1070 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			1070 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright 2015 The go-ethereum Authors
 | |
| // This file is part of the go-ethereum library.
 | |
| //
 | |
| // The go-ethereum library is free software: you can redistribute it and/or modify
 | |
| // it under the terms of the GNU Lesser General Public License as published by
 | |
| // the Free Software Foundation, either version 3 of the License, or
 | |
| // (at your option) any later version.
 | |
| //
 | |
| // The go-ethereum library is distributed in the hope that it will be useful,
 | |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 | |
| // GNU Lesser General Public License for more details.
 | |
| //
 | |
| // You should have received a copy of the GNU Lesser General Public License
 | |
| // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
 | |
| 
 | |
| package trie
 | |
| 
 | |
| import (
 | |
| 	"bytes"
 | |
| 	crand "crypto/rand"
 | |
| 	"encoding/binary"
 | |
| 	mrand "math/rand"
 | |
| 	"sort"
 | |
| 	"testing"
 | |
| 	"time"
 | |
| 
 | |
| 	"github.com/ethereum/go-ethereum/common"
 | |
| 	"github.com/ethereum/go-ethereum/crypto"
 | |
| 	"github.com/ethereum/go-ethereum/ethdb/memorydb"
 | |
| )
 | |
| 
 | |
| func init() {
 | |
| 	mrand.Seed(time.Now().Unix())
 | |
| }
 | |
| 
 | |
| // makeProvers creates Merkle trie provers based on different implementations to
 | |
| // test all variations.
 | |
| func makeProvers(trie *Trie) []func(key []byte) *memorydb.Database {
 | |
| 	var provers []func(key []byte) *memorydb.Database
 | |
| 
 | |
| 	// Create a direct trie based Merkle prover
 | |
| 	provers = append(provers, func(key []byte) *memorydb.Database {
 | |
| 		proof := memorydb.New()
 | |
| 		trie.Prove(key, 0, proof)
 | |
| 		return proof
 | |
| 	})
 | |
| 	// Create a leaf iterator based Merkle prover
 | |
| 	provers = append(provers, func(key []byte) *memorydb.Database {
 | |
| 		proof := memorydb.New()
 | |
| 		if it := NewIterator(trie.NodeIterator(key)); it.Next() && bytes.Equal(key, it.Key) {
 | |
| 			for _, p := range it.Prove() {
 | |
| 				proof.Put(crypto.Keccak256(p), p)
 | |
| 			}
 | |
| 		}
 | |
| 		return proof
 | |
| 	})
 | |
| 	return provers
 | |
| }
 | |
| 
 | |
| func TestProof(t *testing.T) {
 | |
| 	trie, vals := randomTrie(500)
 | |
| 	root := trie.Hash()
 | |
| 	for i, prover := range makeProvers(trie) {
 | |
| 		for _, kv := range vals {
 | |
| 			proof := prover(kv.k)
 | |
| 			if proof == nil {
 | |
| 				t.Fatalf("prover %d: missing key %x while constructing proof", i, kv.k)
 | |
| 			}
 | |
| 			val, err := VerifyProof(root, kv.k, proof)
 | |
| 			if err != nil {
 | |
| 				t.Fatalf("prover %d: failed to verify proof for key %x: %v\nraw proof: %x", i, kv.k, err, proof)
 | |
| 			}
 | |
| 			if !bytes.Equal(val, kv.v) {
 | |
| 				t.Fatalf("prover %d: verified value mismatch for key %x: have %x, want %x", i, kv.k, val, kv.v)
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func TestOneElementProof(t *testing.T) {
 | |
| 	trie := new(Trie)
 | |
| 	updateString(trie, "k", "v")
 | |
| 	for i, prover := range makeProvers(trie) {
 | |
| 		proof := prover([]byte("k"))
 | |
| 		if proof == nil {
 | |
| 			t.Fatalf("prover %d: nil proof", i)
 | |
| 		}
 | |
| 		if proof.Len() != 1 {
 | |
| 			t.Errorf("prover %d: proof should have one element", i)
 | |
| 		}
 | |
| 		val, err := VerifyProof(trie.Hash(), []byte("k"), proof)
 | |
| 		if err != nil {
 | |
| 			t.Fatalf("prover %d: failed to verify proof: %v\nraw proof: %x", i, err, proof)
 | |
| 		}
 | |
| 		if !bytes.Equal(val, []byte("v")) {
 | |
| 			t.Fatalf("prover %d: verified value mismatch: have %x, want 'k'", i, val)
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func TestBadProof(t *testing.T) {
 | |
| 	trie, vals := randomTrie(800)
 | |
| 	root := trie.Hash()
 | |
| 	for i, prover := range makeProvers(trie) {
 | |
| 		for _, kv := range vals {
 | |
| 			proof := prover(kv.k)
 | |
| 			if proof == nil {
 | |
| 				t.Fatalf("prover %d: nil proof", i)
 | |
| 			}
 | |
| 			it := proof.NewIterator(nil, nil)
 | |
| 			for i, d := 0, mrand.Intn(proof.Len()); i <= d; i++ {
 | |
| 				it.Next()
 | |
| 			}
 | |
| 			key := it.Key()
 | |
| 			val, _ := proof.Get(key)
 | |
| 			proof.Delete(key)
 | |
| 			it.Release()
 | |
| 
 | |
| 			mutateByte(val)
 | |
| 			proof.Put(crypto.Keccak256(val), val)
 | |
| 
 | |
| 			if _, err := VerifyProof(root, kv.k, proof); err == nil {
 | |
| 				t.Fatalf("prover %d: expected proof to fail for key %x", i, kv.k)
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Tests that missing keys can also be proven. The test explicitly uses a single
 | |
| // entry trie and checks for missing keys both before and after the single entry.
