash][]byte // In-memory membatch of recently completed codes
|
|
}
|
|
|
|
// newSyncMemBatch allocates a new memory-buffer for not-yet persisted trie nodes.
|
|
func newSyncMemBatch() *syncMemBatch {
|
|
return &syncMemBatch{
|
|
nodes: make(map[common.Hash][]byte),
|
|
codes: make(map[common.Hash][]byte),
|
|
}
|
|
}
|
|
|
|
// hasNode reports the trie node with specific hash is already cached.
|
|
func (batch *syncMemBatch) hasNode(hash common.Hash) bool {
|
|
_, ok := batch.nodes[hash]
|
|
return ok
|
|
}
|
|
|
|
// hasCode reports the contract code with specific hash is already cached.
|
|
func (batch *syncMemBatch) hasCode(hash common.Hash) bool {
|
|
_, ok := batch.codes[hash]
|
|
return ok
|
|
}
|
|
|
|
// Sync is the main state trie synchronisation scheduler, which provides yet
|
|
// unknown trie hashes to retrieve, accepts node data associated with said hashes
|
|
// and reconstructs the trie step by step until all is done.
|
|
type Sync struct {
|
|
database ethdb.KeyValueReader // Persistent database to check for existing entries
|
|
membatch *syncMemBatch // Memory buffer to avoid frequent database writes
|
|
nodeReqs map[common.Hash]*request // Pending requests pertaining to a trie node hash
|
|
codeReqs map[common.Hash]*request // Pending requests pertaining to a code hash
|
|
queue *prque.Prque // Priority queue with the pending requests
|
|
fetches map[int]int // Number of active fetches per trie node depth
|
|
bloom *SyncBloom // Bloom filter for fast state existence checks
|
|
}
|
|
|
|
// NewSync creates a new trie data download scheduler.
|
|
func NewSync(root common.Hash, database ethdb.KeyValueReader, callback LeafCallback, bloom *SyncBloom) *Sync {
|
|
ts := &Sync{
|
|
database: database,
|
|
membatch: newSyncMemBatch(),
|
|
nodeReqs: make(map[common.Hash]*request),
|
|
codeReqs: make(map[common.Hash]*request),
|
|
queue: prque.New(nil),
|
|
fetches: make(map[int]int),
|
|
bloom: bloom,
|
|
}
|
|
ts.AddSubTrie(root, nil, common.Hash{}, callback)
|
|
return ts
|
|
}
|
|
|
|
// AddSubTrie registers a new trie to the sync code, rooted at the designated parent.
|
|
func (s *Sync) AddSubTrie(root common.Hash, path []byte, parent common.Hash, callback LeafCallback) {
|
|
// Short circuit if the trie is empty or already known
|
|
if root == emptyRoot {
|
|
return
|
|
}
|
|
if s.membatch.hasNode(root) {
|
|
return
|
|
}
|
|
if s.bloom == nil || s.bloom.Contains(root[:]) {
|
|
// Bloom filter says this might be a duplicate, double check.
|
|
// If database says yes, then at least the trie node is present
|
|
// and we hold the assumption that it's NOT legacy contract code.
|
|
blob := rawdb.ReadTrieNode(s.database, root)
|
|
if len(blob) > 0 {
|
|
return
|
|
}
|
|
// False positive, bump fault meter
|
|
bloomFaultMeter.Mark(1)
|
|
}
|
|
// Assemble the new sub-trie sync request
|
|
req := &request{
|
|
path: path,
|
|
hash: root,
|
|
callback: callback,
|
|
}
|
|
// If this sub-trie has a designated parent, link them together
|
|
if parent != (common.Hash{}) {
|
|
ancestor := s.nodeReqs[parent]
|
|
if ancestor == nil {
|
|
panic(fmt.Sprintf("sub-trie ancestor not found: %x", parent))
|
|
}
|
|
ancestor.deps++
|
|
req.parents = append(req.parents, ancestor)
|
|
}
|
|
s.schedule(req)
|
|
}
|
|
|
|
// AddCodeEntry schedules the direct retrieval of a contract code that should not
|
|
// be interpreted as a trie node, but rather accepted and stored into the database
|
|
// as is.
|
|
func (s *Sync) AddCodeEntry(hash common.Hash, path []byte, parent common.Hash) {
|
|
// Short circuit if the entry is empty or already known
|
|
if hash == emptyState {
|
|
return
|
|
}
|
|
if s.membatch.hasCode(hash) {
|
|
return
|
|
}
|
|
if s.bloom == nil || s.bloom.Contains(hash[:]) {
|
|
// Bloom filter says this might be a duplicate, double check.
|
|
// If database says yes, the blob is present for sure.
|
|
// Note we only check the existence with new code scheme, fast
|
|
// sync is expected to run with a fresh new node. Even there
|
|
// exists the code with legacy format, fetch and store with
|
|
// new scheme anyway.
