Squashed from the following commits: core/state: lazily init snapshot storage map core/state: fix flawed meter on storage reads core/state: make statedb/stateobjects reuse a hasher core/blockchain, core/state: implement new trie prefetcher core: make trie prefetcher deliver tries to statedb core/state: refactor trie_prefetcher, export storage tries blockchain: re-enable the next-block-prefetcher state: remove panics in trie prefetcher core/state/trie_prefetcher: address some review concerns sq
		
			
				
	
	
		
			286 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			286 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright 2014 The go-ethereum Authors
 | |
| // This file is part of the go-ethereum library.
 | |
| //
 | |
| // The go-ethereum library is free software: you can redistribute it and/or modify
 | |
| // it under the terms of the GNU Lesser General Public License as published by
 | |
| // the Free Software Foundation, either version 3 of the License, or
 | |
| // (at your option) any later version.
 | |
| //
 | |
| // The go-ethereum library is distributed in the hope that it will be useful,
 | |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 | |
| // GNU Lesser General Public License for more details.
 | |
| //
 | |
| // You should have received a copy of the GNU Lesser General Public License
 | |
| // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
 | |
| 
 | |
| package crypto
 | |
| 
 | |
| import (
 | |
| 	"bufio"
 | |
| 	"crypto/ecdsa"
 | |
| 	"crypto/elliptic"
 | |
| 	"crypto/rand"
 | |
| 	"encoding/hex"
 | |
| 	"errors"
 | |
| 	"fmt"
 | |
| 	"hash"
 | |
| 	"io"
 | |
| 	"io/ioutil"
 | |
| 	"math/big"
 | |
| 	"os"
 | |
| 
 | |
| 	"github.com/ethereum/go-ethereum/common"
 | |
| 	"github.com/ethereum/go-ethereum/common/math"
 | |
| 	"github.com/ethereum/go-ethereum/rlp"
 | |
| 	"golang.org/x/crypto/sha3"
 | |
| )
 | |
| 
 | |
| //SignatureLength indicates the byte length required to carry a signature with recovery id.
 | |
| const SignatureLength = 64 + 1 // 64 bytes ECDSA signature + 1 byte recovery id
 | |
| 
 | |
| // RecoveryIDOffset points to the byte offset within the signature that contains the recovery id.
 | |
| const RecoveryIDOffset = 64
 | |
| 
 | |
| // DigestLength sets the signature digest exact length
 | |
| const DigestLength = 32
 | |
| 
 | |
| var (
 | |
| 	secp256k1N, _  = new(big.Int).SetString("fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141", 16)
 | |
| 	secp256k1halfN = new(big.Int).Div(secp256k1N, big.NewInt(2))
 | |
| )
 | |
| 
 | |
| var errInvalidPubkey = errors.New("invalid secp256k1 public key")
 | |
| 
 | |
| // KeccakState wraps sha3.state. In addition to the usual hash methods, it also supports
 | |
| // Read to get a variable amount of data from the hash state. Read is faster than Sum
 | |
| // because it doesn't copy the internal state, but also modifies the internal state.
 | |
| type KeccakState interface {
 | |
| 	hash.Hash
 | |
| 	Read([]byte) (int, error)
 | |
| }
 | |
| 
 | |
| // NewKeccakState creates a new KeccakState
 | |
| func NewKeccakState() KeccakState {
 | |
| 	return sha3.NewLegacyKeccak256().(KeccakState)
 | |
| }
 | |
| 
 | |
| // HashData hashes the provided data using the KeccakState and returns a 32 byte hash
 | |
| func HashData(kh KeccakState, data []byte) (h common.Hash) {
 | |
| 	kh.Reset()
 | |
| 	kh.Write(data)
 | |
| 	kh.Read(h[:])
 | |
| 	return h
 | |
| }
 | |
| 
 | |
| // Keccak256 calculates and returns the Keccak256 hash of the input data.
 | |
| func Keccak256(data ...[]byte) []byte {
 | |
| 	b := make([]byte, 32)
 | |
| 	d := NewKeccakState()
 | |
| 	for _, b := range data {
 | |
| 		d.Write(b)
 | |
| 	}
 | |
| 	d.Read(b)
 | |
| 	return b
 | |
| }
 | |
| 
 | |
| // Keccak256Hash calculates and returns the Keccak256 hash of the input data,
 | |
| // converting it to an internal Hash data structure.
 | |
| func Keccak256Hash(data ...[]byte) (h common.Hash) {
 | |
| 	d := NewKeccakState()
 | |
| 	for _, b := range data {
 | |
| 		d.Write(b)
 | |
| 	}
 | |
| 	d.Read(h[:])
 | |
| 	return h
 | |
| }
 | |
| 
 | |
| // Keccak512 calculates and returns the Keccak512 hash of the input data.
