go-ethereum/p2p/simulations/connect.go
Ferenc Szabo 50b872bf05 p2p, swarm: fix node up races by granular locking (#18976)
* swarm/network: DRY out repeated giga comment

I not necessarily agree with the way we wait for event propagation.
But I truly disagree with having duplicated giga comments.

* p2p/simulations: encapsulate Node.Up field so we avoid data races

The Node.Up field was accessed concurrently without "proper" locking.
There was a lock on Network and that was used sometimes to access
the  field. Other times the locking was missed and we had
a data race.

For example: https://github.com/ethereum/go-ethereum/pull/18464
The case above was solved, but there were still intermittent/hard to
reproduce races. So let's solve the issue permanently.

resolves: ethersphere/go-ethereum#1146

* p2p/simulations: fix unmarshal of simulations.Node

Making Node.Up field private in 13292ee897e345045fbfab3bda23a77589a271c1
broke TestHTTPNetwork and TestHTTPSnapshot. Because the default
UnmarshalJSON does not handle unexported fields.

Important: The fix is partial and not proper to my taste. But I cut
scope as I think the fix may require a change to the current
serialization format. New ticket:
https://github.com/ethersphere/go-ethereum/issues/1177

* p2p/simulations: Add a sanity test case for Node.Config UnmarshalJSON

* p2p/simulations: revert back to defer Unlock() pattern for Network

It's a good patten to call `defer Unlock()` right after `Lock()` so
(new) error cases won't miss to unlock. Let's get back to that pattern.

The patten was abandoned in 85a79b3ad3,
while fixing a data race. That data race does not exist anymore,
since the Node.Up field got hidden behind its own lock.

* p2p/simulations: consistent naming for test providers Node.UnmarshalJSON

* p2p/simulations: remove JSON annotation from private fields of Node

As unexported fields are not serialized.

* p2p/simulations: fix deadlock in Network.GetRandomDownNode()

Problem: GetRandomDownNode() locks -> getDownNodeIDs() ->
GetNodes() tries to lock -> deadlock

On Network type, unexported functions must assume that `net.lock`
is already acquired and should not call exported functions which
might try to lock again.

* p2p/simulations: ensure method conformity for Network

Connect* methods were moved to p2p/simulations.Network from
swarm/network/simulation. However these new methods did not follow
the pattern of Network methods, i.e., all exported method locks
the whole Network either for read or write.

* p2p/simulations: fix deadlock during network shutdown

`TestDiscoveryPersistenceSimulationSimAdapter` often got into deadlock.
The execution was stuck on two locks, i.e, `Kademlia.lock` and
`p2p/simulations.Network.lock`. Usually the test got stuck once in each
20 executions with high confidence.

`Kademlia` was stuck in `Kademlia.EachAddr()` and `Network` in
`Network.Stop()`.

Solution: in `Network.Stop()` `net.lock` must be released before
calling `node.Stop()` as stopping a node (somehow - I did not find
the exact code path) causes `Network.InitConn()` to be called from
`Kademlia.SuggestPeer()` and that blocks on `net.lock`.

Related ticket: https://github.com/ethersphere/go-ethereum/issues/1223

* swarm/state: simplify if statement in DBStore.Put()

* p2p/simulations: remove faulty godoc from private function

The comment started with the wrong method name.

The method is simple and self explanatory. Also, it's private.
=> Let's just remove the comment.
2019-02-18 07:38:14 +01:00

154 lines
3.9 KiB
Go

// Copyright 2018 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package simulations
import (
"errors"
"strings"
"github.com/ethereum/go-ethereum/p2p/enode"
)
var (
ErrNodeNotFound = errors.New("node not found")
)
// ConnectToLastNode connects the node with provided NodeID
// to the last node that is up, and avoiding connection to self.
// It is useful when constructing a chain network topology
// when Network adds and removes nodes dynamically.
func (net *Network) ConnectToLastNode(id enode.ID) (err error) {
net.lock.Lock()
defer net.lock.Unlock()
ids := net.getUpNodeIDs()
l := len(ids)
if l < 2 {
return nil
}
last := ids[l-1]
if last == id {
last = ids[l-2]
}
return net.connectNotConnected(last, id)
}
// ConnectToRandomNode connects the node with provided NodeID
// to a random node that is up.
func (net *Network) ConnectToRandomNode(id enode.ID) (err error) {
net.lock.Lock()
defer net.lock.Unlock()
selected := net.getRandomUpNode(id)
if selected == nil {
return ErrNodeNotFound
}
return net.connectNotConnected(selected.ID(), id)
}
// ConnectNodesFull connects all nodes one to another.
// It provides a complete connectivity in the network
// which should be rarely needed.
func (net *Network) ConnectNodesFull(ids []enode.ID) (err error) {
net.lock.Lock()
defer net.lock.Unlock()
if ids == nil {
ids = net.getUpNodeIDs()
}
for i, lid := range ids {
for _, rid := range ids[i+1:] {
if err = net.connectNotConnected(lid, rid); err != nil {
return err
}
}
}
return nil
}
// ConnectNodesChain connects all nodes in a chain topology.
// If ids argument is nil, all nodes that are up will be connected.
func (net *Network) ConnectNodesChain(ids []enode.ID) (err error) {
net.lock.Lock()
defer net.lock.Unlock()
return net.connectNodesChain(ids)
}
func (net *Network) connectNodesChain(ids []enode.ID) (err error) {
if ids == nil {
ids = net.getUpNodeIDs()
}
l := len(ids)
for i := 0; i < l-1; i++ {
if err := net.connectNotConnected(ids[i], ids[i+1]); err != nil {
return err
}
}
return nil
}
// ConnectNodesRing connects all nodes in a ring topology.
// If ids argument is nil, all nodes that are up will be connected.
func (net *Network) ConnectNodesRing(ids []enode.ID) (err error) {
net.lock.Lock()
defer net.lock.Unlock()
if ids == nil {
ids = net.getUpNodeIDs()
}
l := len(ids)
if l < 2 {
return nil
}
if err := net.connectNodesChain(ids); err != nil {
return err
}
return net.connectNotConnected(ids[l-1], ids[0])
}
// ConnectNodesStar connects all nodes into a star topology
// If ids argument is nil, all nodes that are up will be connected.
func (net *Network) ConnectNodesStar(ids []enode.ID, center enode.ID) (err error) {
net.lock.Lock()
defer net.lock.Unlock()
if ids == nil {
ids = net.getUpNodeIDs()
}
for _, id := range ids {
if center == id {
continue
}
if err := net.connectNotConnected(center, id); err != nil {
return err
}
}
return nil
}
func (net *Network) connectNotConnected(oneID, otherID enode.ID) error {
return ignoreAlreadyConnectedErr(net.connect(oneID, otherID))
}
func ignoreAlreadyConnectedErr(err error) error {
if err == nil || strings.Contains(err.Error(), "already connected") {
return nil
}
return err
}