427 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			427 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright 2015 The go-ethereum Authors
 | |
| // This file is part of the go-ethereum library.
 | |
| //
 | |
| // The go-ethereum library is free software: you can redistribute it and/or modify
 | |
| // it under the terms of the GNU Lesser General Public License as published by
 | |
| // the Free Software Foundation, either version 3 of the License, or
 | |
| // (at your option) any later version.
 | |
| //
 | |
| // The go-ethereum library is distributed in the hope that it will be useful,
 | |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 | |
| // GNU Lesser General Public License for more details.
 | |
| //
 | |
| // You should have received a copy of the GNU Lesser General Public License
 | |
| // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
 | |
| 
 | |
| package abi
 | |
| 
 | |
| import (
 | |
| 	"errors"
 | |
| 	"fmt"
 | |
| 	"reflect"
 | |
| 	"regexp"
 | |
| 	"strconv"
 | |
| 	"strings"
 | |
| 	"unicode"
 | |
| 	"unicode/utf8"
 | |
| 
 | |
| 	"github.com/ethereum/go-ethereum/common"
 | |
| )
 | |
| 
 | |
| // Type enumerator
 | |
| const (
 | |
| 	IntTy byte = iota
 | |
| 	UintTy
 | |
| 	BoolTy
 | |
| 	StringTy
 | |
| 	SliceTy
 | |
| 	ArrayTy
 | |
| 	TupleTy
 | |
| 	AddressTy
 | |
| 	FixedBytesTy
 | |
| 	BytesTy
 | |
| 	HashTy
 | |
| 	FixedPointTy
 | |
| 	FunctionTy
 | |
| )
 | |
| 
 | |
| // Type is the reflection of the supported argument type.
 | |
| type Type struct {
 | |
| 	Elem *Type
 | |
| 	Size int
 | |
| 	T    byte // Our own type checking
 | |
| 
 | |
| 	stringKind string // holds the unparsed string for deriving signatures
 | |
| 
 | |
| 	// Tuple relative fields
 | |
| 	TupleRawName  string       // Raw struct name defined in source code, may be empty.
 | |
| 	TupleElems    []*Type      // Type information of all tuple fields
 | |
| 	TupleRawNames []string     // Raw field name of all tuple fields
 | |
| 	TupleType     reflect.Type // Underlying struct of the tuple
 | |
| }
 | |
| 
 | |
| var (
 | |
| 	// typeRegex parses the abi sub types
 | |
| 	typeRegex = regexp.MustCompile("([a-zA-Z]+)(([0-9]+)(x([0-9]+))?)?")
 | |
| )
 | |
| 
 | |
| // NewType creates a new reflection type of abi type given in t.
 | |
| func NewType(t string, internalType string, components []ArgumentMarshaling) (typ Type, err error) {
 | |
| 	// check that array brackets are equal if they exist
 | |
| 	if strings.Count(t, "[") != strings.Count(t, "]") {
 | |
| 		return Type{}, fmt.Errorf("invalid arg type in abi")
 | |
| 	}
 | |
| 	typ.stringKind = t
 | |
| 
 | |
| 	// if there are brackets, get ready to go into slice/array mode and
 | |
| 	// recursively create the type
 | |
| 	if strings.Count(t, "[") != 0 {
 | |
| 		// Note internalType can be empty here.