 | |
| func Keccak512(data ...[]byte) []byte {
 | |
| 	d := sha3.NewLegacyKeccak512()
 | |
| 	for _, b := range data {
 | |
| 		d.Write(b)
 | |
| 	}
 | |
| 	return d.Sum(nil)
 | |
| }
 | |
| 
 | |
| // CreateAddress creates an ethereum address given the bytes and the nonce
 | |
| func CreateAddress(b common.Address, nonce uint64) common.Address {
 | |
| 	data, _ := rlp.EncodeToBytes([]interface{}{b, nonce})
 | |
| 	return common.BytesToAddress(Keccak256(data)[12:])
 | |
| }
 | |
| 
 | |
| // CreateAddress2 creates an ethereum address given the address bytes, initial
 | |
| // contract code hash and a salt.
 | |
| func CreateAddress2(b common.Address, salt [32]byte, inithash []byte) common.Address {
 | |
| 	return common.BytesToAddress(Keccak256([]byte{0xff}, b.Bytes(), salt[:], inithash)[12:])
 | |
| }
 | |
| 
 | |
| // ToECDSA creates a private key with the given D value.
 | |
| func ToECDSA(d []byte) (*ecdsa.PrivateKey, error) {
 | |
| 	return toECDSA(d, true)
 | |
| }
 | |
| 
 | |
| // ToECDSAUnsafe blindly converts a binary blob to a private key. It should almost
 | |
| // never be used unless you are sure the input is valid and want to avoid hitting
 | |
| // errors due to bad origin encoding (0 prefixes cut off).
 | |
| func ToECDSAUnsafe(d []byte) *ecdsa.PrivateKey {
 | |
| 	priv, _ := toECDSA(d, false)
 | |
| 	return priv
 | |
| }
 | |
| 
 | |
| // toECDSA creates a private key with the given D value. The strict parameter
 | |
| // controls whether the key's length should be enforced at the curve size or
 | |
| // it can also accept legacy encodings (0 prefixes).
 | |
| func toECDSA(d []byte, strict bool) (*ecdsa.PrivateKey, error) {
 | |
| 	priv := new(ecdsa.PrivateKey)
 | |
| 	priv.PublicKey.Curve = S256()
 | |
| 	if strict && 8*len(d) != priv.Params().BitSize {
 | |
| 		return nil, fmt.Errorf("invalid length, need %d bits", priv.Params().BitSize)
 | |
| 	}
 | |
| 	priv.D = new(big.Int).SetBytes(d)
 | |
| 
 | |
| 	// The priv.D must < N
 | |
| 	if priv.D.Cmp(secp256k1N) >= 0 {
 | |
| 		return nil, fmt.Errorf("invalid private key, >=N")
 | |
| 	}
 | |
| 	// The priv.D must not be zero or negative.
 | |
| 	if priv.D.Sign() <= 0 {
 | |
| 		return nil, fmt.Errorf("invalid private key, zero or negative")
 | |
| 	}
 | |
| 
 | |
| 	priv.PublicKey.X, priv.PublicKey.Y = priv.PublicKey.Curve.ScalarBaseMult(d)
 | |
| 	if priv.PublicKey.X == nil {
 | |
| 		return nil, errors.New("invalid private key")
 | |
| 	}
 | |
| 	return priv, nil
 | |
| }
 | |
| 
 | |
| // FromECDSA exports a private key into a binary dump.
 | |
| func FromECDSA(priv *ecdsa.PrivateKey) []byte {
 | |
| 	if priv == nil {
 | |
| 		return nil
 | |
| 	}
 | |
| 	return math.PaddedBigBytes(priv.D, priv.Params().BitSize/8)
 | |
| }
 | |
| 
 | |
| // UnmarshalPubkey converts bytes to a secp256k1 public key.
 | |
| func UnmarshalPubkey(pub []byte) (*ecdsa.PublicKey, error) {
 | |
| 	x, y := elliptic.Unmarshal(S256(), pub)
 | |
| 	if x == nil {
 | |
| 		return nil, errInvalidPubkey
 | |
| 	}
 | |
| 	return &ecdsa.PublicKey{Curve: S256(), X: x, Y: y}, nil
 | |
| }
 | |
| 
 | |
| func FromECDSAPub(pub *ecdsa.PublicKey) []byte {
 | |
| 	if pub == nil || pub.X == nil || pub.Y == nil {
 | |
| 		return nil
 | |
| 	}
 | |
| 	return elliptic.Marshal(S256(), pub.X, pub.Y)
 | |
| }
 | |
| 
 | |
| // HexToECDSA parses a secp256k1 private key.