 | |
| func TestMissingKeyProof(t *testing.T) {
 | |
| 	trie := new(Trie)
 | |
| 	updateString(trie, "k", "v")
 | |
| 
 | |
| 	for i, key := range []string{"a", "j", "l", "z"} {
 | |
| 		proof := memorydb.New()
 | |
| 		trie.Prove([]byte(key), 0, proof)
 | |
| 
 | |
| 		if proof.Len() != 1 {
 | |
| 			t.Errorf("test %d: proof should have one element", i)
 | |
| 		}
 | |
| 		val, err := VerifyProof(trie.Hash(), []byte(key), proof)
 | |
| 		if err != nil {
 | |
| 			t.Fatalf("test %d: failed to verify proof: %v\nraw proof: %x", i, err, proof)
 | |
| 		}
 | |
| 		if val != nil {
 | |
| 			t.Fatalf("test %d: verified value mismatch: have %x, want nil", i, val)
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| type entrySlice []*kv
 | |
| 
 | |
| func (p entrySlice) Len() int           { return len(p) }
 | |
| func (p entrySlice) Less(i, j int) bool { return bytes.Compare(p[i].k, p[j].k) < 0 }
 | |
| func (p entrySlice) Swap(i, j int)      { p[i], p[j] = p[j], p[i] }
 | |
| 
 | |
| // TestRangeProof tests normal range proof with both edge proofs
 | |
| // as the existent proof. The test cases are generated randomly.
 | |
| func TestRangeProof(t *testing.T) {
 | |
| 	trie, vals := randomTrie(4096)
 | |
| 	var entries entrySlice
 | |
| 	for _, kv := range vals {
 | |
| 		entries = append(entries, kv)
 | |
| 	}
 | |
| 	sort.Sort(entries)
 | |
| 	for i := 0; i < 500; i++ {
 | |
| 		start := mrand.Intn(len(entries))
 | |
| 		end := mrand.Intn(len(entries)-start) + start + 1
 | |
| 
 | |
| 		proof := memorydb.New()
 | |
| 		if err := trie.Prove(entries[start].k, 0, proof); err != nil {
 | |
| 			t.Fatalf("Failed to prove the first node %v", err)
 | |
| 		}
 | |
| 		if err := trie.Prove(entries[end-1].k, 0, proof); err != nil {
 | |
| 			t.Fatalf("Failed to prove the last node %v", err)
 | |
| 		}
 | |
| 		var keys [][]byte
 | |
| 		var vals [][]byte
 | |
| 		for i := start; i < end; i++ {
 | |
| 			keys = append(keys, entries[i].k)
 | |
| 			vals = append(vals, entries[i].v)
 | |
| 		}
 | |
| 		_, err := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, vals, proof)
 | |
| 		if err != nil {
 | |
| 			t.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err)
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // TestRangeProof tests normal range proof with two non-existent proofs.
 | |
| // The test cases are generated randomly.
 | |
| func TestRangeProofWithNonExistentProof(t *testing.T) {
 | |
| 	trie, vals := randomTrie(4096)
 | |
| 	var entries entrySlice
 | |
| 	for _, kv := range vals {
 | |
| 		entries = append(entries, kv)
 | |
| 	}
 | |
| 	sort.Sort(entries)
 | |
| 	for i := 0; i < 500; i++ {
 | |
| 		start := mrand.Intn(len(entries))
 | |
| 		end := mrand.Intn(len(entries)-start) + start + 1
 | |
| 		proof := memorydb.New()
 | |
| 
 | |
| 		// Short circuit if the decreased key is same with the previous key
 | |
| 		first := decreseKey(common.CopyBytes(entries[start].k))
 | |
| 		if start != 0 && bytes.Equal(first, entries[start-1].k) {
 | |
| 			continue
 | |
| 		}
 | |
| 		// Short circuit if the decreased key is underflow
 | |
| 		if bytes.Compare(first, entries[start].k) > 0 {
 | |
| 			continue
 | |
| 		}
 | |
| 		// Short circuit if the increased key is same with the next key
 | |
| 		last := increseKey(common.CopyBytes(entries[end-1].k))
 | |
| 		if end != len(entries) && bytes.Equal(last, entries[end].k) {
 | |
| 			continue
 | |
| 		}
 | |
| 		// Short circuit if the increased key is overflow
 | |
| 		if bytes.Compare(last, entries[end-1].k) < 0 {
 | |
| 			continue
 | |
| 		}
 | |
| 		if err := trie.Prove(first, 0, proof); err != nil {
 | |
| 			t.Fatalf("Failed to prove the first node %v", err)
 | |
| 		}
 | |
| 		if err := trie.Prove(last, 0, proof); err != nil {
 | |
| 			t.Fatalf("Failed to prove the last node %v", err)
 | |
| 		}
 | |
| 		var keys [][]byte
 | |
| 		var vals [][]byte
 | |
| 		for i := start; i < end; i++ {
 | |
| 			keys = append(keys, entries[i].k)
 | |
| 			vals = append(vals, entries[i].v)
 | |
| 		}
 | |
| 		_, err := VerifyRangeProof(trie.Hash(), first, last, keys, vals, proof)
 | |
| 		if err != nil {
 | |
| 			t.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err)
 | |
| 		}
 | |
| 	}
 | |
| 	// Special case, two edge proofs for two edge key.