|
|
if blob := rawdb.ReadCodeWithPrefix(s.database, hash); len(blob) > 0 {
|
|
return
|
|
}
|
|
// False positive, bump fault meter
|
|
bloomFaultMeter.Mark(1)
|
|
}
|
|
// Assemble the new sub-trie sync request
|
|
req := &request{
|
|
path: path,
|
|
hash: hash,
|
|
code: true,
|
|
}
|
|
// If this sub-trie has a designated parent, link them together
|
|
if parent != (common.Hash{}) {
|
|
ancestor := s.nodeReqs[parent] // the parent of codereq can ONLY be nodereq
|
|
if ancestor == nil {
|
|
panic(fmt.Sprintf("raw-entry ancestor not found: %x", parent))
|
|
}
|
|
ancestor.deps++
|
|
req.parents = append(req.parents, ancestor)
|
|
}
|
|
s.schedule(req)
|
|
}
|
|
|
|
// Missing retrieves the known missing nodes from the trie for retrieval. To aid
|
|
// both eth/6x style fast sync and snap/1x style state sync, the paths of trie
|
|
// nodes are returned too, as well as separate hash list for codes.
|
|
func (s *Sync) Missing(max int) (nodes []common.Hash, paths []SyncPath, codes []common.Hash) {
|
|
var (
|
|
nodeHashes []common.Hash
|
|
nodePaths []SyncPath
|
|
codeHashes []common.Hash
|
|
)
|
|
for !s.queue.Empty() && (max == 0 || len(nodeHashes)+len(codeHashes) < max) {
|
|
// Retrieve th enext item in line
|
|
item, prio := s.queue.Peek()
|
|
|
|
// If we have too many already-pending tasks for this depth, throttle
|
|
depth := int(prio >> 56)
|
|
if s.fetches[depth] > maxFetchesPerDepth {
|
|
break
|
|
}
|
|
// Item is allowed to be scheduled, add it to the task list
|
|
s.queue.Pop()
|
|
s.fetches[depth]++
|
|
|
|
hash := item.(common.Hash)
|
|
if req, ok := s.nodeReqs[hash]; ok {
|
|
nodeHashes = append(nodeHashes, hash)
|
|
nodePaths = append(nodePaths, newSyncPath(req.path))
|
|
} else {
|
|
codeHashes = append(codeHashes, hash)
|
|
}
|
|
}
|
|
return nodeHashes, nodePaths, codeHashes
|
|
}
|
|
|
|
// Process injects the received data for requested item. Note it can
|
|
// happpen that the single response commits two pending requests(e.g.
|
|
// there are two requests one for code and one for node but the hash
|
|
// is same). In this case the second response for the same hash will
|
|
// be treated as "non-requested" item or "already-processed" item but
|
|
// there is no downside.
|
|
func (s *Sync) Process(result SyncResult) error {
|
|
// If the item was not requested either for code or node, bail out
|
|
if s.nodeReqs[result.Hash] == nil && s.codeReqs[result.Hash] == nil {
|
|
return ErrNotRequested
|
|
}
|
|
// There is an pending code request for this data, commit directly
|
|
var filled bool
|
|
if req := s.codeReqs[result.Hash]; req != nil && req.data == nil {
|
|
filled = true
|
|
req.data = result.Data
|
|
s.commit(req)
|
|
}
|
|
// There is an pending node request for this data, fill it.
|
|
if req := s.nodeReqs[result.Hash]; req != nil && req.data == nil {
|
|
filled = true
|
|
// Decode the node data content and update the request
|
|
node, err := decodeNode(result.Hash[:], result.Data)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
req.data = result.Data
|
|
|
|
// Create and schedule a request for all the children nodes
|
|
requests, err := s.children(req, node)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
if len(requests) == 0 && req.deps == 0 {
|
|
s.commit(req)
|
|
} else {
|
|
req.deps += len(requests)
|
|
for _, child := range requests {
|
|
s.schedule(child)
|
|
}
|
|
}
|
|
}
|
|
if !filled {
|
|
return ErrAlreadyProcessed
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Commit flushes the data stored in the internal membatch out to persistent
|
|
// storage, returning any occurred error.
|
|
func (s *Sync) Commit(dbw ethdb.Batch) error {
|
|
// Dump the membatch into a database dbw
|
|
for key, value := range s.membatch.nodes {
|
|
rawdb.WriteTrieNode(dbw, key, value)
|
|
if s.bloom != nil {
|
|
s.bloom.Add(key[:])
|
|
}
|
|
}
|
|
for key, value := range s.membatch.codes {
|
|
rawdb.WriteCode(dbw, key, value)
|
|
if s.bloom != nil {
|
|
s.bloom.Add(key[:])
|
|
}
|
|
}
|
|
// Drop the membatch data and return
|
|
s.membatch = newSyncMemBatch()
|
|
return nil
|
|
}
|
|
|
|
// Pending returns the number of state entries currently pending for download.