 | |
| func HexToECDSA(hexkey string) (*ecdsa.PrivateKey, error) {
 | |
| 	b, err := hex.DecodeString(hexkey)
 | |
| 	if byteErr, ok := err.(hex.InvalidByteError); ok {
 | |
| 		return nil, fmt.Errorf("invalid hex character %q in private key", byte(byteErr))
 | |
| 	} else if err != nil {
 | |
| 		return nil, errors.New("invalid hex data for private key")
 | |
| 	}
 | |
| 	return ToECDSA(b)
 | |
| }
 | |
| 
 | |
| // LoadECDSA loads a secp256k1 private key from the given file.
 | |
| func LoadECDSA(file string) (*ecdsa.PrivateKey, error) {
 | |
| 	fd, err := os.Open(file)
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	defer fd.Close()
 | |
| 
 | |
| 	r := bufio.NewReader(fd)
 | |
| 	buf := make([]byte, 64)
 | |
| 	n, err := readASCII(buf, r)
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	} else if n != len(buf) {
 | |
| 		return nil, fmt.Errorf("key file too short, want 64 hex characters")
 | |
| 	}
 | |
| 	if err := checkKeyFileEnd(r); err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 
 | |
| 	return HexToECDSA(string(buf))
 | |
| }
 | |
| 
 | |
| // readASCII reads into 'buf', stopping when the buffer is full or
 | |
| // when a non-printable control character is encountered.
 | |
| func readASCII(buf []byte, r *bufio.Reader) (n int, err error) {
 | |
| 	for ; n < len(buf); n++ {
 | |
| 		buf[n], err = r.ReadByte()
 | |
| 		switch {
 | |
| 		case err == io.EOF || buf[n] < '!':
 | |
| 			return n, nil
 | |
| 		case err != nil:
 | |
| 			return n, err
 | |
| 		}
 | |
| 	}
 | |
| 	return n, nil
 | |
| }
 | |
| 
 | |
| // checkKeyFileEnd skips over additional newlines at the end of a key file.
 | |
| func checkKeyFileEnd(r *bufio.Reader) error {
 | |
| 	for i := 0; ; i++ {
 | |
| 		b, err := r.ReadByte()
 | |
| 		switch {
 | |
| 		case err == io.EOF:
 | |
| 			return nil
 | |
| 		case err != nil:
 | |
| 			return err
 | |
| 		case b != '\n' && b != '\r':
 | |
| 			return fmt.Errorf("invalid character %q at end of key file", b)
 | |
| 		case i >= 2:
 | |
| 			return errors.New("key file too long, want 64 hex characters")
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // SaveECDSA saves a secp256k1 private key to the given file with
 | |
| // restrictive permissions. The key data is saved hex-encoded.
 | |
| func SaveECDSA(file string, key *ecdsa.PrivateKey) error {
 | |
| 	k := hex.EncodeToString(FromECDSA(key))
 | |
| 	return ioutil.WriteFile(file, []byte(k), 0600)
 | |
| }
 | |
| 
 | |
| // GenerateKey generates a new private key.
 | |
| func GenerateKey() (*ecdsa.PrivateKey, error) {
 | |
| 	return ecdsa.GenerateKey(S256(), rand.Reader)
 | |
| }
 | |
| 
 | |
| // ValidateSignatureValues verifies whether the signature values are valid with
 | |
| // the given chain rules. The v value is assumed to be either 0 or 1.
 | |
| func ValidateSignatureValues(v byte, r, s *big.Int, homestead bool) bool {
 | |
| 	if r.Cmp(common.Big1) < 0 || s.Cmp(common.Big1) < 0 {
 | |
| 		return false
 | |
| 	}
 | |
| 	// reject upper range of s values (ECDSA malleability)
 | |
| 	// see discussion in secp256k1/libsecp256k1/include/secp256k1.h
 | |
| 	if homestead && s.Cmp(secp256k1halfN) > 0 {
 | |
| 		return false
 | |
| 	}
 | |
| 	// Frontier: allow s to be in full N range
 | |
| 	return r.Cmp(secp256k1N) < 0 && s.Cmp(secp256k1N) < 0 && (v == 0 || v == 1)
 | |
| }
 | |
| 
 | |
| func PubkeyToAddress(p ecdsa.PublicKey) common.Address {
 | |
| 	pubBytes := FromECDSAPub(&p)
 | |
| 	return common.BytesToAddress(Keccak256(pubBytes[1:])[12:])
 | |
| }
 | |
| 
 | |
| func zeroBytes(bytes []byte) {
 | |
| 	for i := range bytes {
 | |
| 		bytes[i] = 0
 | |
| 	}
 | |
| }
 |