 | |
| 	proof := memorydb.New()
 | |
| 	first := common.HexToHash("0x0000000000000000000000000000000000000000000000000000000000000000").Bytes()
 | |
| 	last := common.HexToHash("0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").Bytes()
 | |
| 	if err := trie.Prove(first, 0, proof); err != nil {
 | |
| 		t.Fatalf("Failed to prove the first node %v", err)
 | |
| 	}
 | |
| 	if err := trie.Prove(last, 0, proof); err != nil {
 | |
| 		t.Fatalf("Failed to prove the last node %v", err)
 | |
| 	}
 | |
| 	var k [][]byte
 | |
| 	var v [][]byte
 | |
| 	for i := 0; i < len(entries); i++ {
 | |
| 		k = append(k, entries[i].k)
 | |
| 		v = append(v, entries[i].v)
 | |
| 	}
 | |
| 	_, err := VerifyRangeProof(trie.Hash(), first, last, k, v, proof)
 | |
| 	if err != nil {
 | |
| 		t.Fatal("Failed to verify whole rang with non-existent edges")
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // TestRangeProofWithInvalidNonExistentProof tests such scenarios:
 | |
| // - There exists a gap between the first element and the left edge proof
 | |
| // - There exists a gap between the last element and the right edge proof
 | |
| func TestRangeProofWithInvalidNonExistentProof(t *testing.T) {
 | |
| 	trie, vals := randomTrie(4096)
 | |
| 	var entries entrySlice
 | |
| 	for _, kv := range vals {
 | |
| 		entries = append(entries, kv)
 | |
| 	}
 | |
| 	sort.Sort(entries)
 | |
| 
 | |
| 	// Case 1
 | |
| 	start, end := 100, 200
 | |
| 	first := decreseKey(common.CopyBytes(entries[start].k))
 | |
| 
 | |
| 	proof := memorydb.New()
 | |
| 	if err := trie.Prove(first, 0, proof); err != nil {
 | |
| 		t.Fatalf("Failed to prove the first node %v", err)
 | |
| 	}
 | |
| 	if err := trie.Prove(entries[end-1].k, 0, proof); err != nil {
 | |
| 		t.Fatalf("Failed to prove the last node %v", err)
 | |
| 	}
 | |
| 	start = 105 // Gap created
 | |
| 	k := make([][]byte, 0)
 | |
| 	v := make([][]byte, 0)
 | |
| 	for i := start; i < end; i++ {
 | |
| 		k = append(k, entries[i].k)
 | |
| 		v = append(v, entries[i].v)
 | |
| 	}
 | |
| 	_, err := VerifyRangeProof(trie.Hash(), first, k[len(k)-1], k, v, proof)
 | |
| 	if err == nil {
 | |
| 		t.Fatalf("Expected to detect the error, got nil")
 | |
| 	}
 | |
| 
 | |
| 	// Case 2
 | |
| 	start, end = 100, 200
 | |
| 	last := increseKey(common.CopyBytes(entries[end-1].k))
 | |
| 	proof = memorydb.New()
 | |
| 	if err := trie.Prove(entries[start].k, 0, proof); err != nil {
 | |
| 		t.Fatalf("Failed to prove the first node %v", err)
 | |
| 	}
 | |
| 	if err := trie.Prove(last, 0, proof); err != nil {
 | |
| 		t.Fatalf("Failed to prove the last node %v", err)
 | |
| 	}
 | |
| 	end = 195 // Capped slice
 | |
| 	k = make([][]byte, 0)
 | |
| 	v = make([][]byte, 0)
 | |
| 	for i := start; i < end; i++ {
 | |
| 		k = append(k, entries[i].k)
 | |
| 		v = append(v, entries[i].v)
 | |
| 	}
 | |
| 	_, err = VerifyRangeProof(trie.Hash(), k[0], last, k, v, proof)
 | |
| 	if err == nil {
 | |
| 		t.Fatalf("Expected to detect the error, got nil")
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // TestOneElementRangeProof tests the proof with only one
 | |
| // element. The first edge proof can be existent one or
 | |
| // non-existent one.
 | |
| func TestOneElementRangeProof(t *testing.T) {
 | |
| 	trie, vals := randomTrie(4096)
 | |
| 	var entries entrySlice
 | |
| 	for _, kv := range vals {
 | |
| 		entries = append(entries, kv)
 | |
| 	}
 | |
| 	sort.Sort(entries)
 | |
| 
 | |
| 	// One element with existent edge proof, both edge proofs
 | |
| 	// point to the SAME key.
 | |
| 	start := 1000
 | |
| 	proof := memorydb.New()
 | |
| 	if err := trie.Prove(entries[start].k, 0, proof); err != nil {
 | |
| 		t.Fatalf("Failed to prove the first node %v", err)
 | |
| 	}
 | |
| 	_, err := VerifyRangeProof(trie.Hash(), entries[start].k, entries[start].k, [][]byte{entries[start].k}, [][]byte{entries[start].v}, proof)
 | |
| 	if err != nil {
 | |
| 		t.Fatalf("Expected no error, got %v", err)
 | |
| 	}
 | |
| 
 | |
| 	// One element with left non-existent edge proof
 | |
| 	start = 1000
 | |
| 	first := decreseKey(common.CopyBytes(entries[start].k))
 | |
| 	proof = memorydb.New()
 | |
| 	if err := trie.Prove(first, 0, proof); err != nil {
 | |
| 		t.Fatalf("Failed to prove the first node %v", err)
 | |
| 	}
 | |
| 	if err := trie.Prove(entries[start].k, 0, proof); err != nil {
 | |
| 		t.Fatalf("Failed to prove the last node %v", err)
 | |
| 	}
 | |
| 	_, err = VerifyRangeProof(trie.Hash(), first, entries[start].k, [][]byte{entries[start].k}, [][]byte{entries[start].v}, proof)
 | |
| 	if err != nil {
 | |
| 		t.Fatalf("Expected no error, got %v", err)
 | |
| 	}
 | |
| 
 | |
| 	// One element with right non-existent edge proof
 | |
| 	start = 1000
 | |
| 	last := increseKey(common.CopyBytes(entries[start].k))
 | |
| 	proof = memorydb.New()
 | |
| 	if err := trie.Prove(entries[start].k, 0, proof); err != nil {
 | |
| 		t.Fatalf("Failed to prove the first node %v", err)
 | |
| 	}
 | |
| 	if err := trie.Prove(last, 0, proof); err != nil {
 | |
| 		t.Fatalf("Failed to prove the last node %v", err)
 | |
| 	}
 | |
| 	_, err = VerifyRangeProof(trie.Hash(), entries[start].k, last, [][]byte{entries[start].k}, [][]byte{entries[start].v}, proof)
 | |
| 	if err != nil {
 | |
| 		t.Fatalf("Expected no error, got %v", err)
 | |
| 	}
 | |
| 
 | |
| 	// One element with two non-existent edge proofs
 | |
| 	start = 1000
 | |
| 	first, last = decreseKey(common.CopyBytes(entries[start].k)), increseKey(common.CopyBytes(entries[start].k))
 | |
| 	proof = memorydb.New()
 | |
| 	if err := trie.Prove(first, 0, proof); err != nil {
 | |
| 		t.Fatalf("Failed to prove the first node %v", err)
 | |
| 	}
 | |
| 	if err := trie.Prove(last, 0, proof); err != nil {
 | |
| 		t.Fatalf("Failed to prove the last node %v", err)
 | |
| 	}
 | |
| 	_, err = VerifyRangeProof(trie.Hash(), first, last, [][]byte{entries[start].k}, [][]byte{entries[start].v}, proof)
 | |
| 	if err != nil {
 | |
| 		t.Fatalf("Expected no error, got %v", err)
 | |
| 	}
 | |
| 
 | |
| 	// Test the mini trie with only a single element.
