222 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			222 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
// Copyright 2014 The go-ethereum Authors
 | 
						|
// This file is part of the go-ethereum library.
 | 
						|
//
 | 
						|
// The go-ethereum library is free software: you can redistribute it and/or modify
 | 
						|
// it under the terms of the GNU Lesser General Public License as published by
 | 
						|
// the Free Software Foundation, either version 3 of the License, or
 | 
						|
// (at your option) any later version.
 | 
						|
//
 | 
						|
// The go-ethereum library is distributed in the hope that it will be useful,
 | 
						|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 | 
						|
// GNU Lesser General Public License for more details.
 | 
						|
//
 | 
						|
// You should have received a copy of the GNU Lesser General Public License
 | 
						|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
 | 
						|
 | 
						|
package crypto
 | 
						|
 | 
						|
import (
 | 
						|
	"crypto/ecdsa"
 | 
						|
	"crypto/elliptic"
 | 
						|
	"crypto/rand"
 | 
						|
	"encoding/hex"
 | 
						|
	"errors"
 | 
						|
	"fmt"
 | 
						|
	"io"
 | 
						|
	"io/ioutil"
 | 
						|
	"math/big"
 | 
						|
	"os"
 | 
						|
 | 
						|
	"github.com/ethereum/go-ethereum/common"
 | 
						|
	"github.com/ethereum/go-ethereum/common/math"
 | 
						|
	"github.com/ethereum/go-ethereum/rlp"
 | 
						|
	"golang.org/x/crypto/sha3"
 | 
						|
)
 | 
						|
 | 
						|
//SignatureLength indicates the byte length required to carry a signature with recovery id.
 | 
						|
const SignatureLength = 64 + 1 // 64 bytes ECDSA signature + 1 byte recovery id
 | 
						|
 | 
						|
// RecoveryIDOffset points to the byte offset within the signature that contains the recovery id.
 | 
						|
const RecoveryIDOffset = 64
 | 
						|
 | 
						|
// DigestLength sets the signature digest exact length
 | 
						|
const DigestLength = 32
 | 
						|
 | 
						|
var (
 | 
						|
	secp256k1N, _  = new(big.Int).SetString("fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141", 16)
 | 
						|
	secp256k1halfN = new(big.Int).Div(secp256k1N, big.NewInt(2))
 | 
						|
)
 | 
						|
 | 
						|
var errInvalidPubkey = errors.New("invalid secp256k1 public key")
 | 
						|
 | 
						|
// Keccak256 calculates and returns the Keccak256 hash of the input data.
 | 
						|
func Keccak256(data ...[]byte) []byte {
 | 
						|
	d := sha3.NewLegacyKeccak256()
 | 
						|
	for _, b := range data {
 | 
						|
		d.Write(b)
 | 
						|
	}
 | 
						|
	return d.Sum(nil)
 | 
						|
}
 | 
						|
 | 
						|
// Keccak256Hash calculates and returns the Keccak256 hash of the input data,
 | 
						|
// converting it to an internal Hash data structure.
 | 
						|
func Keccak256Hash(data ...[]byte) (h common.Hash) {
 | 
						|
	d := sha3.NewLegacyKeccak256()
 | 
						|
	for _, b := range data {
 | 
						|
		d.Write(b)
 | 
						|
	}
 | 
						|
	d.Sum(h[:0])
 | 
						|
	return h
 | 
						|
}
 | 
						|
 | 
						|
// Keccak512 calculates and returns the Keccak512 hash of the input data.
 | 
						|
func Keccak512(data ...[]byte) []byte {
 | 
						|
	d := sha3.NewLegacyKeccak512()
 | 
						|
	for _, b := range data {
 | 
						|
		d.Write(b)
 | 
						|
	}
 | 
						|
	return d.Sum(nil)
 | 
						|
}
 | 
						|
 | 
						|
// CreateAddress creates an ethereum address given the bytes and the nonce
 | 
						|
func CreateAddress(b common.Address, nonce uint64) common.Address {
 | 
						|
	data, _ := rlp.EncodeToBytes([]interface{}{b, nonce})
 | 
						|
	return common.BytesToAddress(Keccak256(data)[12:])
 | 
						|
}
 | 
						|
 | 
						|
// CreateAddress2 creates an ethereum address given the address bytes, initial
 | 
						|
// contract code hash and a salt.
