439 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			439 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright 2015 The go-ethereum Authors
 | |
| // This file is part of the go-ethereum library.
 | |
| //
 | |
| // The go-ethereum library is free software: you can redistribute it and/or modify
 | |
| // it under the terms of the GNU Lesser General Public License as published by
 | |
| // the Free Software Foundation, either version 3 of the License, or
 | |
| // (at your option) any later version.
 | |
| //
 | |
| // The go-ethereum library is distributed in the hope that it will be useful,
 | |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 | |
| // GNU Lesser General Public License for more details.
 | |
| //
 | |
| // You should have received a copy of the GNU Lesser General Public License
 | |
| // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
 | |
| 
 | |
| package discv5
 | |
| 
 | |
| import (
 | |
| 	"crypto/ecdsa"
 | |
| 	"crypto/elliptic"
 | |
| 	"encoding/hex"
 | |
| 	"errors"
 | |
| 	"fmt"
 | |
| 	"math/big"
 | |
| 	"math/rand"
 | |
| 	"net"
 | |
| 	"net/url"
 | |
| 	"regexp"
 | |
| 	"strconv"
 | |
| 	"strings"
 | |
| 
 | |
| 	"github.com/ethereum/go-ethereum/common"
 | |
| 	"github.com/ethereum/go-ethereum/crypto"
 | |
| )
 | |
| 
 | |
| // Node represents a host on the network.
 | |
| // The public fields of Node may not be modified.
 | |
| type Node struct {
 | |
| 	IP       net.IP // len 4 for IPv4 or 16 for IPv6
 | |
| 	UDP, TCP uint16 // port numbers
 | |
| 	ID       NodeID // the node's public key
 | |
| 
 | |
| 	// Network-related fields are contained in nodeNetGuts.
 | |
| 	// These fields are not supposed to be used off the
 | |
| 	// Network.loop goroutine.
 | |
| 	nodeNetGuts
 | |
| }
 | |
| 
 | |
| // NewNode creates a new node. It is mostly meant to be used for
 | |
| // testing purposes.
 | |
| func NewNode(id NodeID, ip net.IP, udpPort, tcpPort uint16) *Node {
 | |
| 	if ipv4 := ip.To4(); ipv4 != nil {
 | |
| 		ip = ipv4
 | |
| 	}
 | |
| 	return &Node{
 | |
| 		IP:          ip,
 | |
| 		UDP:         udpPort,
 | |
| 		TCP:         tcpPort,
 | |
| 		ID:          id,
 | |
| 		nodeNetGuts: nodeNetGuts{sha: crypto.Keccak256Hash(id[:])},
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (n *Node) addr() *net.UDPAddr {
 | |
| 	return &net.UDPAddr{IP: n.IP, Port: int(n.UDP)}
 | |
| }
 | |
| 
 | |
| func (n *Node) setAddr(a *net.UDPAddr) {
 | |
| 	n.IP = a.IP
 | |
| 	if ipv4 := a.IP.To4(); ipv4 != nil {
 | |
| 		n.IP = ipv4
 | |
| 	}
 | |
| 	n.UDP = uint16(a.Port)
 | |
| }
 | |
| 
 | |
| // compares the given address against the stored values.
 | |
| func (n *Node) addrEqual(a *net.UDPAddr) bool {
 | |
| 	ip := a.IP
 | |
| 	if ipv4 := a.IP.To4(); ipv4 != nil {
 | |
| 		ip = ipv4
 | |
| 	}
 | |
| 	return n.UDP == uint16(a.Port) && n.IP.Equal(ip)
 | |
| }
 | |
| 
 | |
| // Incomplete returns true for nodes with no IP address.
 | |
| func (n *Node) Incomplete() bool {
 | |
| 	return n.IP == nil
 | |
| }
 | |
| 
 | |
| // checks whether n is a valid complete node.