 | |
| 	tinyTrie := new(Trie)
 | |
| 	entry := &kv{randBytes(32), randBytes(20), false}
 | |
| 	tinyTrie.Update(entry.k, entry.v)
 | |
| 
 | |
| 	first = common.HexToHash("0x0000000000000000000000000000000000000000000000000000000000000000").Bytes()
 | |
| 	last = entry.k
 | |
| 	proof = memorydb.New()
 | |
| 	if err := tinyTrie.Prove(first, 0, proof); err != nil {
 | |
| 		t.Fatalf("Failed to prove the first node %v", err)
 | |
| 	}
 | |
| 	if err := tinyTrie.Prove(last, 0, proof); err != nil {
 | |
| 		t.Fatalf("Failed to prove the last node %v", err)
 | |
| 	}
 | |
| 	_, err = VerifyRangeProof(tinyTrie.Hash(), first, last, [][]byte{entry.k}, [][]byte{entry.v}, proof)
 | |
| 	if err != nil {
 | |
| 		t.Fatalf("Expected no error, got %v", err)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // TestAllElementsProof tests the range proof with all elements.
 | |
| // The edge proofs can be nil.
 | |
| func TestAllElementsProof(t *testing.T) {
 | |
| 	trie, vals := randomTrie(4096)
 | |
| 	var entries entrySlice
 | |
| 	for _, kv := range vals {
 | |
| 		entries = append(entries, kv)
 | |
| 	}
 | |
| 	sort.Sort(entries)
 | |
| 
 | |
| 	var k [][]byte
 | |
| 	var v [][]byte
 | |
| 	for i := 0; i < len(entries); i++ {
 | |
| 		k = append(k, entries[i].k)
 | |
| 		v = append(v, entries[i].v)
 | |
| 	}
 | |
| 	_, err := VerifyRangeProof(trie.Hash(), nil, nil, k, v, nil)
 | |
| 	if err != nil {
 | |
| 		t.Fatalf("Expected no error, got %v", err)
 | |
| 	}
 | |
| 
 | |
| 	// With edge proofs, it should still work.
 | |
| 	proof := memorydb.New()
 | |
| 	if err := trie.Prove(entries[0].k, 0, proof); err != nil {
 | |
| 		t.Fatalf("Failed to prove the first node %v", err)
 | |
| 	}
 | |
| 	if err := trie.Prove(entries[len(entries)-1].k, 0, proof); err != nil {
 | |
| 		t.Fatalf("Failed to prove the last node %v", err)
 | |
| 	}
 | |
| 	_, err = VerifyRangeProof(trie.Hash(), k[0], k[len(k)-1], k, v, proof)
 | |
| 	if err != nil {
 | |
| 		t.Fatalf("Expected no error, got %v", err)
 | |
| 	}
 | |
| 
 | |
| 	// Even with non-existent edge proofs, it should still work.
 | |
| 	proof = memorydb.New()
 | |
| 	first := common.HexToHash("0x0000000000000000000000000000000000000000000000000000000000000000").Bytes()
 | |
| 	last := common.HexToHash("0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").Bytes()
 | |
| 	if err := trie.Prove(first, 0, proof); err != nil {
 | |
| 		t.Fatalf("Failed to prove the first node %v", err)
 | |
| 	}
 | |
| 	if err := trie.Prove(last, 0, proof); err != nil {
 | |
| 		t.Fatalf("Failed to prove the last node %v", err)
 | |
| 	}
 | |
| 	_, err = VerifyRangeProof(trie.Hash(), first, last, k, v, proof)
 | |
| 	if err != nil {
 | |
| 		t.Fatalf("Expected no error, got %v", err)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // TestSingleSideRangeProof tests the range starts from zero.
 | |
| func TestSingleSideRangeProof(t *testing.T) {
 | |
| 	for i := 0; i < 64; i++ {
 | |
| 		trie := new(Trie)
 | |
| 		var entries entrySlice
 | |
| 		for i := 0; i < 4096; i++ {
 | |
| 			value := &kv{randBytes(32), randBytes(20), false}
 | |
| 			trie.Update(value.k, value.v)
 | |
| 			entries = append(entries, value)
 | |
| 		}
 | |
| 		sort.Sort(entries)
 | |
| 
 | |
| 		var cases = []int{0, 1, 50, 100, 1000, 2000, len(entries) - 1}
 | |
| 		for _, pos := range cases {
 | |
| 			proof := memorydb.New()
 | |
| 			if err := trie.Prove(common.Hash{}.Bytes(), 0, proof); err != nil {
 | |
| 				t.Fatalf("Failed to prove the first node %v", err)
 | |
| 			}
 | |
| 			if err := trie.Prove(entries[pos].k, 0, proof); err != nil {
 | |
| 				t.Fatalf("Failed to prove the first node %v", err)
 | |
| 			}
 | |
| 			k := make([][]byte, 0)
 | |
| 			v := make([][]byte, 0)
 | |
| 			for i := 0; i <= pos; i++ {
 | |
| 				k = append(k, entries[i].k)
 | |
| 				v = append(v, entries[i].v)
 | |
| 			}
 | |
| 			_, err := VerifyRangeProof(trie.Hash(), common.Hash{}.Bytes(), k[len(k)-1], k, v, proof)
 | |
| 			if err != nil {
 | |
| 				t.Fatalf("Expected no error, got %v", err)
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // TestReverseSingleSideRangeProof tests the range ends with 0xffff...fff.
 | |
| func TestReverseSingleSideRangeProof(t *testing.T) {
 | |
| 	for i := 0; i < 64; i++ {
 | |
| 		trie := new(Trie)
 | |
| 		var entries entrySlice
 | |
| 		for i := 0; i < 4096; i++ {
 | |
| 			value := &kv{randBytes(32), randBytes(20), false}
 | |
| 			trie.Update(value.k, value.v)
 | |
| 			entries = append(entries, value)
 | |
| 		}
 | |
| 		sort.Sort(entries)
 | |
| 
 | |
| 		var cases = []int{0, 1, 50, 100, 1000, 2000, len(entries) - 1}
 | |
| 		for _, pos := range cases {
 | |
| 			proof := memorydb.New()
 | |
| 			if err := trie.Prove(entries[pos].k, 0, proof); err != nil {
 | |
| 				t.Fatalf("Failed to prove the first node %v", err)
 | |
| 			}
 | |
| 			last := common.HexToHash("0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff")
 | |
| 			if err := trie.Prove(last.Bytes(), 0, proof); err != nil {
 | |
| 				t.Fatalf("Failed to prove the last node %v", err)
 | |
| 			}
 | |
| 			k := make([][]byte, 0)
 | |
| 			v := make([][]byte, 0)
 | |
| 			for i := pos; i < len(entries); i++ {
 | |
| 				k = append(k, entries[i].k)
 | |
| 				v = append(v, entries[i].v)
 | |
| 			}
 | |
| 			_, err := VerifyRangeProof(trie.Hash(), k[0], last.Bytes(), k, v, proof)
 | |
| 			if err != nil {
 | |
| 				t.Fatalf("Expected no error, got %v", err)
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // TestBadRangeProof tests a few cases which the proof is wrong.