 | 
						|
func CreateAddress2(b common.Address, salt [32]byte, inithash []byte) common.Address {
 | 
						|
	return common.BytesToAddress(Keccak256([]byte{0xff}, b.Bytes(), salt[:], inithash)[12:])
 | 
						|
}
 | 
						|
 | 
						|
// ToECDSA creates a private key with the given D value.
 | 
						|
func ToECDSA(d []byte) (*ecdsa.PrivateKey, error) {
 | 
						|
	return toECDSA(d, true)
 | 
						|
}
 | 
						|
 | 
						|
// ToECDSAUnsafe blindly converts a binary blob to a private key. It should almost
 | 
						|
// never be used unless you are sure the input is valid and want to avoid hitting
 | 
						|
// errors due to bad origin encoding (0 prefixes cut off).
 | 
						|
func ToECDSAUnsafe(d []byte) *ecdsa.PrivateKey {
 | 
						|
	priv, _ := toECDSA(d, false)
 | 
						|
	return priv
 | 
						|
}
 | 
						|
 | 
						|
// toECDSA creates a private key with the given D value. The strict parameter
 | 
						|
// controls whether the key's length should be enforced at the curve size or
 | 
						|
// it can also accept legacy encodings (0 prefixes).
 | 
						|
func toECDSA(d []byte, strict bool) (*ecdsa.PrivateKey, error) {
 | 
						|
	priv := new(ecdsa.PrivateKey)
 | 
						|
	priv.PublicKey.Curve = S256()
 | 
						|
	if strict && 8*len(d) != priv.Params().BitSize {
 | 
						|
		return nil, fmt.Errorf("invalid length, need %d bits", priv.Params().BitSize)
 | 
						|
	}
 | 
						|
	priv.D = new(big.Int).SetBytes(d)
 | 
						|
 | 
						|
	// The priv.D must < N
 | 
						|
	if priv.D.Cmp(secp256k1N) >= 0 {
 | 
						|
		return nil, fmt.Errorf("invalid private key, >=N")
 | 
						|
	}
 | 
						|
	// The priv.D must not be zero or negative.
 | 
						|
	if priv.D.Sign() <= 0 {
 | 
						|
		return nil, fmt.Errorf("invalid private key, zero or negative")
 | 
						|
	}
 | 
						|
 | 
						|
	priv.PublicKey.X, priv.PublicKey.Y = priv.PublicKey.Curve.ScalarBaseMult(d)
 | 
						|
	if priv.PublicKey.X == nil {
 | 
						|
		return nil, errors.New("invalid private key")
 | 
						|
	}
 | 
						|
	return priv, nil
 | 
						|
}
 | 
						|
 | 
						|
// FromECDSA exports a private key into a binary dump.
 | 
						|
func FromECDSA(priv *ecdsa.PrivateKey) []byte {
 | 
						|
	if priv == nil {
 | 
						|
		return nil
 | 
						|
	}
 | 
						|
	return math.PaddedBigBytes(priv.D, priv.Params().BitSize/8)
 | 
						|
}
 | 
						|
 | 
						|
// UnmarshalPubkey converts bytes to a secp256k1 public key.