 | |
| 		subInternal := internalType
 | |
| 		if i := strings.LastIndex(internalType, "["); i != -1 {
 | |
| 			subInternal = subInternal[:i]
 | |
| 		}
 | |
| 		// recursively embed the type
 | |
| 		i := strings.LastIndex(t, "[")
 | |
| 		embeddedType, err := NewType(t[:i], subInternal, components)
 | |
| 		if err != nil {
 | |
| 			return Type{}, err
 | |
| 		}
 | |
| 		// grab the last cell and create a type from there
 | |
| 		sliced := t[i:]
 | |
| 		// grab the slice size with regexp
 | |
| 		re := regexp.MustCompile("[0-9]+")
 | |
| 		intz := re.FindAllString(sliced, -1)
 | |
| 
 | |
| 		if len(intz) == 0 {
 | |
| 			// is a slice
 | |
| 			typ.T = SliceTy
 | |
| 			typ.Elem = &embeddedType
 | |
| 			typ.stringKind = embeddedType.stringKind + sliced
 | |
| 		} else if len(intz) == 1 {
 | |
| 			// is an array
 | |
| 			typ.T = ArrayTy
 | |
| 			typ.Elem = &embeddedType
 | |
| 			typ.Size, err = strconv.Atoi(intz[0])
 | |
| 			if err != nil {
 | |
| 				return Type{}, fmt.Errorf("abi: error parsing variable size: %v", err)
 | |
| 			}
 | |
| 			typ.stringKind = embeddedType.stringKind + sliced
 | |
| 		} else {
 | |
| 			return Type{}, fmt.Errorf("invalid formatting of array type")
 | |
| 		}
 | |
| 		return typ, err
 | |
| 	}
 | |
| 	// parse the type and size of the abi-type.
 | |
| 	matches := typeRegex.FindAllStringSubmatch(t, -1)
 | |
| 	if len(matches) == 0 {
 | |
| 		return Type{}, fmt.Errorf("invalid type '%v'", t)
 | |
| 	}
 | |
| 	parsedType := matches[0]
 | |
| 
 | |
| 	// varSize is the size of the variable
 | |
| 	var varSize int
 | |
| 	if len(parsedType[3]) > 0 {
 | |
| 		var err error
 | |
| 		varSize, err = strconv.Atoi(parsedType[2])
 | |
| 		if err != nil {
 | |
| 			return Type{}, fmt.Errorf("abi: error parsing variable size: %v", err)
 | |
| 		}
 | |
| 	} else {
 | |
| 		if parsedType[0] == "uint" || parsedType[0] == "int" {
 | |
| 			// this should fail because it means that there's something wrong with
 | |
| 			// the abi type (the compiler should always format it to the size...always)
 | |
| 			return Type{}, fmt.Errorf("unsupported arg type: %s", t)
 | |
| 		}
 | |
| 	}
 | |
| 	// varType is the parsed abi type
 | |
| 	switch varType := parsedType[1]; varType {
 | |
| 	case "int":
 | |
| 		typ.Size = varSize
 | |
| 		typ.T = IntTy
 | |
| 	case "uint":
 | |
| 		typ.Size = varSize
 | |
| 		typ.T = UintTy
 | |
| 	case "bool":
 | |
| 		typ.T = BoolTy
 | |
| 	case "address":
 | |
| 		typ.Size = 20
 | |
| 		typ.T = AddressTy
 | |
| 	case "string":
 | |
| 		typ.T = StringTy
 | |
| 	case "bytes":
 | |
| 		if varSize == 0 {
 | |
| 			typ.T = BytesTy
 | |
| 		} else {
 | |
| 			if varSize > 32 {
 | |
| 				return Type{}, fmt.Errorf("unsupported arg type: %s", t)
 | |
| 			}
 | |
| 			typ.T = FixedBytesTy
 | |
| 			typ.Size = varSize
 | |
| 		}
 | |
| 	case "tuple":
 | |
| 		var (
 | |
| 			fields     []reflect.StructField
 | |
| 			elems      []*Type
 | |
| 			names      []string
 | |
| 			expression string // canonical parameter expression
 | |
| 			used       = make(map[string]bool)
 | |
| 		)
 | |
| 		expression += "("
 | |
| 		for idx, c := range components {
 | |
| 			cType, err := NewType(c.Type, c.InternalType, c.Components)
 | |
| 			if err != nil {
 | |
| 				return Type{}, err
 | |
| 			}
 | |
| 			name := ToCamelCase(c.Name)
 | |
| 			if name == "" {
 | |
| 				return Type{}, errors.New("abi: purely anonymous or underscored field is not supported")
 | |
| 			}
 | |
| 			fieldName := ResolveNameConflict(name, func(s string) bool { return used[s] })
 | |
| 			if err != nil {
 | |
| 				return Type{}, err
 | |
| 			}
 | |
| 			used[fieldName] = true
 | |
| 			if !isValidFieldName(fieldName) {
 | |
| 				return Type{}, fmt.Errorf("field %d has invalid name", idx)
 | |
| 			}
 | |
| 			fields = append(fields, reflect.StructField{
 | |
| 				Name: fieldName, // reflect.StructOf will panic for any exported field.