 | |
| func (n *Node) validateComplete() error {
 | |
| 	if n.Incomplete() {
 | |
| 		return errors.New("incomplete node")
 | |
| 	}
 | |
| 	if n.UDP == 0 {
 | |
| 		return errors.New("missing UDP port")
 | |
| 	}
 | |
| 	if n.TCP == 0 {
 | |
| 		return errors.New("missing TCP port")
 | |
| 	}
 | |
| 	if n.IP.IsMulticast() || n.IP.IsUnspecified() {
 | |
| 		return errors.New("invalid IP (multicast/unspecified)")
 | |
| 	}
 | |
| 	_, err := n.ID.Pubkey() // validate the key (on curve, etc.)
 | |
| 	return err
 | |
| }
 | |
| 
 | |
| // The string representation of a Node is a URL.
 | |
| // Please see ParseNode for a description of the format.
 | |
| func (n *Node) String() string {
 | |
| 	u := url.URL{Scheme: "enode"}
 | |
| 	if n.Incomplete() {
 | |
| 		u.Host = fmt.Sprintf("%x", n.ID[:])
 | |
| 	} else {
 | |
| 		addr := net.TCPAddr{IP: n.IP, Port: int(n.TCP)}
 | |
| 		u.User = url.User(fmt.Sprintf("%x", n.ID[:]))
 | |
| 		u.Host = addr.String()
 | |
| 		if n.UDP != n.TCP {
 | |
| 			u.RawQuery = "discport=" + strconv.Itoa(int(n.UDP))
 | |
| 		}
 | |
| 	}
 | |
| 	return u.String()
 | |
| }
 | |
| 
 | |
| var incompleteNodeURL = regexp.MustCompile("(?i)^(?:enode://)?([0-9a-f]+)$")
 | |
| 
 | |
| // ParseNode parses a node designator.
 | |
| //
 | |
| // There are two basic forms of node designators
 | |
| //   - incomplete nodes, which only have the public key (node ID)
 | |
| //   - complete nodes, which contain the public key and IP/Port information
 | |
| //
 | |
| // For incomplete nodes, the designator must look like one of these
 | |
| //
 | |
| //    enode://<hex node id>
 | |
| //    <hex node id>
 | |
| //
 | |
| // For complete nodes, the node ID is encoded in the username portion
 | |
| // of the URL, separated from the host by an @ sign. The hostname can
 | |
| // only be given as an IP address, DNS domain names are not allowed.
 | |
| // The port in the host name section is the TCP listening port. If the
 | |
| // TCP and UDP (discovery) ports differ, the UDP port is specified as
 | |
| // query parameter "discport".
 | |
| //
 | |
| // In the following example, the node URL describes
 | |
| // a node with IP address 10.3.58.6, TCP listening port 30303
 | |
| // and UDP discovery port 30301.
 | |
| //
 | |
| //    enode://<hex node id>@10.3.58.6:30303?discport=30301
 | |
| func ParseNode(rawurl string) (*Node, error) {
 | |
| 	if m := incompleteNodeURL.FindStringSubmatch(rawurl); m != nil {
 | |
| 		id, err := HexID(m[1])
 | |
| 		if err != nil {
 | |
| 			return nil, fmt.Errorf("invalid node ID (%v)", err)
 | |
| 		}
 | |
| 		return NewNode(id, nil, 0, 0), nil
 | |
| 	}
 | |
| 	return parseComplete(rawurl)
 | |
| }
 | |
| 
 | |
| func parseComplete(rawurl string) (*Node, error) {
 | |
| 	var (
 | |
| 		id               NodeID
 | |
| 		ip               net.IP
 | |
| 		tcpPort, udpPort uint64
 | |
| 	)
 | |
| 	u, err := url.Parse(rawurl)
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	if u.Scheme != "enode" {
 | |
| 		return nil, errors.New("invalid URL scheme, want \"enode\"")
 | |
| 	}
 | |
| 	// Parse the Node ID from the user portion.
 | |
| 	if u.User == nil {
 | |
| 		return nil, errors.New("does not contain node ID")
 | |
| 	}
 | |
| 	if id, err = HexID(u.User.String()); err != nil {
 | |
| 		return nil, fmt.Errorf("invalid node ID (%v)", err)
 | |
| 	}
 | |
| 	// Parse the IP address.