|
|
func (s *Sync) Pending() int {
|
|
return len(s.nodeReqs) + len(s.codeReqs)
|
|
}
|
|
|
|
// schedule inserts a new state retrieval request into the fetch queue. If there
|
|
// is already a pending request for this node, the new request will be discarded
|
|
// and only a parent reference added to the old one.
|
|
func (s *Sync) schedule(req *request) {
|
|
var reqset = s.nodeReqs
|
|
if req.code {
|
|
reqset = s.codeReqs
|
|
}
|
|
// If we're already requesting this node, add a new reference and stop
|
|
if old, ok := reqset[req.hash]; ok {
|
|
old.parents = append(old.parents, req.parents...)
|
|
return
|
|
}
|
|
reqset[req.hash] = req
|
|
|
|
// Schedule the request for future retrieval. This queue is shared
|
|
// by both node requests and code requests. It can happen that there
|
|
// is a trie node and code has same hash. In this case two elements
|
|
// with same hash and same or different depth will be pushed. But it's
|
|
// ok the worst case is the second response will be treated as duplicated.
|
|
prio := int64(len(req.path)) << 56 // depth >= 128 will never happen, storage leaves will be included in their parents
|
|
for i := 0; i < 14 && i < len(req.path); i++ {
|
|
prio |= int64(15-req.path[i]) << (52 - i*4) // 15-nibble => lexicographic order
|
|
}
|
|
s.queue.Push(req.hash, prio)
|
|
}
|
|
|
|
// children retrieves all the missing children of a state trie entry for future
|
|
// retrieval scheduling.
|
|
func (s *Sync) children(req *request, object node) ([]*request, error) {
|
|
// Gather all the children of the node, irrelevant whether known or not
|
|
type child struct {
|
|
path []byte
|
|
node node
|
|
}
|
|
var children []child
|
|
|
|
switch node := (object).(type) {
|
|
case *shortNode:
|
|
key := node.Key
|
|
if hasTerm(key) {
|
|
key = key[:len(key)-1]
|
|
}
|
|
children = []child{{
|
|
node: node.Val,
|
|
path: append(append([]byte(nil), req.path...), key...),
|
|
}}
|
|
case *fullNode:
|
|
for i := 0; i < 17; i++ {
|
|
if node.Children[i] != nil {
|
|
children = append(children, child{
|
|
node: node.Children[i],
|
|
path: append(append([]byte(nil), req.path...), byte(i)),
|
|
})
|
|
}
|
|
}
|
|
default:
|
|
panic(fmt.Sprintf("unknown node: %+v", node))
|
|
}
|
|
// Iterate over the children, and request all unknown ones
|
|
requests := make([]*request, 0, len(children))
|
|
for _, child := range children {
|
|
// Notify any external watcher of a new key/value node
|
|
if req.callback != nil {
|
|
if node, ok := (child.node).(valueNode); ok {
|
|
if err := req.callback(child.path, node, req.hash); err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
}
|
|
// If the child references another node, resolve or schedule
|
|
if node, ok := (child.node).(hashNode); ok {
|
|
// Try to resolve the node from the local database
|
|
hash := common.BytesToHash(node)
|
|
if s.membatch.hasNode(hash) {
|
|
continue
|
|
}
|
|
if s.bloom == nil || s.bloom.Contains(node) {
|
|
// Bloom filter says this might be a duplicate, double check.
|
|
// If database says yes, then at least the trie node is present
|
|
// and we hold the assumption that it's NOT legacy contract code.
|
|
if blob := rawdb.ReadTrieNode(s.database, hash); len(blob) > 0 {
|
|
continue
|
|
}
|
|
// False positive, bump fault meter
|
|
bloomFaultMeter.Mark(1)
|
|
}
|
|
// Locally unknown node, schedule for retrieval
|
|
requests = append(requests, &request{
|
|
path: child.path,
|
|
hash: hash,
|
|
parents: []*request{req},
|
|
callback: req.callback,
|
|
})
|
|
}
|
|
}
|
|
return requests, nil
|
|
}
|
|
|
|
// commit finalizes a retrieval request and stores it into the membatch. If any
|
|
// of the referencing parent requests complete due to this commit, they are also
|
|
// committed themselves.
|
|
func (s *Sync) commit(req *request) (err error) {
|
|
// Write the node content to the membatch
|
|
if req.code {
|
|
s.membatch.codes[req.hash] = req.data
|
|
delete(s.codeReqs, req.hash)
|
|
s.fetches[len(req.path)]--
|
|
} else {
|
|
s.membatch.nodes[req.hash] = req.data
|
|
delete(s.nodeReqs, req.hash)
|
|
s.fetches[len(req.path)]--
|
|
}
|
|
// Check all parents for completion
|
|
for _, parent := range req.parents {
|
|
parent.deps--
|
|
if parent.deps == 0 {
|
|
if err := s.commit(parent); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
}
|
|
return nil
|
|
}
|