 | |
| // The prover is expected to detect the error.
 | |
| func TestBadRangeProof(t *testing.T) {
 | |
| 	trie, vals := randomTrie(4096)
 | |
| 	var entries entrySlice
 | |
| 	for _, kv := range vals {
 | |
| 		entries = append(entries, kv)
 | |
| 	}
 | |
| 	sort.Sort(entries)
 | |
| 
 | |
| 	for i := 0; i < 500; i++ {
 | |
| 		start := mrand.Intn(len(entries))
 | |
| 		end := mrand.Intn(len(entries)-start) + start + 1
 | |
| 		proof := memorydb.New()
 | |
| 		if err := trie.Prove(entries[start].k, 0, proof); err != nil {
 | |
| 			t.Fatalf("Failed to prove the first node %v", err)
 | |
| 		}
 | |
| 		if err := trie.Prove(entries[end-1].k, 0, proof); err != nil {
 | |
| 			t.Fatalf("Failed to prove the last node %v", err)
 | |
| 		}
 | |
| 		var keys [][]byte
 | |
| 		var vals [][]byte
 | |
| 		for i := start; i < end; i++ {
 | |
| 			keys = append(keys, entries[i].k)
 | |
| 			vals = append(vals, entries[i].v)
 | |
| 		}
 | |
| 		var first, last = keys[0], keys[len(keys)-1]
 | |
| 		testcase := mrand.Intn(6)
 | |
| 		var index int
 | |
| 		switch testcase {
 | |
| 		case 0:
 | |
| 			// Modified key
 | |
| 			index = mrand.Intn(end - start)
 | |
| 			keys[index] = randBytes(32) // In theory it can't be same
 | |
| 		case 1:
 | |
| 			// Modified val
 | |
| 			index = mrand.Intn(end - start)
 | |
| 			vals[index] = randBytes(20) // In theory it can't be same
 | |
| 		case 2:
 | |
| 			// Gapped entry slice
 | |
| 			index = mrand.Intn(end - start)
 | |
| 			if (index == 0 && start < 100) || (index == end-start-1 && end <= 100) {
 | |
| 				continue
 | |
| 			}
 | |
| 			keys = append(keys[:index], keys[index+1:]...)
 | |
| 			vals = append(vals[:index], vals[index+1:]...)
 | |
| 		case 3:
 | |
| 			// Out of order
 | |
| 			index1 := mrand.Intn(end - start)
 | |
| 			index2 := mrand.Intn(end - start)
 | |
| 			if index1 == index2 {
 | |
| 				continue
 | |
| 			}
 | |
| 			keys[index1], keys[index2] = keys[index2], keys[index1]
 | |
| 			vals[index1], vals[index2] = vals[index2], vals[index1]
 | |
| 		case 4:
 | |
| 			// Set random key to nil, do nothing
 | |
| 			index = mrand.Intn(end - start)
 | |
| 			keys[index] = nil
 | |
| 		case 5:
 | |
| 			// Set random value to nil, deletion
 | |
| 			index = mrand.Intn(end - start)
 | |
| 			vals[index] = nil
 | |
| 		}
 | |
| 		_, err := VerifyRangeProof(trie.Hash(), first, last, keys, vals, proof)
 | |
| 		if err == nil {
 | |
| 			t.Fatalf("%d Case %d index %d range: (%d->%d) expect error, got nil", i, testcase, index, start, end-1)
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // TestGappedRangeProof focuses on the small trie with embedded nodes.
 | |
| // If the gapped node is embedded in the trie, it should be detected too.
 | |
| func TestGappedRangeProof(t *testing.T) {
 | |
| 	trie := new(Trie)
 | |
| 	var entries []*kv // Sorted entries
 | |
| 	for i := byte(0); i < 10; i++ {
 | |
| 		value := &kv{common.LeftPadBytes([]byte{i}, 32), []byte{i}, false}
 | |
| 		trie.Update(value.k, value.v)
 | |
| 		entries = append(entries, value)
 | |
| 	}
 | |
| 	first, last := 2, 8
 | |
| 	proof := memorydb.New()
 | |
| 	if err := trie.Prove(entries[first].k, 0, proof); err != nil {
 | |
| 		t.Fatalf("Failed to prove the first node %v", err)
 | |
| 	}
 | |
| 	if err := trie.Prove(entries[last-1].k, 0, proof); err != nil {
 | |
| 		t.Fatalf("Failed to prove the last node %v", err)
 | |
| 	}
 | |
| 	var keys [][]byte
 | |
| 	var vals [][]byte
 | |
| 	for i := first; i < last; i++ {
 | |
| 		if i == (first+last)/2 {
 | |
| 			continue
 | |
| 		}
 | |
| 		keys = append(keys, entries[i].k)
 | |
| 		vals = append(vals, entries[i].v)
 | |
| 	}
 | |
| 	_, err := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, vals, proof)
 | |
| 	if err == nil {
 | |
| 		t.Fatal("expect error, got nil")
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // TestSameSideProofs tests the element is not in the range covered by proofs
 | |
| func TestSameSideProofs(t *testing.T) {
 | |
| 	trie, vals := randomTrie(4096)
 | |
| 	var entries entrySlice
 | |
| 	for _, kv := range vals {
 | |
| 		entries = append(entries, kv)
 | |
| 	}
 | |
| 	sort.Sort(entries)
 | |
| 
 | |
| 	pos := 1000
 | |
| 	first := decreseKey(common.CopyBytes(entries[pos].k))
 | |
| 	first = decreseKey(first)
 | |
| 	last := decreseKey(common.CopyBytes(entries[pos].k))
 | |
| 
 | |
| 	proof := memorydb.New()
 | |
| 	if err := trie.Prove(first, 0, proof); err != nil {
 | |
| 		t.Fatalf("Failed to prove the first node %v", err)
 | |
| 	}
 | |
| 	if err := trie.Prove(last, 0, proof); err != nil {
 | |
| 		t.Fatalf("Failed to prove the last node %v", err)
 | |
| 	}
 | |
| 	_, err := VerifyRangeProof(trie.Hash(), first, last, [][]byte{entries[pos].k}, [][]byte{entries[pos].v}, proof)
 | |
| 	if err == nil {
 | |
| 		t.Fatalf("Expected error, got nil")
 | |
| 	}
 | |
| 
 | |