 | |
| 	host, port, err := net.SplitHostPort(u.Host)
 | |
| 	if err != nil {
 | |
| 		return nil, fmt.Errorf("invalid host: %v", err)
 | |
| 	}
 | |
| 	if ip = net.ParseIP(host); ip == nil {
 | |
| 		return nil, errors.New("invalid IP address")
 | |
| 	}
 | |
| 	// Ensure the IP is 4 bytes long for IPv4 addresses.
 | |
| 	if ipv4 := ip.To4(); ipv4 != nil {
 | |
| 		ip = ipv4
 | |
| 	}
 | |
| 	// Parse the port numbers.
 | |
| 	if tcpPort, err = strconv.ParseUint(port, 10, 16); err != nil {
 | |
| 		return nil, errors.New("invalid port")
 | |
| 	}
 | |
| 	udpPort = tcpPort
 | |
| 	qv := u.Query()
 | |
| 	if qv.Get("discport") != "" {
 | |
| 		udpPort, err = strconv.ParseUint(qv.Get("discport"), 10, 16)
 | |
| 		if err != nil {
 | |
| 			return nil, errors.New("invalid discport in query")
 | |
| 		}
 | |
| 	}
 | |
| 	return NewNode(id, ip, uint16(udpPort), uint16(tcpPort)), nil
 | |
| }
 | |
| 
 | |
| // MustParseNode parses a node URL. It panics if the URL is not valid.
 | |
| func MustParseNode(rawurl string) *Node {
 | |
| 	n, err := ParseNode(rawurl)
 | |
| 	if err != nil {
 | |
| 		panic("invalid node URL: " + err.Error())
 | |
| 	}
 | |
| 	return n
 | |
| }
 | |
| 
 | |
| // MarshalText implements encoding.TextMarshaler.
 | |
| func (n *Node) MarshalText() ([]byte, error) {
 | |
| 	return []byte(n.String()), nil
 | |
| }
 | |
| 
 | |
| // UnmarshalText implements encoding.TextUnmarshaler.
 | |
| func (n *Node) UnmarshalText(text []byte) error {
 | |
| 	dec, err := ParseNode(string(text))
 | |
| 	if err == nil {
 | |
| 		*n = *dec
 | |
| 	}
 | |
| 	return err
 | |
| }
 | |
| 
 | |
| // type nodeQueue []*Node
 | |
| //
 | |
| // // pushNew adds n to the end if it is not present.
 | |
| // func (nl *nodeList) appendNew(n *Node) {
 | |
| // 	for _, entry := range n {
 | |
| // 		if entry == n {
 | |
| // 			return
 | |
| // 		}
 | |
| // 	}
 | |
| // 	*nq = append(*nq, n)
 | |
| // }
 | |
| //
 | |
| // // popRandom removes a random node. Nodes closer to
 | |
| // // to the head of the beginning of the have a slightly higher probability.
 | |
| // func (nl *nodeList) popRandom() *Node {
 | |
| // 	ix := rand.Intn(len(*nq))
 | |
| // 	//TODO: probability as mentioned above.
 | |
| // 	nl.removeIndex(ix)
 | |
| // }
 | |
| //
 | |
| // func (nl *nodeList) removeIndex(i int) *Node {
 | |
| // 	slice = *nl
 | |
| // 	if len(*slice) <= i {
 | |
| // 		return nil
 | |
| // 	}
 | |
| // 	*nl = append(slice[:i], slice[i+1:]...)
 | |
| // }
 | |
| 
 | |
| const nodeIDBits = 512
 | |
| 
 | |
| // NodeID is a unique identifier for each node.
 | |
| // The node identifier is a marshaled elliptic curve public key.
 | |
| type NodeID [nodeIDBits / 8]byte
 | |
| 
 | |
| // NodeID prints as a long hexadecimal number.
 | |
| func (n NodeID) String() string {
 | |
| 	return fmt.Sprintf("%x", n[:])
 | |
| }
 | |
| 
 | |
| // The Go syntax representation of a NodeID is a call to HexID.
 | |
| func (n NodeID) GoString() string {
 | |
| 	return fmt.Sprintf("discover.HexID(\"%x\")", n[:])
 | |
| }
 | |
| 
 | |
| // TerminalString returns a shortened hex string for terminal logging.