 | |
| 				Type: cType.GetType(),
 | |
| 				Tag:  reflect.StructTag("json:\"" + c.Name + "\""),
 | |
| 			})
 | |
| 			elems = append(elems, &cType)
 | |
| 			names = append(names, c.Name)
 | |
| 			expression += cType.stringKind
 | |
| 			if idx != len(components)-1 {
 | |
| 				expression += ","
 | |
| 			}
 | |
| 		}
 | |
| 		expression += ")"
 | |
| 
 | |
| 		typ.TupleType = reflect.StructOf(fields)
 | |
| 		typ.TupleElems = elems
 | |
| 		typ.TupleRawNames = names
 | |
| 		typ.T = TupleTy
 | |
| 		typ.stringKind = expression
 | |
| 
 | |
| 		const structPrefix = "struct "
 | |
| 		// After solidity 0.5.10, a new field of abi "internalType"
 | |
| 		// is introduced. From that we can obtain the struct name
 | |
| 		// user defined in the source code.
 | |
| 		if internalType != "" && strings.HasPrefix(internalType, structPrefix) {
 | |
| 			// Foo.Bar type definition is not allowed in golang,
 | |
| 			// convert the format to FooBar
 | |
| 			typ.TupleRawName = strings.ReplaceAll(internalType[len(structPrefix):], ".", "")
 | |
| 		}
 | |
| 
 | |
| 	case "function":
 | |
| 		typ.T = FunctionTy
 | |
| 		typ.Size = 24
 | |
| 	default:
 | |
| 		return Type{}, fmt.Errorf("unsupported arg type: %s", t)
 | |
| 	}
 | |
| 
 | |
| 	return
 | |
| }
 | |
| 
 | |
| // GetType returns the reflection type of the ABI type.
 | |
| func (t Type) GetType() reflect.Type {
 | |
| 	switch t.T {
 | |
| 	case IntTy:
 | |
| 		return reflectIntType(false, t.Size)
 | |
| 	case UintTy:
 | |
| 		return reflectIntType(true, t.Size)
 | |
| 	case BoolTy:
 | |
| 		return reflect.TypeOf(false)
 | |
| 	case StringTy:
 | |
| 		return reflect.TypeOf("")
 | |
| 	case SliceTy:
 | |
| 		return reflect.SliceOf(t.Elem.GetType())
 | |
| 	case ArrayTy:
 | |
| 		return reflect.ArrayOf(t.Size, t.Elem.GetType())
 | |
| 	case TupleTy:
 | |
| 		return t.TupleType
 | |
| 	case AddressTy:
 | |
| 		return reflect.TypeOf(common.Address{})
 | |
| 	case FixedBytesTy:
 | |
| 		return reflect.ArrayOf(t.Size, reflect.TypeOf(byte(0)))
 | |
| 	case BytesTy:
 | |
| 		return reflect.SliceOf(reflect.TypeOf(byte(0)))
 | |
| 	case HashTy:
 | |
| 		// hashtype currently not used
 | |
| 		return reflect.ArrayOf(32, reflect.TypeOf(byte(0)))
 | |
| 	case FixedPointTy:
 | |
| 		// fixedpoint type currently not used
 | |
| 		return reflect.ArrayOf(32, reflect.TypeOf(byte(0)))
 | |
| 	case FunctionTy:
 | |
| 		return reflect.ArrayOf(24, reflect.TypeOf(byte(0)))
 | |
| 	default:
 | |
| 		panic("Invalid type")
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // String implements Stringer.