| 	first = increseKey(common.CopyBytes(entries[pos].k))
 | |
| 	last = increseKey(common.CopyBytes(entries[pos].k))
 | |
| 	last = increseKey(last)
 | |
| 
 | |
| 	proof = memorydb.New()
 | |
| 	if err := trie.Prove(first, 0, proof); err != nil {
 | |
| 		t.Fatalf("Failed to prove the first node %v", err)
 | |
| 	}
 | |
| 	if err := trie.Prove(last, 0, proof); err != nil {
 | |
| 		t.Fatalf("Failed to prove the last node %v", err)
 | |
| 	}
 | |
| 	_, err = VerifyRangeProof(trie.Hash(), first, last, [][]byte{entries[pos].k}, [][]byte{entries[pos].v}, proof)
 | |
| 	if err == nil {
 | |
| 		t.Fatalf("Expected error, got nil")
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func TestHasRightElement(t *testing.T) {
 | |
| 	trie := new(Trie)
 | |
| 	var entries entrySlice
 | |
| 	for i := 0; i < 4096; i++ {
 | |
| 		value := &kv{randBytes(32), randBytes(20), false}
 | |
| 		trie.Update(value.k, value.v)
 | |
| 		entries = append(entries, value)
 | |
| 	}
 | |
| 	sort.Sort(entries)
 | |
| 
 | |
| 	var cases = []struct {
 | |
| 		start   int
 | |
| 		end     int
 | |
| 		hasMore bool
 | |
| 	}{
 | |
| 		{-1, 1, true}, // single element with non-existent left proof
 | |
| 		{0, 1, true},  // single element with existent left proof
 | |
| 		{0, 10, true},
 | |
| 		{50, 100, true},
 | |
| 		{50, len(entries), false},               // No more element expected
 | |
| 		{len(entries) - 1, len(entries), false}, // Single last element with two existent proofs(point to same key)
 | |
| 		{len(entries) - 1, -1, false},           // Single last element with non-existent right proof
 | |
| 		{0, len(entries), false},                // The whole set with existent left proof
 | |
| 		{-1, len(entries), false},               // The whole set with non-existent left proof
 | |
| 		{-1, -1, false},                         // The whole set with non-existent left/right proof
 | |
| 	}
 | |
| 	for _, c := range cases {
 | |
| 		var (
 | |
| 			firstKey []byte
 | |
| 			lastKey  []byte
 | |
| 			start    = c.start
 | |
| 			end      = c.end
 | |
| 			proof    = memorydb.New()
 | |
| 		)
 | |
| 		if c.start == -1 {
 | |
| 			firstKey, start = common.Hash{}.Bytes(), 0
 | |
| 			if err := trie.Prove(firstKey, 0, proof); err != nil {
 | |
| 				t.Fatalf("Failed to prove the first node %v", err)
 | |
| 			}
 | |
| 		} else {
 | |
| 			firstKey = entries[c.start].k
 | |
| 			if err := trie.Prove(entries[c.start].k, 0, proof); err != nil {
 | |
| 				t.Fatalf("Failed to prove the first node %v", err)
 | |
| 			}
 | |
| 		}
 | |
| 		if c.end == -1 {
 | |
| 			lastKey, end = common.HexToHash("0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").Bytes(), len(entries)
 | |
| 			if err := trie.Prove(lastKey, 0, proof); err != nil {
 | |
| 				t.Fatalf("Failed to prove the first node %v", err)
 | |
| 			}
 | |
| 		} else {
 | |
| 			lastKey = entries[c.end-1].k
 | |
| 			if err := trie.Prove(entries[c.end-1].k, 0, proof); err != nil {
 | |
| 				t.Fatalf("Failed to prove the first node %v", err)
 | |
| 			}
 | |
| 		}
 | |
| 		k := make([][]byte, 0)
 | |
| 		v := make([][]byte, 0)
 | |
| 		for i := start; i < end; i++ {
 | |
| 			k = append(k, entries[i].k)
 | |
| 			v = append(v, entries[i].v)
 | |
| 		}
 | |
| 		hasMore, err := VerifyRangeProof(trie.Hash(), firstKey, lastKey, k, v, proof)
 | |
| 		if err != nil {
 | |
| 			t.Fatalf("Expected no error, got %v", err)
 | |
| 		}
 | |
| 		if hasMore != c.hasMore {
 | |
| 			t.Fatalf("Wrong hasMore indicator, want %t, got %t", c.hasMore, hasMore)
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // TestEmptyRangeProof tests the range proof with "no" element.
 | |
| // The first edge proof must be a non-existent proof.
 | |
| func TestEmptyRangeProof(t *testing.T) {
 | |
| 	trie, vals := randomTrie(4096)
 | |
| 	var entries entrySlice
 | |
| 	for _, kv := range vals {
 | |
| 		entries = append(entries, kv)
 | |
| 	}
 | |
| 	sort.Sort(entries)
 | |
| 
 | |
| 	var cases = []struct {
 | |
| 		pos int
 | |
| 		err bool
 | |
| 	}{
 | |
| 		{len(entries) - 1, false},
 | |
| 		{500, true},
 | |
| 	}
 | |
| 	for _, c := range cases {
 | |
| 		proof := memorydb.New()
 | |
| 		first := increseKey(common.CopyBytes(entries[c.pos].k))
 | |
| 		if err := trie.Prove(first, 0, proof); err != nil {
 | |
| 			t.Fatalf("Failed to prove the first node %v", err)
 | |
| 		}
 | |
| 		_, err := VerifyRangeProof(trie.Hash(), first, nil, nil, nil, proof)
 | |
| 		if c.err && err == nil {
 | |
| 			t.Fatalf("Expected error, got nil")
 | |
| 		}
 | |
| 		if !c.err && err != nil {
 | |
| 			t.Fatalf("Expected no error, got %v", err)
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // TestBloatedProof tests a malicious proof, where the proof is more or less the
 | |
| // whole trie. Previously we didn't accept such packets, but the new APIs do, so
 | |
| // lets leave this test as a bit weird, but present.