 | |
| func (n NodeID) TerminalString() string {
 | |
| 	return hex.EncodeToString(n[:8])
 | |
| }
 | |
| 
 | |
| // HexID converts a hex string to a NodeID.
 | |
| // The string may be prefixed with 0x.
 | |
| func HexID(in string) (NodeID, error) {
 | |
| 	var id NodeID
 | |
| 	b, err := hex.DecodeString(strings.TrimPrefix(in, "0x"))
 | |
| 	if err != nil {
 | |
| 		return id, err
 | |
| 	} else if len(b) != len(id) {
 | |
| 		return id, fmt.Errorf("wrong length, want %d hex chars", len(id)*2)
 | |
| 	}
 | |
| 	copy(id[:], b)
 | |
| 	return id, nil
 | |
| }
 | |
| 
 | |
| // MustHexID converts a hex string to a NodeID.
 | |
| // It panics if the string is not a valid NodeID.
 | |
| func MustHexID(in string) NodeID {
 | |
| 	id, err := HexID(in)
 | |
| 	if err != nil {
 | |
| 		panic(err)
 | |
| 	}
 | |
| 	return id
 | |
| }
 | |
| 
 | |
| // PubkeyID returns a marshaled representation of the given public key.
 | |
| func PubkeyID(pub *ecdsa.PublicKey) NodeID {
 | |
| 	var id NodeID
 | |
| 	pbytes := elliptic.Marshal(pub.Curve, pub.X, pub.Y)
 | |
| 	if len(pbytes)-1 != len(id) {
 | |
| 		panic(fmt.Errorf("need %d bit pubkey, got %d bits", (len(id)+1)*8, len(pbytes)))
 | |
| 	}
 | |
| 	copy(id[:], pbytes[1:])
 | |
| 	return id
 | |
| }
 | |
| 
 | |
| // Pubkey returns the public key represented by the node ID.
 | |
| // It returns an error if the ID is not a point on the curve.
 | |
| func (n NodeID) Pubkey() (*ecdsa.PublicKey, error) {
 | |
| 	p := &ecdsa.PublicKey{Curve: crypto.S256(), X: new(big.Int), Y: new(big.Int)}
 | |
| 	half := len(n) / 2
 | |
| 	p.X.SetBytes(n[:half])
 | |
| 	p.Y.SetBytes(n[half:])
 | |
| 	if !p.Curve.IsOnCurve(p.X, p.Y) {
 | |
| 		return nil, errors.New("id is invalid secp256k1 curve point")
 | |
| 	}
 | |
| 	return p, nil
 | |
| }
 | |
| 
 | |
| func (id NodeID) mustPubkey() ecdsa.PublicKey {
 | |
| 	pk, err := id.Pubkey()
 | |
| 	if err != nil {
 | |
| 		panic(err)
 | |
| 	}
 | |
| 	return *pk
 | |
| }
 | |
| 
 | |
| // recoverNodeID computes the public key used to sign the
 | |
| // given hash from the signature.
 | |
| func recoverNodeID(hash, sig []byte) (id NodeID, err error) {
 | |
| 	pubkey, err := crypto.Ecrecover(hash, sig)
 | |
| 	if err != nil {
 | |
| 		return id, err
 | |
| 	}
 | |
| 	if len(pubkey)-1 != len(id) {
 | |
| 		return id, fmt.Errorf("recovered pubkey has %d bits, want %d bits", len(pubkey)*8, (len(id)+1)*8)
 | |
| 	}
 | |
| 	for i := range id {
 | |
| 		id[i] = pubkey[i+1]
 | |
| 	}
 | |
| 	return id, nil
 | |
| }
 | |
| 
 | |
| // distcmp compares the distances a->target and b->target.
 | |
| // Returns -1 if a is closer to target, 1 if b is closer to target
 | |
| // and 0 if they are equal.