 | |
| func (t Type) String() (out string) {
 | |
| 	return t.stringKind
 | |
| }
 | |
| 
 | |
| func (t Type) pack(v reflect.Value) ([]byte, error) {
 | |
| 	// dereference pointer first if it's a pointer
 | |
| 	v = indirect(v)
 | |
| 	if err := typeCheck(t, v); err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 
 | |
| 	switch t.T {
 | |
| 	case SliceTy, ArrayTy:
 | |
| 		var ret []byte
 | |
| 
 | |
| 		if t.requiresLengthPrefix() {
 | |
| 			// append length
 | |
| 			ret = append(ret, packNum(reflect.ValueOf(v.Len()))...)
 | |
| 		}
 | |
| 
 | |
| 		// calculate offset if any
 | |
| 		offset := 0
 | |
| 		offsetReq := isDynamicType(*t.Elem)
 | |
| 		if offsetReq {
 | |
| 			offset = getTypeSize(*t.Elem) * v.Len()
 | |
| 		}
 | |
| 		var tail []byte
 | |
| 		for i := 0; i < v.Len(); i++ {
 | |
| 			val, err := t.Elem.pack(v.Index(i))
 | |
| 			if err != nil {
 | |
| 				return nil, err
 | |
| 			}
 | |
| 			if !offsetReq {
 | |
| 				ret = append(ret, val...)
 | |
| 				continue
 | |
| 			}
 | |
| 			ret = append(ret, packNum(reflect.ValueOf(offset))...)
 | |
| 			offset += len(val)
 | |
| 			tail = append(tail, val...)
 | |
| 		}
 | |
| 		return append(ret, tail...), nil
 | |
| 	case TupleTy:
 | |
| 		// (T1,...,Tk) for k >= 0 and any types T1, …, Tk
 | |
| 		// enc(X) = head(X(1)) ... head(X(k)) tail(X(1)) ... tail(X(k))
 | |
| 		// where X = (X(1), ..., X(k)) and head and tail are defined for Ti being a static
 | |
| 		// type as
 | |
| 		//     head(X(i)) = enc(X(i)) and tail(X(i)) = "" (the empty string)
 | |
| 		// and as
 | |
| 		//     head(X(i)) = enc(len(head(X(1)) ... head(X(k)) tail(X(1)) ... tail(X(i-1))))
 | |
| 		//     tail(X(i)) = enc(X(i))
 | |
| 		// otherwise, i.e. if Ti is a dynamic type.
 | |
| 		fieldmap, err := mapArgNamesToStructFields(t.TupleRawNames, v)
 | |
| 		if err != nil {
 | |
| 			return nil, err
 | |
| 		}
 | |
| 		// Calculate prefix occupied size.
 | |
| 		offset := 0
 | |
| 		for _, elem := range t.TupleElems {
 | |
| 			offset += getTypeSize(*elem)
 | |
| 		}
 | |
| 		var ret, tail []byte
 | |
| 		for i, elem := range t.TupleElems {
 | |
| 			field := v.FieldByName(fieldmap[t.TupleRawNames[i]])
 | |
| 			if !field.IsValid() {
 | |
| 				return nil, fmt.Errorf("field %s for tuple not found in the given struct", t.TupleRawNames[i])
 | |
| 			}
 | |
| 			val, err := elem.pack(field)
 | |
| 			if err != nil {
 | |
| 				return nil, err
 | |
| 			}
 | |
| 			if isDynamicType(*elem) {
 | |
| 				ret = append(ret, packNum(reflect.ValueOf(offset))...)
 | |
| 				tail = append(tail, val...)