 | |
| func TestBloatedProof(t *testing.T) {
 | |
| 	// Use a small trie
 | |
| 	trie, kvs := nonRandomTrie(100)
 | |
| 	var entries entrySlice
 | |
| 	for _, kv := range kvs {
 | |
| 		entries = append(entries, kv)
 | |
| 	}
 | |
| 	sort.Sort(entries)
 | |
| 	var keys [][]byte
 | |
| 	var vals [][]byte
 | |
| 
 | |
| 	proof := memorydb.New()
 | |
| 	// In the 'malicious' case, we add proofs for every single item
 | |
| 	// (but only one key/value pair used as leaf)
 | |
| 	for i, entry := range entries {
 | |
| 		trie.Prove(entry.k, 0, proof)
 | |
| 		if i == 50 {
 | |
| 			keys = append(keys, entry.k)
 | |
| 			vals = append(vals, entry.v)
 | |
| 		}
 | |
| 	}
 | |
| 	// For reference, we use the same function, but _only_ prove the first
 | |
| 	// and last element
 | |
| 	want := memorydb.New()
 | |
| 	trie.Prove(keys[0], 0, want)
 | |
| 	trie.Prove(keys[len(keys)-1], 0, want)
 | |
| 
 | |
| 	if _, err := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, vals, proof); err != nil {
 | |
| 		t.Fatalf("expected bloated proof to succeed, got %v", err)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // TestEmptyValueRangeProof tests normal range proof with both edge proofs
 | |
| // as the existent proof, but with an extra empty value included, which is a
 | |
| // noop technically, but practically should be rejected.
 | |
| func TestEmptyValueRangeProof(t *testing.T) {
 | |
| 	trie, values := randomTrie(512)
 | |
| 	var entries entrySlice
 | |
| 	for _, kv := range values {
 | |
| 		entries = append(entries, kv)
 | |
| 	}
 | |
| 	sort.Sort(entries)
 | |
| 
 | |
| 	// Create a new entry with a slightly modified key
 | |
| 	mid := len(entries) / 2
 | |
| 	key := common.CopyBytes(entries[mid-1].k)
 | |
| 	for n := len(key) - 1; n >= 0; n-- {
 | |
| 		if key[n] < 0xff {
 | |
| 			key[n]++
 | |
| 			break
 | |
| 		}
 | |
| 	}
 | |
| 	noop := &kv{key, []byte{}, false}
 | |
| 	entries = append(append(append([]*kv{}, entries[:mid]...), noop), entries[mid:]...)
 | |
| 
 | |
| 	start, end := 1, len(entries)-1
 | |
| 
 | |
| 	proof := memorydb.New()
 | |
| 	if err := trie.Prove(entries[start].k, 0, proof); err != nil {
 | |
| 		t.Fatalf("Failed to prove the first node %v", err)
 | |
| 	}
 | |
| 	if err := trie.Prove(entries[end-1].k, 0, proof); err != nil {
 | |
| 		t.Fatalf("Failed to prove the last node %v", err)
 | |
| 	}
 | |
| 	var keys [][]byte
 | |
| 	var vals [][]byte
 | |
| 	for i := start; i < end; i++ {
 | |
| 		keys = append(keys, entries[i].k)
 | |
| 		vals = append(vals, entries[i].v)
 | |
| 	}
 | |
| 	_, err := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, vals, proof)
 | |
| 	if err == nil {
 | |
| 		t.Fatalf("Expected failure on noop entry")
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // TestAllElementsEmptyValueRangeProof tests the range proof with all elements,
 | |
| // but with an extra empty value included, which is a noop technically, but
 | |
| // practically should be rejected.
 | |
| func TestAllElementsEmptyValueRangeProof(t *testing.T) {
 | |
| 	trie, values := randomTrie(512)
 | |
| 	var entries entrySlice
 | |
| 	for _, kv := range values {
 | |
| 		entries = append(entries, kv)
 | |
| 	}
 | |
| 	sort.Sort(entries)
 | |
| 
 | |
| 	// Create a new entry with a slightly modified key
 | |
| 	mid := len(entries) / 2
 | |
| 	key := common.CopyBytes(entries[mid-1].k)
 | |
| 	for n := len(key) - 1; n >= 0; n-- {
 | |
| 		if key[n] < 0xff {
 | |
| 			key[n]++
 | |
| 			break
 | |
| 		}
 | |
| 	}
 | |
| 	noop := &kv{key, []byte{}, false}
 | |
| 	entries = append(append(append([]*kv{}, entries[:mid]...), noop), entries[mid:]...)
 | |
| 
 | |
| 	var keys [][]byte
 | |
| 	var vals [][]byte
 | |
| 	for i := 0; i < len(entries); i++ {
 | |
| 		keys = append(keys, entries[i].k)
 | |
| 		vals = append(vals, entries[i].v)
 | |
| 	}
 | |
| 	_, err := VerifyRangeProof(trie.Hash(), nil, nil, keys, vals, nil)
 | |
| 	if err == nil {
 | |
| 		t.Fatalf("Expected failure on noop entry")
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // mutateByte changes one byte in b.