 | |
| func distcmp(target, a, b common.Hash) int {
 | |
| 	for i := range target {
 | |
| 		da := a[i] ^ target[i]
 | |
| 		db := b[i] ^ target[i]
 | |
| 		if da > db {
 | |
| 			return 1
 | |
| 		} else if da < db {
 | |
| 			return -1
 | |
| 		}
 | |
| 	}
 | |
| 	return 0
 | |
| }
 | |
| 
 | |
| // table of leading zero counts for bytes [0..255]
 | |
| var lzcount = [256]int{
 | |
| 	8, 7, 6, 6, 5, 5, 5, 5,
 | |
| 	4, 4, 4, 4, 4, 4, 4, 4,
 | |
| 	3, 3, 3, 3, 3, 3, 3, 3,
 | |
| 	3, 3, 3, 3, 3, 3, 3, 3,
 | |
| 	2, 2, 2, 2, 2, 2, 2, 2,
 | |
| 	2, 2, 2, 2, 2, 2, 2, 2,
 | |
| 	2, 2, 2, 2, 2, 2, 2, 2,
 | |
| 	2, 2, 2, 2, 2, 2, 2, 2,
 | |
| 	1, 1, 1, 1, 1, 1, 1, 1,
 | |
| 	1, 1, 1, 1, 1, 1, 1, 1,
 | |
| 	1, 1, 1, 1, 1, 1, 1, 1,
 | |
| 	1, 1, 1, 1, 1, 1, 1, 1,
 | |
| 	1, 1, 1, 1, 1, 1, 1, 1,
 | |
| 	1, 1, 1, 1, 1, 1, 1, 1,
 | |
| 	1, 1, 1, 1, 1, 1, 1, 1,
 | |
| 	1, 1, 1, 1, 1, 1, 1, 1,
 | |
| 	0, 0, 0, 0, 0, 0, 0, 0,
 | |
| 	0, 0, 0, 0, 0, 0, 0, 0,
 | |
| 	0, 0, 0, 0, 0, 0, 0, 0,
 | |
| 	0, 0, 0, 0, 0, 0, 0, 0,
 | |
| 	0, 0, 0, 0, 0, 0, 0, 0,
 | |
| 	0, 0, 0, 0, 0, 0, 0, 0,
 | |
| 	0, 0, 0, 0, 0, 0, 0, 0,
 | |
| 	0, 0, 0, 0, 0, 0, 0, 0,
 | |
| 	0, 0, 0, 0, 0, 0, 0, 0,
 | |
| 	0, 0, 0, 0, 0, 0, 0, 0,
 | |
| 	0, 0, 0, 0, 0, 0, 0, 0,
 | |
| 	0, 0, 0, 0, 0, 0, 0, 0,
 | |
| 	0, 0, 0, 0, 0, 0, 0, 0,
 | |
| 	0, 0, 0, 0, 0, 0, 0, 0,
 | |
| 	0, 0, 0, 0, 0, 0, 0, 0,
 | |
| 	0, 0, 0, 0, 0, 0, 0, 0,
 | |
| }
 | |
| 
 | |
| // logdist returns the logarithmic distance between a and b, log2(a ^ b).
 | |
| func logdist(a, b common.Hash) int {
 | |
| 	lz := 0
 | |
| 	for i := range a {
 | |
| 		x := a[i] ^ b[i]
 | |
| 		if x == 0 {
 | |
| 			lz += 8
 | |
| 		} else {
 | |
| 			lz += lzcount[x]
 | |
| 			break
 | |
| 		}
 | |
| 	}
 | |
| 	return len(a)*8 - lz
 | |
| }
 | |
| 
 | |
| // hashAtDistance returns a random hash such that logdist(a, b) == n
 | |
| func hashAtDistance(a common.Hash, n int) (b common.Hash) {
 | |
| 	if n == 0 {
 | |
| 		return a
 | |
| 	}
 | |
| 	// flip bit at position n, fill the rest with random bits
 | |
| 	b = a
 | |
| 	pos := len(a) - n/8 - 1
 | |
| 	bit := byte(0x01) << (byte(n%8) - 1)
 | |
| 	if bit == 0 {
 | |
| 		pos++
 | |
| 		bit = 0x80
 | |
| 	}
 | |
| 	b[pos] = a[pos]&^bit | ^a[pos]&bit // TODO: randomize end bits
 | |
| 	for i := pos + 1; i < len(a); i++ {
 | |
| 		b[i] = byte(rand.Intn(255))
 | |
| 	}
 | |
| 	return b
 | |
| }
 |