 | 
						|
func UnmarshalPubkey(pub []byte) (*ecdsa.PublicKey, error) {
 | 
						|
	x, y := elliptic.Unmarshal(S256(), pub)
 | 
						|
	if x == nil {
 | 
						|
		return nil, errInvalidPubkey
 | 
						|
	}
 | 
						|
	return &ecdsa.PublicKey{Curve: S256(), X: x, Y: y}, nil
 | 
						|
}
 | 
						|
 | 
						|
func FromECDSAPub(pub *ecdsa.PublicKey) []byte {
 | 
						|
	if pub == nil || pub.X == nil || pub.Y == nil {
 | 
						|
		return nil
 | 
						|
	}
 | 
						|
	return elliptic.Marshal(S256(), pub.X, pub.Y)
 | 
						|
}
 | 
						|
 | 
						|
// HexToECDSA parses a secp256k1 private key.
 | 
						|
func HexToECDSA(hexkey string) (*ecdsa.PrivateKey, error) {
 | 
						|
	b, err := hex.DecodeString(hexkey)
 | 
						|
	if err != nil {
 | 
						|
		return nil, errors.New("invalid hex string")
 | 
						|
	}
 | 
						|
	return ToECDSA(b)
 | 
						|
}
 | 
						|
 | 
						|
// LoadECDSA loads a secp256k1 private key from the given file.
 | 
						|
func LoadECDSA(file string) (*ecdsa.PrivateKey, error) {
 | 
						|
	buf := make([]byte, 64)
 | 
						|
	fd, err := os.Open(file)
 | 
						|
	if err != nil {
 | 
						|
		return nil, err
 | 
						|
	}
 | 
						|
	defer fd.Close()
 | 
						|
	if _, err := io.ReadFull(fd, buf); err != nil {
 | 
						|
		return nil, err
 | 
						|
	}
 | 
						|
 | 
						|
	key, err := hex.DecodeString(string(buf))
 | 
						|
	if err != nil {
 | 
						|
		return nil, err
 | 
						|
	}
 | 
						|
	return ToECDSA(key)
 | 
						|
}
 | 
						|
 | 
						|
// SaveECDSA saves a secp256k1 private key to the given file with
 | 
						|
// restrictive permissions. The key data is saved hex-encoded.
 | 
						|
func SaveECDSA(file string, key *ecdsa.PrivateKey) error {
 | 
						|
	k := hex.EncodeToString(FromECDSA(key))
 | 
						|
	return ioutil.WriteFile(file, []byte(k), 0600)
 | 
						|
}
 | 
						|
 | 
						|
func GenerateKey() (*ecdsa.PrivateKey, error) {
 | 
						|
	return ecdsa.GenerateKey(S256(), rand.Reader)
 | 
						|
}
 | 
						|
 | 
						|
// ValidateSignatureValues verifies whether the signature values are valid with
 | 
						|
// the given chain rules. The v value is assumed to be either 0 or 1.
 | 
						|
func ValidateSignatureValues(v byte, r, s *big.Int, homestead bool) bool {
 | 
						|
	if r.Cmp(common.Big1) < 0 || s.Cmp(common.Big1) < 0 {
 | 
						|
		return false
 | 
						|
	}
 | 
						|
	// reject upper range of s values (ECDSA malleability)
 | 
						|
	// see discussion in secp256k1/libsecp256k1/include/secp256k1.h
 | 
						|
	if homestead && s.Cmp(secp256k1halfN) > 0 {
 | 
						|
		return false
 | 
						|
	}
 | 
						|
	// Frontier: allow s to be in full N range
 | 
						|
	return r.Cmp(secp256k1N) < 0 && s.Cmp(secp256k1N) < 0 && (v == 0 || v == 1)
 | 
						|
}
 | 
						|
 | 
						|
func PubkeyToAddress(p ecdsa.PublicKey) common.Address {
 | 
						|
	pubBytes := FromECDSAPub(&p)
 | 
						|
	return common.BytesToAddress(Keccak256(pubBytes[1:])[12:])
 | 
						|
}
 | 
						|
 | 
						|
func zeroBytes(bytes []byte) {
 | 
						|
	for i := range bytes {
 | 
						|
		bytes[i] = 0
 | 
						|
	}
 | 
						|
}
 |