 | |
| func mutateByte(b []byte) {
 | |
| 	for r := mrand.Intn(len(b)); ; {
 | |
| 		new := byte(mrand.Intn(255))
 | |
| 		if new != b[r] {
 | |
| 			b[r] = new
 | |
| 			break
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func increseKey(key []byte) []byte {
 | |
| 	for i := len(key) - 1; i >= 0; i-- {
 | |
| 		key[i]++
 | |
| 		if key[i] != 0x0 {
 | |
| 			break
 | |
| 		}
 | |
| 	}
 | |
| 	return key
 | |
| }
 | |
| 
 | |
| func decreseKey(key []byte) []byte {
 | |
| 	for i := len(key) - 1; i >= 0; i-- {
 | |
| 		key[i]--
 | |
| 		if key[i] != 0xff {
 | |
| 			break
 | |
| 		}
 | |
| 	}
 | |
| 	return key
 | |
| }
 | |
| 
 | |
| func BenchmarkProve(b *testing.B) {
 | |
| 	trie, vals := randomTrie(100)
 | |
| 	var keys []string
 | |
| 	for k := range vals {
 | |
| 		keys = append(keys, k)
 | |
| 	}
 | |
| 
 | |
| 	b.ResetTimer()
 | |
| 	for i := 0; i < b.N; i++ {
 | |
| 		kv := vals[keys[i%len(keys)]]
 | |
| 		proofs := memorydb.New()
 | |
| 		if trie.Prove(kv.k, 0, proofs); proofs.Len() == 0 {
 | |
| 			b.Fatalf("zero length proof for %x", kv.k)
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func BenchmarkVerifyProof(b *testing.B) {
 | |
| 	trie, vals := randomTrie(100)
 | |
| 	root := trie.Hash()
 | |
| 	var keys []string
 | |
| 	var proofs []*memorydb.Database
 | |
| 	for k := range vals {
 | |
| 		keys = append(keys, k)
 | |
| 		proof := memorydb.New()
 | |
| 		trie.Prove([]byte(k), 0, proof)
 | |
| 		proofs = append(proofs, proof)
 | |
| 	}
 | |
| 
 | |
| 	b.ResetTimer()
 | |
| 	for i := 0; i < b.N; i++ {
 | |
| 		im := i % len(keys)
 | |
| 		if _, err := VerifyProof(root, []byte(keys[im]), proofs[im]); err != nil {
 | |
| 			b.Fatalf("key %x: %v", keys[im], err)
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func BenchmarkVerifyRangeProof10(b *testing.B)   { benchmarkVerifyRangeProof(b, 10) }
 | |
| func BenchmarkVerifyRangeProof100(b *testing.B)  { benchmarkVerifyRangeProof(b, 100) }
 | |
| func BenchmarkVerifyRangeProof1000(b *testing.B) { benchmarkVerifyRangeProof(b, 1000) }
 | |
| func BenchmarkVerifyRangeProof5000(b *testing.B) { benchmarkVerifyRangeProof(b, 5000) }
 | |
| 
 | |
| func benchmarkVerifyRangeProof(b *testing.B, size int) {
 | |
| 	trie, vals := randomTrie(8192)
 | |
| 	var entries entrySlice
 | |
| 	for _, kv := range vals {
 | |
| 		entries = append(entries, kv)
 | |
| 	}
 | |
| 	sort.Sort(entries)
 | |
| 
 | |
| 	start := 2
 | |
| 	end := start + size
 | |
| 	proof := memorydb.New()
 | |
| 	if err := trie.Prove(entries[start].k, 0, proof); err != nil {
 | |
| 		b.Fatalf("Failed to prove the first node %v", err)
 | |
| 	}
 | |
| 	if err := trie.Prove(entries[end-1].k, 0, proof); err != nil {
 | |
| 		b.Fatalf("Failed to prove the last node %v", err)
 | |
| 	}
 | |
| 	var keys [][]byte
 | |
| 	var values [][]byte
 | |
| 	for i := start; i < end; i++ {
 | |
| 		keys = append(keys, entries[i].k)
 | |
| 		values = append(values, entries[i].v)
 | |
| 	}
 | |
| 
 | |
| 	b.ResetTimer()
 | |
| 	for i := 0; i < b.N; i++ {
 | |
| 		_, err := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, values, proof)
 | |
| 		if err != nil {
 | |
| 			b.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err)
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func BenchmarkVerifyRangeNoProof10(b *testing.B)   { benchmarkVerifyRangeNoProof(b, 100) }
 | |
| func BenchmarkVerifyRangeNoProof500(b *testing.B)  { benchmarkVerifyRangeNoProof(b, 500) }
 | |
| func BenchmarkVerifyRangeNoProof1000(b *testing.B) { benchmarkVerifyRangeNoProof(b, 1000) }
 | |
| 
 | |
| func benchmarkVerifyRangeNoProof(b *testing.B, size int) {
 | |
| 	trie, vals := randomTrie(size)
 | |
| 	var entries entrySlice
 | |
| 	for _, kv := range vals {
 | |
| 		entries = append(entries, kv)
 | |
| 	}
 | |
| 	sort.Sort(entries)
 | |
| 
 | |
| 	var keys [][]byte
 | |
| 	var values [][]byte
 | |
| 	for _, entry := range entries {
 | |
| 		keys = append(keys, entry.k)
 | |
| 		values = append(values, entry.v)
 | |
| 	}
 | |
| 	b.ResetTimer()
 | |
| 	for i := 0; i < b.N; i++ {
 | |
| 		_, err := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, values, nil)
 | |
| 		if err != nil {
 | |
| 			b.Fatalf("Expected no error, got %v", err)
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func randomTrie(n int) (*Trie, map[string]*kv) {
 | |
| 	trie := new(Trie)
 | |
| 	vals := make(map[string]*kv)
 | |
| 	for i := byte(0); i < 100; i++ {
 | |
| 		value := &kv{common.LeftPadBytes([]byte{i}, 32), []byte{i}, false}
 | |
| 		value2 := &kv{common.LeftPadBytes([]byte{i + 10}, 32), []byte{i}, false}
 | |
| 		trie.Update(value.k, value.v)
 | |
| 		trie.Update(value2.k, value2.v)
 | |
| 		vals[string(value.k)] = value
 | |
| 		vals[string(value2.k)] = value2
 | |
| 	}
 | |
| 	for i := 0; i < n; i++ {
 | |
| 		value := &kv{randBytes(32), randBytes(20), false}
 | |
| 		trie.Update(value.k, value.v)
 | |
| 		vals[string(value.k)] = value
 | |
| 	}
 | |
| 	return trie, vals
 | |
| }
 | |
| 
 | |
| func randBytes(n int) []byte {
 | |
| 	r := make([]byte, n)
 | |
| 	crand.Read(r)
 | |
| 	return r
 | |
| }
 | |
| 
 | |
| func nonRandomTrie(n int) (*Trie, map[string]*kv) {
 | |
| 	trie := new(Trie)
 | |
| 	vals := make(map[string]*kv)
 | |
| 	max := uint64(0xffffffffffffffff)
 | |
| 	for i := uint64(0); i < uint64(n); i++ {
 | |
| 		value := make([]byte, 32)
 | |
| 		key := make([]byte, 32)
 | |
| 		binary.LittleEndian.PutUint64(key, i)
 | |
| 		binary.LittleEndian.PutUint64(value, i-max)
 | |
| 		//value := &kv{common.LeftPadBytes([]byte{i}, 32), []byte{i}, false}
 | |
| 		elem := &kv{key, value, false}
 | |
| 		trie.Update(elem.k, elem.v)
 | |
| 		vals[string(elem.k)] = elem
 | |
| 	}
 | |
| 	return trie, vals
 | |
| }
 |