 | |
| 				offset += len(val)
 | |
| 			} else {
 | |
| 				ret = append(ret, val...)
 | |
| 			}
 | |
| 		}
 | |
| 		return append(ret, tail...), nil
 | |
| 
 | |
| 	default:
 | |
| 		return packElement(t, v)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // requireLengthPrefix returns whether the type requires any sort of length
 | |
| // prefixing.
 | |
| func (t Type) requiresLengthPrefix() bool {
 | |
| 	return t.T == StringTy || t.T == BytesTy || t.T == SliceTy
 | |
| }
 | |
| 
 | |
| // isDynamicType returns true if the type is dynamic.
 | |
| // The following types are called “dynamic”:
 | |
| // * bytes
 | |
| // * string
 | |
| // * T[] for any T
 | |
| // * T[k] for any dynamic T and any k >= 0
 | |
| // * (T1,...,Tk) if Ti is dynamic for some 1 <= i <= k
 | |
| func isDynamicType(t Type) bool {
 | |
| 	if t.T == TupleTy {
 | |
| 		for _, elem := range t.TupleElems {
 | |
| 			if isDynamicType(*elem) {
 | |
| 				return true
 | |
| 			}
 | |
| 		}
 | |
| 		return false
 | |
| 	}
 | |
| 	return t.T == StringTy || t.T == BytesTy || t.T == SliceTy || (t.T == ArrayTy && isDynamicType(*t.Elem))
 | |
| }
 | |
| 
 | |
| // getTypeSize returns the size that this type needs to occupy.
 | |
| // We distinguish static and dynamic types. Static types are encoded in-place
 | |
| // and dynamic types are encoded at a separately allocated location after the
 | |
| // current block.
 | |
| // So for a static variable, the size returned represents the size that the
 | |
| // variable actually occupies.
 | |
| // For a dynamic variable, the returned size is fixed 32 bytes, which is used
 | |
| // to store the location reference for actual value storage.
 | |
| func getTypeSize(t Type) int {
 | |
| 	if t.T == ArrayTy && !isDynamicType(*t.Elem) {
 | |
| 		// Recursively calculate type size if it is a nested array
 | |
| 		if t.Elem.T == ArrayTy || t.Elem.T == TupleTy {
 | |
| 			return t.Size * getTypeSize(*t.Elem)
 | |
| 		}
 | |
| 		return t.Size * 32
 | |
| 	} else if t.T == TupleTy && !isDynamicType(t) {
 | |
| 		total := 0
 | |
| 		for _, elem := range t.TupleElems {
 | |
| 			total += getTypeSize(*elem)
 | |
| 		}
 | |
| 		return total
 | |
| 	}
 | |
| 	return 32
 | |
| }
 | |
| 
 | |
| // isLetter reports whether a given 'rune' is classified as a Letter.
 | |
| // This method is copied from reflect/type.go
 | |
| func isLetter(ch rune) bool {
 | |
| 	return 'a' <= ch && ch <= 'z' || 'A' <= ch && ch <= 'Z' || ch == '_' || ch >= utf8.RuneSelf && unicode.IsLetter(ch)
 | |
| }
 | |
| 
 | |
| // isValidFieldName checks if a string is a valid (struct) field name or not.
 | |
| //
 | |
| // According to the language spec, a field name should be an identifier.
 | |
| //
 | |
| // identifier = letter { letter | unicode_digit } .
 | |
| // letter = unicode_letter | "_" .
 | |
| // This method is copied from reflect/type.go
 | |
| func isValidFieldName(fieldName string) bool {
 | |
| 	for i, c := range fieldName {
 | |
| 		if i == 0 && !isLetter(c) {
 | |
| 			return false
 | |
| 		}
 | |
| 
 | |
| 		if !(isLetter(c) || unicode.IsDigit(c)) {
 | |
| 			return false
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return len(fieldName) > 0
 | |
| }
 |